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Abstract: The effects of Sn and Mo alloying elements on the microstructure and electrochemical
properties of TiZrTaNb high entropy alloys were studied by optical microscope (OM), scanning
electron microscopy (SEM), X-ray diffraction (XRD) and electrochemistry. TiZrTaNb, TiZrTaNbMo
and TiZrTaNbSn alloys with equal atomic ratio were prepared by the arc melting method. The
results showed that the microstructure of the high entropy alloys was dendritic structure with
single BCC structure. The addition of Mo and Sn elements promoted the growth of the dendritic
structure and accelerated the interdendritic segregation of the TiZrTaNb alloy. The TiZrTaNbMo
alloy exhibited excellent corrosion properties compared to TiZrTaNb and TiZrTaNbSn alloys based
on corrosion parameters Icorr, ϕcorr, Ipass. The corrosion mechanism is discussed based on the
corrosion morphology. The alloying elements have an important effect on the microstructure and
electrochemical properties of a high entropy alloy.

Keywords: high entropy alloys; TiZrTaNb alloy; microstructure; electrochemical property

1. Introduction

A high entropy alloy is a new alloy proposed at the beginning of this century [1–3].
It is a multiprincipal element alloy with five or more main elements and each element’s
content is between 5% and 35%, which breaks the design concept of the traditional alloy
and creates a new idea for alloy design [4–6]. The unique composition characteristics
of the high entropy alloy lead to excellent properties such as high strength, high wear
resistance and excellent corrosion resistance compared to traditional alloys, showing wide
application prospects in aerospace, nuclear power and biomedical fields [7–11]. Previous
studies have shown that the elastic modulus of a high-entropy alloy with BCC structure
is low, which can achieve a better match with the human body and is more suitable for
implantation materials [12–14]. Todai et al. prepared a series of high-entropy alloys for
use in bone repair (TiNbTaZrHf, TiNbTaZr, TiNbTaZrMo, etc.) by alloying safe elements
without cytotoxicity and sensitization factors. The as-cast TiZrTaNb exhibited a single BCC
phase and achieved a compressive yield strength of 1100 ± 90 MPa, strain of 48 ± 6%,
and modulus of 116 ± 6 GPa [15]. Moreover, the mechanical properties were improved
after the addition of Mo element, which showed better biocompatibility than pure titanium
and stainless steel [16–18]. The effect of elements can not only affect the mechanical
properties, but also the electrochemical property which is a key parameter for biological
materials [19–21]. Alloying designation is still a hot topic in material research, especially
for the high entropy alloy, due to the complex element interactions.

The Sn element is commonly used in Ti-based biological alloy, which has non-toxic
effects. In this paper, the effects of Sn and Mo elements on a TiZrNbTa high entropy alloy
were studied, and three high entropy alloys (TiZrTaNb, TiZrTaNbMo and TiZrTaNbSn)
with equal atomic ratio were designed. The effects of alloying elements on microstructure
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and properties were studied by means of scanning electron microscope (SEM), X-ray
diffractometer (XRD) and electrochemical workstation.

2. Materials and Methods

High purity metal particles Ti, Zr, Ta, Nb, Mo and Sn (purity ≥99.9%) were selected as
raw materials(Tim(Beijing)New Material Technology Co.,LTD), and arc melting was carried
out in a high vacuum arc melting furnace (Model DHL-500LL) (The origin is Shenyang,
China, purchased from Shenyang Scientific Instrument Co., Ltd. of the Chinese Academy
of Sciences) to obtain high entropy alloy ingots. Three high entropy alloys are TiZrTaNb,
TiZrTaNbMo and TiZrTaNbSn (at. %). The high melting point metal was placed at the
top of crucible and low melting point metal was placed at the bottom, and then different
melting point metals can be completely melted. The ingot was remelted five times and
homogeneous chemical composition was achieved. No wrinkles and black pits were
observed on the surface of ingot.

The electrochemical corrosion performance was tested on the CHI604E electrochemical
workstation. The electrochemical system was a standard three-electrode system. The
samples were the working electrode and AgCl electrode was the reference electrode, and
platinum electrode was the auxiliary electrode. Before the experiment, the samples were
polished and cleaned using alcohol ultrasonic. NaCl solution with mass fraction of 3.5%
was used during the experiment. The sample should be kept in 3600s before the test.
The alternating current impedance and corrosion rate (Tafel curve) were tested after the
open-circuit potential stabilized.

Hitachi SU8010 field emission scanning electron microscope (SEM) (The origin is
Tokyo, Japan, purchased from Hitachi High Technologies Corporation) was used to observe
the microstructure and electrochemical corrosion morphology. The energy dispersive
spectrometer (EDS) was used to analyze element distribution. The samples were ground
to 2000# with SiC sandpaper, and then mechanical polished. X-ray diffractometer (D8
Advance) (The origin is Germany and purchased from Bruker, Siegsdorf, Germany) was
used to assess the crystal structure and for phase analysis. The scanning step was set as
4◦/min and the diffraction angle 2θwas selected between 20◦ and 100◦.

3. Results and Discussion

X-ray was used for phase analysis of the three high entropy alloys and the results are
shown in Figure 1. Two kinds of BCC structures were identified and labeled BCC1 and
BCC2. It can be seen that the position of the diffraction peak changed after the addition of
Mo and Sn elements, but the crystal structure did not change, which was attributed to the
lattice distortion.
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Figure 1. XRD patterns of high entropy alloys.

