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Abstract: Being a positive candidate reinforcement material for laminar composites, the Mg2X (X = Si,
Ge, Sn) based intermetallics have attracted much attention. The elastic properties, anisotropy, and
electronic properties of intermetallic compounds with Bi-doped Mg2X (X = Si, Ge, Sn) are calculated
by the first principles method. Results show that the lattice parameters of Mg2X are smaller than
those of Bi-doped Mg2X. The element Bi preferentially occupies the position of the X (X = Si, Ge,
Sn) atom than other positions. Mg2X (X = Si, Ge, Sn), Mg63X32Bi, Mg64X31Bi, Mg64Ge32Bi, and
Mg64Sn32Bi are mechanically stable, while Mg64Si32Bi indicates that it cannot exist stably. The doping
of alloying element Bi reduces the shear deformation resistance of the Mg2X (X = Si, Ge, Sn) alloy.
The pure and Bi-doped Mg2X (X = Si, Ge, Sn) exhibits elastic and anisotropic characteristics. The
contribution of the Bi orbitals of Mg63X32Bi, Mg64X31Bi, and Mg63X32Bi are different, resulting in
different hybridization effects in three types of Bi-doped Mg2X.

Keywords: Mg2X intermetallic compounds; first-principles; Bi micro-alloying; elastic properties;
anisotropy; electronic properties

1. Introduction

Mg alloys have received extensive attention in the past decade due to their opti-
mum strength-to-weight ratio, good corrosion resistance, high-temperature resistance, and
pleasant ductility. The application of increased weight in the automotive and aerospace
industries is mainly used to reduce weight and improve fuel efficiency [1–9]. The Mg2X
(X = Si, Ge, Sn) alloy has a CaF2-type structure, which has a fairly low density and a
reasonably high melting point, hardness, and modulus of elasticity [10–13]. However,
Mg2X (X = Si, Ge, Sn) alloys have severe room-temperature brittleness [14,15], resulting in
a limited application range, and further research is needed.

The addition of alloying elements may improve the mechanical or electronic properties
of the material [16–18]. After adding trace alloying elements, the low-temperature tough-
ness and high-temperature creep properties of the Mg alloy can be improved by changing
the lattice constant and bonding properties [16]. Experimental studies have shown that
the addition of Ca in the Mg-Si alloy changes the morphology of the Mg-Si system, and
improves the overall performance of the magnesium alloy; adding 0.03 wt.% Bi changes the
primary Mg2Si shape from large to irregular or dendritic to polyhedral [19,20]. Compared
with other methods [21,22], the first principles method [23,24] can accurately predict the
structure and properties of the phase. Using the first principles method, Zhao Hui et al. [16]
showed that the doping of Ca, Sr, and Ba changed Mg2Si from brittle to ductile; the density
of the electronic states shifted, the covalent bond weakened, and the structural stability
of the alloy system weakened. Rare earth elements can refine Mg-Si grains, but rare earth
elements are expensive [25,26]. M. Ioannou et al. [14] found that Bi is the most stable
element in Mg2Si, compared with other dopants. Based on this, the effect of alloying
element Bi on the properties of Mg2X (X = Si, Ge, Sn) alloys was studied using the first
principles method in this paper.
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2. Model and Calculation Method

Mg2X (X = Si, Ge, Sn) belongs to a cubic crystal structure. To guarantee reliable
calculated results, we used a 2 × 2 × 2 supercell consisting of 96 atoms to construct the
doping structures. In the supercells, Mg or X (X = Si, Ge, Sn) sites can be substituted by
a single alloying element Bi, and there are many possible site preferences for Bi. In this
paper, three cases were studied, respectively: (1) occupying a position of an Mg atom,
(2) occupying a face center position of X (X = Si, Ge, Sn) atoms, and (3) occupying the center
position between two neighboring X atoms. The calculation models are shown in Figure 1.
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Figure 1. Cell model of (a) Mg2X (X= Si, Ge, Sn), (b) Mg63X32Bi, (c) Mg64X31Bi, and (d) Mg64X32Bi.

