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Abstract: The square planar complex [Pd(PT)Cl(H2O)]*H2O (HPT: 6-(3,5-dimethyl-1H-pyrazol-1-yl)-
1,3,5-triazine-2,4(1H,3H)-dione) was obtained by the reaction of 2-methoxy-4,6-bis(3,5-dimethyl-1H-
pyrazol-1-yl)-1,3,5-triazine (MBPT) pincer ligand with PdCl2 in a molar ratio (1:1) under thermal
conditions and using acetone as a solvent. The reaction proceeded via C-N cleavage of one C-N moiety
that connects the pyrazole and s-triazine combined with the hydrolysis of the O-CH3 group. The
reaction of the chloride salt of its higher congener (PtCl2) gave [Pt(3,5-dimethyl-1H-pyrazole)2Cl2].
The crystal structure of [Pd(PT)Cl(H2O)]*H2O complex is stabilized by inter- and intra-molecular
hydrogen bonding interactions. Hirshfeld analysis revealed that the H...H (34.6%), O...H (23.6%),
and Cl...H (7.8%) interactions are the major contacts in the crystal. The charges at Pd, H2O, Cl and
PT are changed to 0.4995, 0.2216, −0.4294 and −0.2917 instead of +2, 0, −1 and −1, respectively,
using the MPW1PW91 method. [Pd(PT)Cl(H2O)]*H2O complex has almost equal activities against
MDA-MB-231 and MCF-7 cell lines with IC50 of 38.3 µg/mL.

Keywords: Pd(II) complex; pyrazole; s-triazine; hirshfeld; DFT; MCF-7; MDA-MD-231

1. Introduction

Palladium(II) compounds have many applications in C-C cross-coupling reactions
(e.g. Suzuki–Miyaura, Mizoroki–Heck, etc.) [1–4]. In addition, the combination of hete-
rocyclic ligands with Pd metal center leads to new active compounds [5], where complexes
with Pd(II) metal center are good candidates for discovering new anti-cancer agents [6–15].
Graham et al. [16] reported the use of Pd(II) compounds as plausible anti-cancer agents. More-
over, various Pd(II) compounds have been synthesized and showed promising anti-cancer
activities. In some cases, Pd(II) metal complexes have shown better anti-cancer activity than
their Pt(II) analogs [12–15]. In fact, Pd(II) complexes have lately been showed an important
anti-tumor activity to cancer cells with minor side effects compared to cisplatin [15,17].

In addition, the s-triazine scaffold is a key for the preparation of various products
with important applications in pharmaceutical chemistry [18–22]. In the previous studies
by Soliman and El-Faham group, the reactions of 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-
methoxy-1,3,5-triazine (MBPT; Figure 1) pincer ligand with different metal ions such as
Ni(II), Co(II), Mn(II), Cd(II), Cu(II) and Zn(II) were examined [23–31]. For the majority of
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these reactions, the corresponding pincer complexes were obtained with varied coordina-
tion numbers depending on the metal ion. It ranges from 5 in the case of [Cd(MBPT)Cl2]
to 8 for the corresponding nitrato complex, while in the majority of metal ions, the coor-
dination number was 6. In few cases, the reaction proceeded with the decomposition of
the pincer ligand. In the presence of ZnCl2, the C-N cleavage of the MBPT was achieved,
and the [Zn(3,5-dimethyl-1H-pyrazole)2Cl2] was obtained [23]. In another instance, the
reactions with Cu(II) salts yielded 1D polymeric complexes due to the hydrolysis of the
MBPT ligand [25]. In the presence of Cu(II) perchlorate salt, the hydrolysis occurred only
for the methoxy group, while in the case of CuCl2 the hydrolysis occurred at one C-N
with the pyrazolyl moiety in addition to the hydrolysis of the methoxy group [25]. In this
publication, we tested the reaction of MCl2 (M = Pd or Pt) salts with MBPT ligand and the
structure of the resulting complexes were established using single-crystal X-ray diffraction.
Additionally, the anti-cancer activities of the new Pd(II) complex were also reported here
against breast cancer cell lines (MCF-7 and MDA-MB-231).
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Figure 1. Structure of the ligand (MBPT).

2. Materials and Methods

Solvents and reagents were bought from Sigma-Aldrich Chemie GmbH, 82024 Taufkirchen,
Germany. The C, H, and N analyses were determined using Perkin-Elmer 2400 elemental analyzer.

