Detection of Reproductive Hormones in Females by Using 1D Photonic Crystal-Based Simple Reconfigurable Biosensing Design
Abstract
:1. Introduction
2. Theoretical Formulation of Proposed Design
3. Result and Discussions
3.1. Structural Design and Working Principle
3.2. Determination of Refractive Index of Progesterone and Estradiol Reproductive Hormones along with Their Significance
3.3. Effect of Change in Concentration of Progesterone and Estradiol in Blood Samples
3.4. Effect of Change in Defect Layer Thickness on the Performance of the Design
3.5. Effect of Change in Angle of Incidencecorresponding to TE Polarized Electromagnetic Wave on the Performance of the Design
3.6. Performance Evaluation of the Proposed Design
3.7. Sensitivity of Proposed Structure Separately Loaded with Blood Sample Containing Progesterone and Estradiol Hormones of Different Concentration at Given dD and θ0
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kinoshita, S.; Yoshioka, S.; Kawagoe, K. Mechanisms of Structural colour in the Morpho butterfly: Cooperation of regularity and irregularity in an iridescent scale. Proc. R. Roc. Lond. Soc. B 2002, 269, 1417–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fink, Y.; Winn, J.N.; Fan, S.; Chen, C.; Michel, J.; Joannopoulos, J.D.; Thomas, E.L. A Dielectric Omnidirectional Reflector. Science 1998, 282, 1679–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, S.D.; Maskaly, G.R.; Temelkuran, B.; Prideaux, P.H.; Joannopoulos, J.D.; Fink, Y. External reflection from omnidirectional dielectric mirror fibers. Science 2002, 296, 510–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Chen, H.; Li, H.; Zhang, Y. Omnidirectional gap and defect mode of one –dimensional photonic crystals containing negative index materials. Appl. Phys. Lett. 2003, 83, 5386–5388. [Google Scholar] [CrossRef]
- Awasthi, S.K.; Malaviya, U.; Ojha, S.P. Enhancement of omnidirectional total reflection wavelength range by using one- dimensional ternary photonic bandgap material. JOSA B 2006, 23, 2566–2571. [Google Scholar] [CrossRef]
- Awasthi, S.K.; Malaviya, U.; Ojha, S.P. Enhancement of omnidirectional high-reflection wavelength range in 1D ternary periodic structures: A comparative study. J. Nanophotonics 2008, 2, 023505. [Google Scholar]
- Upadhyay, M.; Awasthi, S.K.; Shiveshwari, L.; Srivastava, P.K.; Ojha, S.P. Thermally tunable photonic Filter for WDM networks Using 1D Superconductor dielectric photonic crystals. J. Supercond Nov. Magn. 2015, 28, 2275–2280. [Google Scholar] [CrossRef]
- John, S.; Florescu, M. Photonic bandgap materials: Towards an all-optical Micro-transistor. J. Opt. A Pure Appl. Opt. 2001, 3, S103–S120. [Google Scholar] [CrossRef]
- Rayleigh, L. On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1887, 24, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Yablonovitcs, E. Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 1986, 58, 2059–2062. [Google Scholar] [CrossRef] [Green Version]
- John, S. Strong localization of photons in certain disordered dielectric super lattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar] [CrossRef] [Green Version]
- Zaky, Z.A.; Aly, A.H. Gyroidalgraphene/porous silicon array for exciting optical Tamm state as optical sensor. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Gao, S.; Dou, Y.; Li, Q.; Jiang, X. Tunable photonic crystal lens with high sensitivity of refractive index. Opt. Express 2017, 25, 7112–7120. [Google Scholar] [CrossRef]
- Suthar, B.; Bhargava, A. Pressure sensor based on Quantum well-structured photonic crystal. Silicon 2020, 13, 1765–1768. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Aly, A.H. Theoretical study of a tunable lowtemperature photonic crystal sensor using dielectric superconductor Nanocomposite layers. J. Supercond Nov. Magn. 2020, 33, 2983–2990. [Google Scholar] [CrossRef]