The calculation process was performed using the Cambridge Serial Total Energy Pack-
age (CASTEP) [27,28], based on density functional theory (DFT) [29,30]. The electronic
exchange association can adopt the GGA-PBE form [31], and the potential function selects
the ultra-soft pseudopotential of the reciprocal space. The integral of the Brillouin zone was
calculated by the high-symmetric k-point method in the form of Monkhorst-Pack [32], with
the k-point grid being 4 × 4 × 4, and the cut-off energy for the plane wave functions was
set to 380 eV for Bi-doped Mg2X. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) [33] algo-
rithm is used to geometrically optimize the unit cell model to obtain the most stable struc-
ture. When performing self-consistent iterative SCF calculation, the Pulay density mixing
method is used to solve the electron relaxation. The self-consistent convergence condition
is: the total energy of the system reaches convergence within 5.0 × 10−6 eV/atom, the force
on each atom is less than 0.01 eV/Å, the stress deviation is less than 0.02 GPa, the tolerance
offset is less than 5 × 10−4 Å, and the SCF convergence accuracy is 5 × 10−7 eV/atom.

3. Results and Discussion
3.1. Lattice Parameters

After doping, the lattice parameters of Mg2X (X = Si, Ge, Sn), Mg63X32Bi, Mg64X31Bi,
and Mg64X32Bi crystals are in Table 1. The predicted lattice constants of pure Mg2X
are consistent with other theoretical and experimental values [10,34–38], indicating the
reliability of the present computational model. The lattice parameters of Mg2X are smaller
than those of Bi-doped Mg2X, because the radius of doping element Bi is larger than that
of alloying element X and Mg. The enthalpy of formation (∆Hf) of Mg2X and Bi-doped
Mg2X is shown in Equation (1):

∆H f =
Etot − NAEA

solid − NBEB
solid − NCEC

solid
NA + NB + NC

(1)

where Etot represents the total energy of pure and doped Mg2X (X = Si, Ge, Sn) phases,
EA

soild, EB
soild, and EC

soild denote the ground state energy of Mg, X, and Bi in the solid cell,
NA, NB, and NC are the number of Mg, X, and Bi atoms, respectively.
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Table 1. Lattice constant a (Å) and enthalpy of the formation ∆Hf (eV/atom) of Mg2X, Mg63X32Bi,
Mg64X31Bi, and Mg64X32Bi (X = Si, Ge, Sn).

Phase
Lattice Constants a/Å

∆Hf (eV/atom)
This Work Cal Exp

pure Mg2Si 6.371 6.30 [10] 6.35 [34] –0.170
Mg64Si32 12.741 –0.170

Mg63Si32Bi 12.791 - - −0.191
Mg64Si31Bi 12.804 - - −0.204
Mg64Si32Bi 12.823 - - −0.175

pure Mg2Ge 6.355 6.318 [35] 6.3849 [36] −0.259
Mg64Ge32 12.710 −0.259

Mg63Ge32Bi 12.906 - - −0.279
Mg64Ge31Bi 12.909 - - −0.290
Mg64Ge32Bi 12.940 - - −0.264
pure Mg2Sn 6.843 6.829 [37] 6.759 [38] −0.196

Mg64Sn32 13.685 −0.196
Mg63Sn32Bi 13.688 - - −0.228
Mg64Sn31Bi 13.670 - - −0.237
Mg64Sn32Bi 13.711 - - −0.220

The calculated ∆Hf of Mg2X and Bi-doped Mg2X phases are listed in Table 1. The
more negative ∆Hf the crystal is, the easier it is to form. The ∆Hf of Mg64X31Bi is smaller
than that of others, which indicates that the element Bi preferentially occupies the position
of the X (X = Si, Ge, Sn) atom more than other positions.

3.2. Elastic Properties

The elastic constant is used to describe the ability of a material to resist external force
deformation and predict the mechanical properties of a material. The elastic properties
are closely related to some important thermodynamic properties (such as the Debye tem-
perature, melting point, and specific heat capacity), so it is necessary to study the elastic
properties of the alloy after Bi-doped Mg2X (X = Si, Ge, Sn) by calculating the elastic
constant.

The Bi-doped Mg2X alloy crystals belong to the cubic crystal type, and have three inde-
pendent elastic constants [39]: C11, C12, and C44. The stability criterion is: C11 − C12 > 0,
C11 > 0, C44 > 0, and C11 + 2C12 > 0 [40]. At the same time, many elastic properties of
the crystal can be obtained by the elastic constant Cij [41,42], for example, bulk modulus B,
shear modulus G, Young’s modulus E, Pugh’s index of ductility B/G, Poisson’s ratio ν, and
anisotropic Zener ratio Az. The calculation formula is as follows [43],

B =
C11 + 2C12

3

GV =
C11 − C12 + 3C44

5

GR =
5(C11 − C12)C44

3(C11 − C12) + 4C44

G =
GV + GR

2

E =
9BG

3B + G

υ =
3B− 2G

2(3B + G)

Az = 2C44/(C11 − C12)
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In the current work, elastic constant Cij, bulk modulus B, shear modulus G, Young’s
modulus E, Pugh’s index of ductility B/G, Poisson’s ratio ν, and anisotropic Zener ratio Az
of the Mg2X, Mg63X32Bi, Mg64X31Bi, and Mg64X32Bi alloys are shown in Table 2.