2.1. Syntheses of Ligand and [Pd(PT)Cl(H2O)]*H2O
2.1.1. Synthesis of MBPT Ligand

The ligand MBPT was prepared following the reported method [30,31]. The spectral
data agreed with the reported one (see in Supplementary Material, Figure S1).

2.1.2. Synthesis of [Pd(PT)Cl(H2O)]*H2O

PdCl2 (35.5 mg, 0.200 mmol) was added to a solution of 2-methoxy-4,6-bis(3,5-dimethyl-
1H-pyrazol-1-yl)-1,3,5-triazine (MBPT) ligand (60.0 mg, 0.200 mmol) in acetone (20 mL).
The reaction mixture was stirred for 3 days at 50 ◦C. After that time, the solution was
filtered from the insoluble materials and kept at room temperature for slow evaporation to
afford the target crystalline complex [Pd(PT)Cl(H2O)]*H2O. Yield: 92%. Anal. Calcd for
C8H12ClN5O4Pd: C, 25.02; H, 3.15; N, 18.23. Found: C, 24.86; H, 3.04; N, 18.15.

Following the same procedures, the reaction of PtCl2 with the same ligand afforded the
[Pt(3,5-dimethyl-1H-pyrazole)2Cl2] complex also indicating the hydrolysis of MBPT. The
crystals were isolated and the solid-state structure was established using X-ray diffraction
of a single crystal, and it is found to agree with the previously reported structure by
Khripun et al. [32].

2.2. Crystal Structure Determination

The crystal of [Pd(PT)Cl(H2O)]*H2O was immersed in cryo-oil, mounted in a loop, and
measured at a temperature of 170 K. The X-ray diffraction data was collected on a Bruker
Kappa Apex II diffractometer using MoKα radiation. The Denzo-Scalepack [33] software
package was used for cell refinement and data reduction. A numerical absorption correction
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(SADABS [34]) was applied to the intensities before structure solution. The structure
was solved by the intrinsic phasing method using the SHELXT [35] software. Structural
refinement was carried out using SHELXL [36] software. The H2O and NH hydrogen atoms
were located from the difference Fourier map and refined isotropically. Other hydrogen
atoms were positioned geometrically and constrained to ride on their parent atoms, with
C-H = 0.95–0.98 Å and Uiso = 1.2–1.5 Ueq (parent atom). The crystallographic details are
summarized in Table 1.

Table 1. Crystal data and structure refinement for [Pd(PT)Cl(H2O)]*H2O.

Empirical Formula C8H12ClN5O4Pd

Formula weight 384.08
Temperature 170(2) K
Wavelength 0.71073 Å

Crystal system Monoclinic
Space group C2/c

Unit cell dimensions a = 20.3494(9) Å α = 90◦

b = 7.1687(2) Å β = 120.004(2)◦

c = 19.9275(8) Å γ = 90◦

Volume 2517.43(17) Å3
Z 8

Density (calculated) 2.027 Mg/m3

Absorption coefficient 1.705 mm−1

F(000) 1520
Crystal size 0.372 × 0.171 × 0.153 mm3

Theta range for data collection 3.501 to 27.482◦

Index ranges −19 ≤ h ≤ 26, −9 ≤ k ≤ 9, −25 ≤ l ≤ 25
Reflections collected 11,575

Independent reflections 2843 [R(int) = 0.0253]
Completeness to theta = 25.242◦ 98.3%

Absorption correction Numerical
Max. and min. transmission 0.7994 and 0.6924

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2843/0/194
Goodness-of-fit on F2 1.091

Final R indices [I > 2sigma(I)] R1 = 0.0230, wR2 = 0.0510
R indices (all data) R1 = 0.0268, wR2 = 0.0529

Largest diff. peak and hole 0.477 and − 0.460 e Å−3

CCDC 2048907

2.3. Hirshfeld Analysis

Hirshfeld surfaces were computed using Crystal Explorer 17.5 program [37].

2.4. Computational Details

Gaussian 09 program [38] was used for DFT calculations. MPW1PW91 andωB97XD
methods [39,40] combined with cc-PVTZ and cc-PVTZ-PP [41–43] as basis sets for nonmetal
atoms and Pd, respectively, were used for natural charge populations [44] at the X-ray
structure coordinates of the studied Pd(II) complex.

2.5. In Vitro Anti-Cancer Activity

In vitro anti-cancer activities against two breast adenocarcinoma (MDA-MB-231 and
MCF-7) cell lines were tested (see in Supplementary Material, Method S1).