The microstructure and element distribution of different high entropy alloys were
analyzed by SEM and EDS as shown in Figure 2. The microstructure showed a bright region
and dark region in BSE mode corresponding to the dendrite and interdendritic, which
resulted from the element segregation. The Ti, Zr, Nb elements were mainly segregated
as interdendritic and the Ta element segregated as dendrite. The distribution of Ti, Zr,
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Nb, Ta in TiZrTaNbMo alloy was similar with TiZrTaNb alloy, while the Mo element was
distributed as dendrite as shown in Figure 2c,d. In the TiZrTaNbSn alloy, the Sn element
were enriched in interdendritic, while the Nb element was distributed homogeneously
comparing to the TiZrTaNbMo alloy as shown in Figure 2e,f. It can be concluded that
Ta, Mo elements are mainly enriched in dendrite and Zr, Ti, Nb, Sn elements are mainly
distributed in the interdendritic in high-entropy alloys, which is attributed to the different
equilibrium distribution coefficients.
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In order to study the influence of alloying elements on the corrosion resistance of
high entropy alloys, the electrochemical corrosion tests were carried out and the results are
shown in Figure 3. The electrochemical impedance can be used to describe the corrosion
resistance, and the higher impedance value represents the better corrosion resistance. The
electrochemical impedance spectra of high-entropy alloys in 3.5% NaCl solution are shown
in Figure 3a. The radius of the capacitive reactance arc decreases significantly after the
addition of Mo and Sn elements. It can be seen from Figure 3a, TiZrTaNbMo showed
the best corrosion resistance, while TiZrTaNbSn showed the worst corrosion resistance
among the three high-entropy alloys. The potentiodynamic polarization curves of the three
high entropy alloys were similar and the redox reactions occurred as shown in Figure 3b.
Anodic polarization is an activation–passivation process, and the electrochemical corrosion
parameters are calculated according to Figure 3b listed in Table 1. At the beginning of
corrosion, the current density is called Icorr, which can reveal the corrosion resistance.
The corrosion resistance increased with the decrease of Icorr, then it can be concluded
that the TiZrNbTaMo alloy has the best corrosion performance. The corrosion potential
ϕcorr can reflect the thermodynamic properties and surface state of the electrode. The
corrosion tendency increased with the decrease of ϕcorr, as a result, the corrosion tendency
of TiZrTaNbMo alloy was lower than that of TiZrTaNb and TiZrTaNbSn alloys. The pas-
sivation current density Ipass can be used to evaluate the state of corroded system, and
the activated state changes to a passivated state depending on the Ipass. The smaller Ipass
indicates that the system is easier to keep the passivation state. It indicates that the alloys



Crystals 2021, 11, 1527 4 of 6

have entered the passivation stage, and a protective passivation film is formed on the sur-
face. The Ipass of TiZrTaNb, TiZrTaNbMo and TiZrTaNbSn alloys were 4.12 × 10−2 a·cm−2,
1.02 × 10−3 a·cm−2 and 5.2 × 10−2 a·cm−2 respectively. The TiZrTaNiMo alloy showed
the best corrosion resistance according the corrosion parameters listed in Table 1.
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Table 1. Parameters of electrochemical corrosion of high entropy alloy.

Alloy Icorr/A·cm−2 ϕcorr/V Ipass/A·cm−2

TiZrTaNb 7.08 × 10−7 −0.87 4.12 × 10−2

TiZrTaNbMo 5.5 × 10−7 −0.499 1.02 × 10−3

TiZrTaNbSn 7.87 × 10−7 −0.828 5.2 × 10−2

The surface morphology of the high entropy alloys after electrochemical corrosion is
shown in Figure 4. The surface was etched after electrochemical corrosion for 60 min. The
electrochemical corrosion behavior of the high entropy alloys was basically the same, the
corrosion mainly occurred at the grain boundary due to interdendritic segregation. The
corrosion degree of the three high entropy alloys was different from each other, which
corresponds to different corrosion properties. A small number of corrosion particles were
attached to the surface of TiZrTaNbMo alloy, and no obvious corrosion was observed,
denoting excellent corrosion resistance as shown in Figure 4b. Severe corrosion occured on
the surface of TiZrTaNbSn alloy, and there was a large number of corrosion pits and cracks
on the surface as shown in Figure 4c. The deteriorative corrosion property of TiZrTaNbSn
alloy was attributed to the interdendritic segregation of the Sn element. The corrosion
property of TiZrTaNbSn alloy could be improved by eliminating segregation and further
work will be carried out.
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4. Conclusions

This paper systematically studied the effect of Mo and Sn elements on the microstruc-
ture and corrosion properties of TiZrTaNb alloy, and the main conclusions are as follows:

1. The microstructure of TiZrTaNb, TiZrTaNbMo and TiZrTaNbSn alloys is dendrite
with single BCC structures. The addition of Mo and Sn elements promotes dendrite
growth and interdendritic segregation.

2. The Ta, Mo elements are mainly enriched in dendrite and Zr, Ti, Nb, Sn elements are
mainly distributed in the interdendritic in high entropy alloys, which is attributed to
the different equilibrium distribution coefficients.

3. The TiZrTaNiMo alloy shows excellent corrosion property according to the corrosion
parameters Icorr,ϕcorr, Ipass. The corrosion property of the TiZrTaNb alloy deteriorated
after the addition of Sn element and this is attributed to the interdendritic segregation
of Sn element.
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