Table 2. Elastic constant Cij (GPa), bulk modulus B (GPa), shear modulus G (GPa), Young’s modulus E (GPa), Pugh’s
index of ductility B/G, Poisson’s ratio ν, and anisotropic Zener ratio Az of Mg2X (Mg64Si32), Mg63X32Bi, Mg64X31Bi, and
Mg64X32Bi alloys.

Phase C11 C12 C44 B G E G/B ν Az

Mg64Si32 111.97 21.55 41.74 51.69 43.10 101.17 0.834 0.174 0.923z
Exp. [44] 126.00 26.00 48.50 59.00 - - - - -
Cal. [11] 121.20 23.70 49.50 56.20 49.20 113.50 - - -
Cal. [45] 118.80 22.27 44.96 - - - - - -

Mg63Si32Bi 108.53 24.84 36.21 52.74 38.37 92.64 0.728 0.207 0.865
Mg64Si31Bi 107.64 24.50 36.03 52.21 38.15 92.03 0.731 0.206 0.867
Mg64Si32Bi 37.44 57.65 32.58 - - - - - -
Mg64Ge32 103.88 19.65 37.97 49.73 39.57 93.01 0.829 0.175 0.902
Exp. [44] 117.90 23.00 46.50 54.06 - - - - -
Cal. [11] 118.10 23.60 48.00 55.10 47.70 111.10 - 0.164 -
Cal. [46] 116.10 20.60 44.00 52.50 45.40 105.9 - 0.164 -

Mg63Ge32Bi 101.58 23.26 34.24 49.37 36.13 87.14 0.732 0.206 0.874
Mg64Ge31Bi 101.25 22.21 33.86 48.56 36.02 86.64 0.742 0.203 0.857
Mg64Ge32Bi 52.54 43.72 28.52 46.66 13.91 37.96 0.298 0.364 6.472

Mg64Sn32 68.36 29.39 34.20 40.38 28.11 68.46 0.696 0.217 1.630
Exp. [47] 82.40 20.80 36.60 - - - - - -
Cal. [11] 83.71 39.79 21.69 42.36 21.79 74.78 0.51 0.206 -
Cal. [44] 81.10 20.16 34.85 43.73 31.70 - - - -

Mg63Sn32Bi 66.42 27.11 27.42 40.21 24.00 60.04 0.597 0.251 1.395
Mg64Sn31Bi 67.51 25.96 28.63 39.81 25.18 62.38 0.632 0.239 1.378
Mg64Sn32Bi 58.06 29.27 23.25 38.97 19.18 49.41 0.493 0.288 1.615

It can be found in Table 2 that Mg2X (X = Si, Ge, Sn), Mg63X32Bi [48], Mg64X31Bi,
Mg64Ge32Bi, and Mg64Sn32Bi satisfy the stability criterion, indicating that these crystals
are mechanically stable, while C11 – C12 < 0 of Mg64Si32Bi indicates that the cubic structure
cannot exist stably. Thus, it is not an optimal structure.

The bulk modulus B represents the ability of materials to resist deformation under
external stress, and the greater the bulk modulus, the stronger the ability to resist deforma-
tion [49]. After Bi doping Mg2Ge and Mg2Sn: Mg2X > Mg63X32Bi > Mg64X31Bi > Mg64X32Bi
(X = Ge and Sn), but after Bi-doped Mg2Si, Mg63Si32Bi > Mg64Si31Bi > Mg2Si, indicating
that the ability of Mg2Si to resist deformation after doping is enhanced. The value of B for
Mg63Si32Bi is larger than that for other Bi-doped Mg2X (X = Si, Ge, Sn) phases, indicating
that the Mg63Si32Bi has stronger deformation resistance.