2.5.1. Cell Culture Conditions

Breast cancer cell lines MDA-MB-231 and MCF-7 were obtained from the German
Type Cell Culture Collection (DSMZ, Germany). Cells were maintained in high glu-
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cose Dulbecco’s Modified Eagle Medium supplemented with 10% of fetal bovine serum
(Gibco, USA).

2.5.2. MTT Assay

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was car-
ried out according to the previous report by Abutaha et al. [45]. Briefly, trypsin was
added to MDA-MB-231, and MCF-7 cells, and then cells were counted and seeded at
5 × 104 cells/well in the 24-well plate for 24 h. The following day, cells were incubated
with different concentrations of the compounds for 48 h with 5% CO2 at 37 ◦C. After that,
100µL of MTT (5 mg/mL) (Thermo, USA) was added to each well and left for 2 h. Next,
the supernatant was discarded, and 1000 µL of methanol was added, and the formazan
was quantified at 595 nm using a microplate reader. Triplicates were used to calculate the
cell viability percentage and the IC50 values using OriginPro 8.5 software.

3. Results and Discussion
3.1. X-ray Structure Description of [Pd(PT)Cl(H2O)]*H2O

In [Pd(PT)Cl(H2O)]*H2O complex, the Pd(II) is coordinated by a chloride anion, one
water molecule as monodentate ligands and two nitrogen atoms from the chelating ligand
PT−1 as a mononegative bidentate NN-chelate. The Pd(II) exhibiting slightly distorted
square planar coordination geometry (Table 2, Figure 2). The structure of the metal complex
is supported by one intramolecular H-bond between the coordinated water molecule (H1A)
and the oxygen (O2), forming the organic chelate (PT−1), leading to the six-membered
ring (Figure 3). The asymmetric unit also contains water of crystallization. The NH2-group
and the oxygen O3 are involved in a pair of hydrogen bonds binding the metal complex
with the adjacent molecule at the equivalent position of −x + 1, y, −z + 1.5. The aqua
ligand is also hydrogen bonded to the water of crystallization (Figure 3). The water of
crystallization forms additional hydrogen bonds with chloride ligand as well as with O6 of
the neighboring metal complexes. Additional weak CH···O type H-bonds (C6-H6···O4 and
C8-H8C···O4) are supporting the overall packing of the molecules. The hydrogen bonds
are summarized in Table 3 and Figure 3. Packing of the Pd(II) complex units stacked along
the crystallographic b-axis is shown in Figure 4.
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3.2. Hirshfeld Analysis of Molecular Packing

Hirshfeld surfaces mapped over dnorm, shape index (SI) and curvedness for the
studied complex are shown in Figure S2 (see in Supplementary Material). Quantitative
analysis of molecular packing is given in Figure 5. The H...H (34.6%), O...H (23.6%), and
Cl...H (7.8%) interactions are the major contacts in the crystal. For this complex, the N2-
H2...O3, O4-H4A...O3, O1-H1B...O4 and C6-H6...O2 hydrogen bonds were observed at
hydrogen-acceptor distances of 1.838, 1.876, 1.636, and 2.366 Å, respectively using Hirshfeld
calculations. The first three hydrogen bonding interactions appeared as intense red spots
indicating that these interactions are the most significant, while the C-H...O hydrogen
bond is less important (Figure 6). The N-H...O and O-H...O hydrogen bonds appeared as
sharp spikes in the fingerprint plot. Another intense red spot was observed close to the
coordinated chloride ion corresponding to the O4-H4B...Cl1 with H...Cl contact distance
of 2.415 Å and one sharp spike in the fingerprint plot indicating that the chloride ion
inside the surface acting as hydrogen bond acceptor. In addition, every two complex units
forming a dimer via two equivalent C1...N5 contacts (3.344 Å) along the crystallographic
b-direction indicating weak π-π stacking interactions, which is further indicated by the
presence of blue/red triangle in the shape index map.
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3.3. Natural Population Analysis

The divalent Pd ion is coordinated with two negatively charged ligand groups, which
are Cl− and PT−. These isolated ions have a net charge of −1 e. As a result of the interactions
between the Pd(II) ion as Lewis acid and these ligand groups as Lewis base, there are some
electrons that are transferred from the ligand groups to Pd(II) ion (Table 4). Two DFT methods
(MPW1PW91 and ωB97XD) employing natural charge population analysis [46] which
has low sensitivity to the basis set variations, were used for this task. The chloride ion
transferred 0.571–0.527 e to the Pd(II) while the anionic organic ligand (PT−) as a bidentate
chelate transferred a large amount (0.708–0.701 e) of its negative charge to the metal center
while the coordinated water molecule has a net charge of 0.2216–0.2172 e. As a result,
the water molecule as ligand transferred about 0.2 e to Pd(II). The net charge of Pd was
decreased to 0.500–0.527 e. Since the charges transferred are not associated with a physical
observable [47], one could conclude that there are some charges that are transferred from
the ligand groups to the Pd(II) central metal ion, which confirm the coordination between
the Pd(II) and ligand groups.