- Sen, S.; Hasan, M.M.; Ahmed, K. Ultra-low material loss quasi pattern based photonic crystal Fiber for long distance THz wave propagation. Silicon 2020, 13, 1663–1673. [Google Scholar] [CrossRef]
- Alwan, A.M.; Abbas, R.A.; Dheyab, A.B. Study the characteristic of planer and sandwich PSi gas sensor (comparative study). Silicon 2018, 10, 2527–2534. [Google Scholar] [CrossRef] [Green Version]
- Aly, A.H.; Mohamed, D.; Zaky, Z.A.; Matar, Z.S.; El-Gawaad, N.S.; Shalaby, A.S.; Tayeboun, F.; Mohaseb, M. Novel biosensor detection of tuberculosis based on photonic band gap materials. Mater. Res. 2021, 24, 1–7. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Ahmed, A.M.; Shalaby, A.S.; Aly, A.H. Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation. Sci. Rep. 2020, 10, 9736. [Google Scholar] [CrossRef]
- Aly, A.H.; Zaky, Z.A. Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor. Cryogenics 2019, 104, 102991. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Aly, A.H. Modeling of a biosensor using Tamm resonance excited by graphene. Appl. Opt. 2021, 60, 1411–1419. [Google Scholar] [CrossRef]
- Jabbar, A.A.; Alwan, A.M.; Zayer, M.Q.; Bohan, A.J. Efficient single cell monitoring of pathogenic bacteria using bimetallic nanostructures embedded in gradient porous silicon. Mater. Chem. Phys. 2020, 241, 122359. [Google Scholar] [CrossRef]
- Hopman, W.C.; Pottier, P.; Yudistira, D.; Van Lith, J.; Lambeck, P.V.; De La Rue, R.M. Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Jia, Y.; Jiang, L.; Guo, J.; Dai, X.; Xiang, Y. Sensitivity improved SPR biosensor based on the MoS2/graphene–aluminum hybrid structure. J. Lightwave Technol. 2016, 35, 82–87. [Google Scholar] [CrossRef]
- Li, H. Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 1980, 9, 561–658. [Google Scholar] [CrossRef]
- Kaliteevski, M.; Iorsh, I.; Brand, S.; Abram, R.; Chamberlain, J.; Kavokin, A. Tamm plasmon-polaritons: Possible electromagnetic Silicon states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B 2007, 76, 165415-68. [Google Scholar] [CrossRef] [Green Version]
- Gaspar-Armenta, J.A.; Villa, F. Photonic surface-wave excitation: Photonic crystal–metal interface. JOSA B 2003, 20, 2349–2354. [Google Scholar] [CrossRef]
- Makaraviciute, M.; Ramanavicius, A. Development of a reusable protein G based SPR immunosensor for direct human growth hormone detection in real samples. Anal. Methods 2015, 7, 9875–9884. [Google Scholar] [CrossRef]
- German, N.; Kausaite-Minkstimiene, A. Determination of antibodies against human growth hormone using a direct immunoassay format and different electrochemical methods. Analyst 2013, 138, 1427–1433. [Google Scholar] [CrossRef]
- Pitruzzello, G.; Karuss, T.F. Photonic crystal resonances for sensing and imaging. J. Opt. 2018, 20, 073004. [Google Scholar] [CrossRef]
- Abd El-Ghany, S.E.; Noum, W.M.; Matar, Z.; Zaky, Z.A.; Aly, A.H. Optimized bio-photonic sensor using 1D-photonic crystals as a blood hemoglobin sensor. Phys. Scr. 2020, 96, 035501. [Google Scholar] [CrossRef]
- Sudro, S.; Carpignano, F.; Strambini, L.M.; Merlo, S.; Barillaro, G. Capillarity-driven (self-powered) one-dimensional photonic cry.stals for refractometry and (bio) sensing applications. RSC Adv. 2014, 4, 51935–51941. [Google Scholar]
- Gandhi, S.; Awasthi, S.K.; Aly, A.H. Biophotonic sensor design using a 1D defective annular photonic crystal for the detection of creatinine concentration in blood serum. RSC Adv. 2021, 11, 26655–26665. [Google Scholar] [CrossRef]
- Aly, A.H.; Mohamed, D.; Mohaseb, M.A.; Abd El-Gawaad, N.S. Trabelsi Biophotonic sensor for detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv. 2020, 10, 31765–31772. [Google Scholar] [CrossRef]