The shear modulus G is used to evaluate the ability of the object to resist shear
strain; the greater the value is, and the more obvious the directional bonds between the
compounds are, the better the resistance to plastic deformation [50]. The doping of alloying
element Bi reduces the shear deformation resistance of the Mg2X (X = Si, Ge, Sn) alloy. The
order of the deformation resistance of Mg63X32Bi, Mg64X31Bi, and Mg64X32Bi is Mg63Si32Bi >
Mg63Ge32Bi > Mg63Sn32Bi, Mg64Si31Bi > Mg64Ge31Bi > Mg64Sn31Bi, Mg64Sn32Bi > Mg64Ge32Bi,
respectively. This means that the alloy obtained by Bi doping Mg2Si has better shear
resistance than Mg63X32Bi and Mg64X31Bi (X = Ge, Sn).

Young’s modulus E is an important parameter to characterize material stiffness. The
smaller the value, the smaller the stiffness, and the better the plasticity of the materials [49].
The doping of the alloying element Bi in Table 2 enhances the plasticity and reduces the
stiffness of the Mg2X (X = Si, Ge, Sn) alloy. The stiffness of Mg63Si32Bi (Mg64Si31Bi) is
stronger than that of other Mg63X32Bi (Mg64X31Bi). Poisson’s ratio ν refers to the ratio of
the absolute value of the transverse positive strain and the axial positive strain when the
material is under tension or compression in a single direction. The greater the value, the



Crystals 2021, 11, 142 5 of 10

better the plasticity the corresponding material will have [51]. It can be seen from Table 2
that the doping of the alloying element Bi enhances the plasticity of the Mg2X (X = Si, Ge,
Sn) alloy and corresponds to Young’s modulus calculation result.

According to Pugh, G/B can predict the ductility or brittleness of materials, and the
corresponding critical value is 0.57. When G/B > 0.57, materials are brittle, and ductile
materials are opposite [52]. The doping of the alloying element Bi causes the Mg2X (X = Si,
Ge, Sn) alloy to be converted from a brittle material to a ductile material, as can be seen
in Table 2. In general, the brittleness (extension) of a material can also be measured by
C12−C44. If C12–C44 > 0, the material exhibits ductility; on the contrary, it is brittle [16,53].
According to Table 2, it is known that the Mg2X, Mg63X32Bi, and Mg64X31Bi (X = Si, Ge,
Sn) alloys are brittle materials, and Mg64X32Bi (X = Ge, Sn) is a ductile material, which is
consistent with the results obtained by G/B.

The elastic anisotropy of the material in the engineering materials shows the possibility
of micro-crack in the material, which is closely related to the nanoscale precursor texture of
the material, and occupies an important position in the material science [54,55]. Anisotropy,
on the other hand, reflects the density distribution of electrons in different directions based
on DFT calculations. In different crystal orientations, the density function of electrons is
not the same, so it will show a different degree of anisotropy. The material behaves as
isotropic when Az = 1. According to Table 2, it can be seen that the Az of pure and Bi-doped
Mg2X is not equal to 1, showing the anisotropy of pure and doped Mg2X. The Az of Mg2Si
is very close to 1, indicating that the elastic anisotropy of Mg2Si is relatively small. The
anisotropy of Bi-doped Mg2X (X = Si, Ge) phase is larger than that of Mg2X, whereas the
anisotropy of Bi-doped Mg2Sn is smaller than that of Mg2Sn.

Figure 2 plots the 3D Young’s modulus E-surface diagram of pure and Bi-doped Mg2X
(X = Si, Ge, Sn) alloys at 0 GPa. It is clear from the three-dimensional surface that the
pure and Bi-doped Mg2X phases show elastic anisotropy, because their 3D shapes deviate
from the spherical shape. Mg64Ge32Bi deviates most from the spherical shape among these
phases, indicating that Mg64Ge32Bi shows strong anisotropy. The main effect of impurity
doping is mainly to change the charge density distribution, thus affecting the anisotropy.
This result is consistent with the calculation results.
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3.3. Electronic Properties

Before calculating the electronic structure, we tested the influence of the spin polar-
ization settings on the total energy of the Mg63Si32Bi system, and the results are shown in
Table 3. It can be found that the difference between total energy is very small, which means
that the effect of spin polarization on the total energy and electronic structure is negligible.

Table 3. Total energy of Mg63Si32Bi under different spin polarization settings.

Non-Spin Polarized Spin Polarized

Total Energy (eV) −64958.92186 −64958.92179

Usually, we study the band gap based on the band structure. We calculated the energy
band of Mg2Si and Mg2Ge, and the results are shown in Figure 3. It can be seen that there
is a band gap of 0.223 eV in Mg2Si and 0.123 eV in Mg2Ge, which means that Mg2Si and
Mg2Ge are both semiconductor materials. However, this cannot be reflected from the DOS
diagram. The calculations of Mg2Si in the literature [56–58] also has similar results.
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Figure 3. The band structures of Mg2Si and Mg2Ge.