Table 4. The natural charges at the Pd, coordinated chloride and organic ligands.

Atom MPW1PW91 WB97XD

Pd 0.4995 0.5273
H2O 0.2216 0.2172

Cl −0.4294 −0.4452
PT −0.2917 −0.2992

Another interesting feature that could be discussed is the HOMO and LUMO patterns of
the studied system (Figure 7). The energies of these frontier molecular orbitals were calculated
to be –7.146 and –2.358 eV, respectively, and the HOMO-LUMO transition required an energy
of 4.789 eV using the MPW1PW91 method. As can be seen from Figure 7, the HOMO is
mainly localized over the Pd(II), which has a major contribution from the dz2 orbital,
while the LUMO is distributed over the metal and organic ligand skeleton, suggesting d-d
transition mixed with metal-ligand charge transfer transitions.
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3.4. In Vitro Anti-Cancer Activity

Presently, palladium-based drugs are among the most studied drugs in oncology and
are attractive substitute metal-based drugs because of considerable similarities to platinum
agents regarding structure and coordination chemistry [48]. Palladium-based drugs are
known to be active against a wide range of cancer cells with different IC50 values, includ-
ing MDA-MB-231 ([Pd(sperH)2][PdCl4]; sperH: spermidine), HCT 116 ([BzBimy)2PdCl2];
BzBimy:1-benzyl-3-tertbutylimidazol-2-ylidene), U-251 Glio ([Pd(L)Cl2]2; L: (S)-(1-
phenylethylimino)benzyl phenyl ketone), A549 ([Pd(dmnP)2Cl2]; dmnp: 2,6-dimethyl-4-
nitro-pyridine), K562 (trans-PdCl2[(R)(−)bornylamino]2), and many more [49]. In addition,
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Pd(II) complexes were reported to have more activity against cancer cell lines with less side
effects compared to cisplatin [15,17]. The studied [Pd(PT)Cl(H2O)]*H2O complex showed a
cell growth reduction against both of the tested breast cell lines compared with the control
that was inactive at all the tested concentrations. In addition, the complex showed good
activity against MDA-MB-231 and MCF-7 cells with same IC50 of 38.3 µg/mL for both
cells (Figure 8). This data is somewhat better than the reported data for cisplatin and the
Pd(II) complex of 2-(1-methyl-5-nitroimidazol-2-yl)ethanol after 48 h of incubation (IC50
values were 93.0, 42.5 µM for MCF-7 and 87.0 and 39.2 µM for MDA-MB-231 cells, respec-
tively) [50], therefore, this [Pd(PT)Cl(H2O)]*H2O complex showed a promising anti-cancer
activity against both tested cell lines.
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4. Conclusions

Under thermal conditions, the reaction of 2-methoxy-4,6-bis(3,5-dimethyl-1H-pyrazol-
1-yl)-1,3,5-triazine (MBPT) with PdCl2 or PtCl2 afforded [Pd(PT)Cl(H2O)]*H2O, or [Pt(3,5-
dimethyl-1H-pyrazole)2Cl2], respectively. In the case of PdCl2, partial hydrolysis of
MBPT for one pyrazole moiety and the methoxy group was observed. The molecular
and supramolecular structural aspects of [Pd(PT)Cl(H2O)]*H2O were examined using
X-ray single crystallography combined with Hirshfeld and DFT calculations. The stability
of the solid-state crystalline [Pd(PT)Cl(H2O)]*H2O complex is mainly controlled by the
H...H (34.6%), O...H (23.6%), and Cl...H (7.8%) interactions based on Hirshfeld analysis.
Based on natural population analysis, one could speculate that, some amount of nega-
tive charge densities were transferred from the ligand groups to Pd(II) due to the Lewis
acid-base interactions. On the other hand, the [Pd(PT)Cl(H2O)]*H2O complex showed a
promising activity with IC50 (38.3 µg/mL) against the two tested breast cancer cell lines
(MDA-MB-231 and MCF-7).
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