- NoumanWalaa, M.; Abd El-Ghany, S.E.-S.; Sallam Samira, M.; Dawood Abdel-Fattah, B.; Aly, A.H. Biophotonic sensor for rapid detection of brain lesions using 1D photonic crystal. Opt. Quan. Elect. 2020, 52, 1–14. [Google Scholar]
- Mehrota, P. Biosensors and their applications-a review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Born, M.; Wolf, M. Principles of Optics: Basic Properties of the Electromagnetic Field; Pergamon Press: New York, NY, USA, 1984. [Google Scholar]
- Zeidan, E.; Shivaji, R.; Henrich, V.C.; Sandros, M.G. Nano-SPRi aptasensor for the detection of progesterone in buffer. Sci. Rep. 2016, 6, 26714. [Google Scholar] [CrossRef]
- Lieberman, A.; Curtis, L. In defense of progesterone: A review of the literature. Altern. Ther. Health Med. 2017, 23, 14–22. [Google Scholar]
- Panda, A.; Vigneswaran, D.; Pukhrambam, P.D.; Ayyanar, N.; Nguyen, T.K. Design and Performance Analysis of Reconfigurable 1D Photonic Crystal Biosensor employing Ge2Sb2Te5 (GST) for Detection of Women Reproductive Hormones. IEEE Trans. NanoBioscience 2021. [Google Scholar] [CrossRef]
- Danaie, M.; Kiani, B. Design of a label-free photonic crystal refractive index sensor for biomedical applications. Photonics Nanostructures Fundam. Appl. 2018, 31, 89–98. [Google Scholar] [CrossRef]
- Purkayastha, A.; Srivastava, T.; Jha, R. Ultrasensitive THz-Plasmonics gaseous sensor using doped grapheme. Sens. Actuators B 2016, 227, 291–295. [Google Scholar] [CrossRef]
- Klimov, V.V.; Pavlov, A.A.; Treshin, I.V.; Zabkov, I.V. Fano resonances in a photonic crystalcovered with a perforated gold film and itsapplication to bio-sensing. J. Phys. D Appl. Phys. 2017, 50, 285101. [Google Scholar] [CrossRef]
- El-Khozondar, H.J.; Mahalakshmi, P.; El-Khozondar, R.J.; Ramanujam, N.R.; Amirie, I.S.; Yupapin, P. Design of one dimensional refractive index sensor using ternary photonic crystal waveguide for plasma blood samples applications. Phys. E Low-Dimens. Syst. Nanostructures 2019, 111, 29–36. [Google Scholar] [CrossRef]
- Ramanujam, N.R.; Amiri, I.S.; Taya, S.A.; Olyaee, S.; Udiyakumar, R.; Pasumpon, A.; Wilson Joseph, K.S.; Mahalakshmi, P.; Yupapin, P.P. Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal. Microsyst. Technol. 2019, 25, 189–196. [Google Scholar] [CrossRef]
- Ramanujam, N.R.; El-Khozondar, H.A.; Dhasarathan, V.; Tayae, S.A.; Aly, A.H. Design of one dimensional defect based photonic crystal by composited superconducting material for bio sensing applications. Phys. B Condens. Matter 2019, 572, 42–55. [Google Scholar] [CrossRef]
- Lheureux, G.; Monavarian, M.; Anderson, R.; DeCrescent, R.A.; Bellessa, J.; Synmonds, C.; Schuller, J.A.; Speck, J.; Nakamura, S.; DenBaars, S.P. Tamm plasmons in metal/nanoporousGaN distributed Bragg reflector cavities for active and passive optoelectronics. Opt. Express 2020, 28, 17934–17943. [Google Scholar] [CrossRef]
- Bijalwan, A.; Singh, B.K.; Rastogi, V. Analysis of one-dimensional photonic crystal based sensor for detection of blood plasma and cancer cells. Optik 2021, 226, 165994. [Google Scholar] [CrossRef]
Types of Hormones | C (nmol/L) | Refractive Index | S (nm/nmol/L) | FOM (nmol/L) | |||
---|---|---|---|---|---|---|---|
Progesterone | 0 | 1.3352 | 680.08 | 0.06 | - | 11,334.666 | - |
40 | 1.336127 | 680.13 | 0.06 | 55.5555 | 11,335.5 | 925.925 | |
80 | 1.346210 | 680.86 | 0.07 | 70.84468 | 9726.574 | 1012.666 | |
120 | 1.381915 | 683.47 | 0.07 | 72.57546 | 9763.857 | 1036.794 | |
160 | 1.459606 | 689.35 | 0.06 | 74.44706 | 11,489.1667 | 124.7843 | |
200 | 1.5960604 | 700.23 | 0.05 | 77.24438 | 14,004.6 | 1544.887 |
Types of Hormones | C (nmol/L) | Refractive Index | S (nm/nmol/L) | FOM (nmol/L) | |||