As shown in Figure 4, the bonding electrons of the pure and Bi-doped Mg2X (X = Si,
Ge, Sn) alloy compounds are mainly distributed at −10 to 5 eVs. In an energy range from
−10 to 0 eV, there is no significant difference in the shape of the total density of states
(TDOS) between pure and doped Mg2X phases. In Figure 4a, the bonding electrons mainly
come from the contributions of Mg-3s, Si-3s, Ge-4s, and Sn-5s orbitals. In the −5~0 eV
interval, Si-3p, Ge-4p, and Sn-5p orbitals have strong orbital hybridization with Mg-2p and
Mg-3s. The energy range from 0~eV to 5~eV is mainly contributed by Mg-2p and Mg-3s
orbitals, with small involvement of X states.

As shown in Figure 4b, in the energy range from −10 to −6 eV, the atomic orbital of
Mg63X32Bi (X = Si and Sn) alloys are mainly dominated by Bi-6p, Si-3s, Sn-5s, and Mg-3s
states, and the TDOS of Mg63Ge32Bi is mainly contributed by Bi-6s, Ge-4s, and Mg-3s
states. In the range of −6~0 eV, the Mg63X32Bi (X = Si, Ge, Sn) alloy mainly comes from
the interaction between Mg-2p, Mg-3s, Si-3p, Ge-4p, Sn-5p, and Bi-6p, indicating that Mg,
X, and Bi have strong bond binding effects in this interval. The Mg-2p and Mg-3s orbitals
contribute strongly in the range of 0~5 eV for Mg63X32Bi (X = Si, Ge, Sn).
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In Figure 4c, between −6 and 0 eV, the orbital contribution of the Mg64X31Bi alloy
is the same as that of the Mg63X32Bi alloy. In the range of −10~−6 eV and 0~2 eV, the
contribution of Bi-6s and Bi-6p orbitals of Mg64X31Bi to TDOS has changed compared to
Mg63X32Bi. As shown in Figure 4d, the contribution of the Mg and X (S = Ge, Sn) orbitals of
Mg64X32Bi to TDOS are similar to the analysis of Mg63X32Bi and Mg64X31Bi. However, the
contribution of Bi orbitals of Mg63X32Bi, Mg64X31Bi, and Mg63X32Bi are different, resulting
in different hybridization effects in three types of Bi-doped Mg2X.

4. Conclusions

In this paper, the elastic properties and electronic structures of pure and Bi-doped
Mg2X (X = Si, Ge, Sn) compounds were calculated by the method of plane wave pseudopo-
tential based on density functional theory. The calculation results show that:

(1) The lattice parameters of Mg2X are smaller than those of Bi-doped Mg2X, because the
radius of doping element Bi is larger than that of alloying element X and Mg. The
∆Hf of Mg64X31Bi is smaller than that of others, which indicates that the element Bi
preferentially occupies the position of the X (X = Si, Ge, Sn) atom than other positions.

(2) Mg2X (X = Si, Ge, Sn), Mg63X32Bi, Mg64X31Bi, Mg64Ge32Bi, and Mg64Sn32Bi are
mechanically stable, while Mg64Si32Bi indicates that it cannot exist stably. The ability
of Mg2Si to resist deformation after doping is enhanced, and Mg63Si32Bi has stronger
deformation resistance. The doping of alloy element Bi makes the Mg2X (X = Si, Ge,
Sn) alloy convert from brittle material to ductile material, and results in plasticity
enhancement and stiffness reduction.

(3) The pure and Bi-doped Mg2X (X = Si, Ge, Sn) exhibit elastic anisotropic properties.
The anisotropy of Bi-doped the Mg2X (X = Si, Ge) phase is larger than that of Mg2X,
whereas the anisotropy of Bi-doped Mg2Sn is smaller than that of Mg2Sn. Mg64Ge32Bi
shows strong anisotropy among these phases.

(4) In an energy range from −10 to 0 eV, there is no significant difference in the shape of
TDOS between the pure and doped Mg2X phases. The contribution of Bi orbitals of
Mg63X32Bi, Mg64X31Bi, and Mg63X32Bi are different, resulting in different hybridiza-
tion effects in three types of Bi-doped Mg2X.
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