---|---|---|---|---|---|---|---|
Progesterone | 0 | 1.3352 | 694.64 | 0.06 | - | 13,892.8 | - |
40 | 1.336127 | 694.73 | 0.06 | 97.08737 | 13,894.6 | 1941.7474 | |
80 | 1.346210 | 695.72 | 0.07 | 98.92643 | 17,393 | 2473.1607 | |
120 | 1.381915 | 699.16 | 0.07 | 96.96933 | 17,479.25 | 2424.2332 | |
160 | 1.459606 | 706.65 | 0.06 | 96.451918 | 14,133 | 1929.03836 | |
200 | 1.5960604 | 719.39 | 0.05 | 95.1850108 | 23,981 | 3172.83369 |
Types of Hormones | C (nmol/L) | Refractive Index | S (nm/nmol/L) | FOM (nmol/L) | |||
---|---|---|---|---|---|---|---|
Estradiol | 0 | 1.3333 | 679.92 | 0.1 | - | 6799.2 | - |
5 | 1.341311 | 680.5 | 0.18 | 72.400359 | 3780.555 | 402.22421 | |
7 | 1.3647495 | 682.19 | 0.09 | 72.180355 | 7579.8888 | 802.00394 | |
9 | 1.4190331 | 686.24 | 0.07 | 73.7172384 | 9803.4285 | 1053.10341 | |
11 | 1.5170166 | 693.84 | 0.04 | 75.769149 | 17346 | 1894.22805 |
Types of Hormones | C (nmol/L) | Refractive Index | S (nm/nmol/L) | FOM (nmol/L) | |||
---|---|---|---|---|---|---|---|
Estradiol | 0 | 1.3333 | 703.4 | 0.04 | - | 17,585 | - |
5 | 1.341311 | 703.98 | 0.04 | 72.40316 | 17,599.5 | 1810.079 | |
7 | 1.3647495 | 706.25 | 0.04 | 90.6214725 | 11,656.25 | 2265.5368 | |
9 | 1.4190331 | 711.52 | 0.04 | 94.71265 | 17,788 | 2367.81625 | |
11 | 1.5170166 | 720.96 | 0.06 | 95.581999 | 12,016 | 1593.03332 |
Types of Hormones | C (nmol/L) | Refractive Index | S (nm/nmol/L) | FOM (nmol/L) | |||
---|---|---|---|---|---|---|---|
Estradiol | 0 | 1.3333 | 696.45 | 0.05 | - | 13,889.8 | - |
5 | 1.341311 | 695.22 | 0.06 | 90.045639 | 11,587 | 1500.76065 | |
7 | 1.3647495 | 697.47 | 0.06 | 94.7550835 | 11,624.5 | 1579.2513 | |
9 | 1.4190331 | 702.71 | 0.05 | 95.87885 | 14,054.2 | 1917.577 | |
11 | 1.5170166 | 712.12 | 0.01 | 96.1263 | 71,212 | 9612.63 |
Year | S (nm/RIU) | Q-Factor | FOM (RIU) | Frequency Range | Reference |
---|---|---|---|---|---|
2016 | 34.11 | Not mentioned | 1.1 × 103 | THz | 42 |
2017 | 17 | 3 × 104 | 2.23 × 102 | Visible to NIR | 43 |
2019 | 25.75–51.49 | Not mentioned | Not mentioned | NIR | 44 |
2019 | 32–43.13 | Not mentioned | Not mentioned | NIR | 45 |
2019 | 53.0–90.9 | Not mentioned | Not mentioned | NIR | 46 |
2020 | 10 | 3 × 102 | 15.1 | Visible | 47 |
2021 | 71–75 | Not mentioned | Not mentioned | NIR | 48 |
This work | 55.55–98.92 | (0.68–2.3) × 104 | (1.96–2.6) × 104 | Visible | … |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aly, A.H.; Awasthi, S.K.; Mohamed, A.M.; Matar, Z.S.; Mohaseb, M.A.; Al-Dossari, M.; Tammam, M.T.; Zaky, Z.A.; Amin, A.F.; Sabra, W. Detection of Reproductive Hormones in Females by Using 1D Photonic Crystal-Based Simple Reconfigurable Biosensing Design. Crystals 2021, 11, 1533. https://doi.org/10.3390/cryst11121533
Aly AH, Awasthi SK, Mohamed AM, Matar ZS, Mohaseb MA, Al-Dossari M, Tammam MT, Zaky ZA, Amin AF, Sabra W. Detection of Reproductive Hormones in Females by Using 1D Photonic Crystal-Based Simple Reconfigurable Biosensing Design. Crystals. 2021; 11(12):1533. https://doi.org/10.3390/cryst11121533
Chicago/Turabian StyleAly, Arafa H., S. K. Awasthi, A. M. Mohamed, Z. S. Matar, M. A. Mohaseb, M. Al-Dossari, M. T. Tammam, Zaky A. Zaky, A. F. Amin, and Walied Sabra. 2021. "Detection of Reproductive Hormones in Females by Using 1D Photonic Crystal-Based Simple Reconfigurable Biosensing Design" Crystals 11, no. 12: 1533. https://doi.org/10.3390/cryst11121533
APA StyleAly, A. H., Awasthi, S. K., Mohamed, A. M., Matar, Z. S., Mohaseb, M. A., Al-Dossari, M., Tammam, M. T., Zaky, Z. A., Amin, A. F., & Sabra, W. (2021). Detection of Reproductive Hormones in Females by Using 1D Photonic Crystal-Based Simple Reconfigurable Biosensing Design. Crystals, 11(12), 1533. https://doi.org/10.3390/cryst11121533