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Abstract: The investigation of photodetectors with broadband response and high responsivity is
essential. Zinc Oxide (ZnO) nanowire has the potential of application in photodetectors, owing to the
great optoelectrical property and good stability in the atmosphere. However, due to a large number
of nonradiative centers at interface and the capture of surface state electrons, the photocurrent of ZnO
based photodetectors is still low. In this work, 2D Bi2Se3/ZnO NWAs heterojunction with type-I band
alignment is established. This heterojunction device shows not only an enhanced photoresponsivity
of 0.15 A/W at 377 nm three times of the bare ZnO nanowire (0.046 A/W), but also a broadband
photoresponse from UV to near infrared region has been achieved. These results indicate that the
Bi2Se3/ZnO NWAs type-I heterojunction is an ideal photodetector in broadband detection.

Keywords: 2D Bi2Se3/ZnO NWAs heterojunction; broadband detection; ZnO NWAs; UV detection

1. Introduction

Over the past decades, photodetectors have been extensively used in both military
and civil fields, such as living cell inspection [1], night vision [2], optical communica-
tions [3], atmospheric [4], etc. [5–8]. Photodetectors have become indispensable in daily life.
Among these semiconductor materials for making photodetectors, ZnO has the potential
of application in UV photodetectors. Owing to the great optoelectrical property and good
stability in the atmosphere, ZnO is widely researched with the band gap of 3.37 eV, of which
brought by high exciton binding energy (60 meV) at room temperature, noise interference
is suppressed. In addition, the merits of being low-cost, non-toxic and easy to prepare
make it more attractive to be investigated [9–11]. Various morphologies of ZnO have been
prepared during years of research, such as nanoparticle, nanowire, nanotube, nanofilm, and
nanosheet [12–15]. The morphology with different dimensions has different characteristics.
With the morphology of one-dimensional nanowire arrays (NWAs), not only the space
between the nanowire is well backed up for the strengthening of light trapping ability but
also the superior transport properties provide the fast electron transport channel when
making comparisons with its bulk and thin-film structures [16,17].
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However, until now, the photoresponse performance of the ZnO nanowires UV detec-
tor is still lower than the theoretical predicted value, due to a large number of nonradiative
centers at interface and electron trapped by the surface states [18].

Many methods have been used to optimize the performance of the ZnO nanowires UV
photodetector (UVPD). Yang et al. reported photocurrent enhanced through optimizing
ZnO seed layer growth condition [19]. Research of Kim et al. shows that NiO/Ni coated
ZnO NWs reveal raised D0X transition due to the increasing oxygen deficiency which is
responsible for increasing donor density [20]. Zhang et al. reported a two-dimensional
graphene/ZnO nanowire mixed-dimensional van der Waals heterostructure for high-
performance photosensing [21]. Zang et al. reported enhancing photoresponse based on
ZnO nanoparticles decorated CsPbBr3 films [22]. Sumesh et al. reported broadband and
highly sensitive photodetector based on ZnO/WS2 heterojunction [23]. So far, more and
more two-dimensional materials/ZnO nanowires mixed dimensional heterojunctions have
been reported [24–27].

Up to now, as the discovery of the unique characteristic of topological insulators (TI),
further attention is paid to TI to fabricate photodetectors [28–31]. Taking advantage of Dirac
dispersion and spin-momentum locking property brought by 2D surface electrons and time-
reversal symmetry, back scattering in the Dirac fermions caused by nonmagnetic impurities
is prevented, which enable the outstanding transport characteristics, thus reducing the
dark current to obtain higher performance [32]. With direct band gap of 0.3 eV and weak
Van der Waals’ force between each two layers, Bi2Se3 has very infusive photoelectric
properties, such as tunable surface bandgap, polarization-sensitive photocurrent, and
thickness dependent optical absorption [33,34]. These special properties make Bi2Se3
promise for binding with ZnO to build high performance photodetector in the UV and
visible region. In contrast, there are scarcely any reports about 2D Bi2Se3/ZnO nanowire
mixed-dimensional detectors.

In this work, hydrothermal synthesized ZnO NWAs is composite with 2D Bi2Se3.
The broadband photodetector based on Bi2Se3/ZnO NWAs heterojunction photodetector
is fabricated. Enhanced UV to visible responsivity is realized in the Bi2Se3/ZnO NWAs
heterojunction photodetector. The mechanism of enhanced response in Bi2Se3/ZnO NWAs
heterojunction is dealt with in detail through thorough inspections of photoelectric response
characteristic combined with Raman scattering measurements, optical properties, and band
gap structure.

2. Materials and Methods
2.1. Syntheses of ZnO NWAs

ZnO NWAs were synthesized via a simple hydrothermal method with buffer layer
sputtered on fluorine-doped tin oxide (FTO) glass. A thin buffer layer was deposited with
RF magnetron sputtering, during which process, the O2:Ar flow ratio was controlled at
18:42 in 1 Pa under room temperature for 5 min, after which, it was annealed at 400 ◦C for
1 h. On the basis of buffer layer, an ordinary hydrothermal method was applied for the
synthesis of ZnO nanowire. Zn(AC)2·6H2O and C6H12N4 (HMT)with an equal amount
of 0.0009 mol were added to 30 mL deionized water and stirred for 5 min, respectively.
Subsequently, the two aqueous solutions were mixed and stirred for 5 min. Then, the
obtained solution was sealed in autocave at 90 ◦C for 4 h. Afterwards, synthesized sample
was washed with deionized water several times and dried in the air. In this way, ZnO
NWAs was prepared.

2.2. Syntheses of 2D Bi2Se3

2D Bi2Se3 is provided in SixCarbon Technology Shenzhen.
2D Bi2Se3 was synthesized via a standard chemical vaporous deposition method.

The reactions were conducted in a tube furnace with dual heating zone. 0.1 g 99.995%
Bi2O3 (Bi2O3, 6CARBON, Shenzhen, Guangzhou, China) powder was placed in the high
temperature zone to heat up to 700 degrees. 0.5 g 99.999% purity Se (Se, 6CARBON,
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Shenzhen, Guangzhou, China) particles were placed in the low temperature zone to heat
up to 300 degrees. Under mixed carrier gas of argon and hydrogen at flow rates of 200 sccm
and 15 sccm, respectively, the clean sapphire film placed 5 cm below Bi2O3 was heated to
500 degrees for 15 min.

2.3. The Transfer of 2D Bi2Se3

Methyl methacrylate (PMMA) was coated on obtained 2D Bi2Se3. After curing, PMMA
was placed in pure water and heated to 90 degrees for 1 h. Then, it was quickly plunged
into ice water to separate Bi2Se3 which attached to PMMA from sapphire base. Then, the
film was placed on ZnO NWAs and finally PMMA was removed with acetone to obtain
the transferred Bi2Se3 film.

2.4. Characterization

The morphologies of ZnO NWAs and Bi2Se3 film were conducted on a field-emission
scanning electron microscopy (FE-SEM, ZEISS Merlin Compact, Oberkochen, Germany).
Surface morphologies of Bi2Se3 film were also characterized by atomic force microscopy
(AFM, Dimension Fastscan, Bruker, Billerica, MA, USA). Raman were carried out on
(LabRAM HR Evolution, Horiba, Paris, France) with an excitation wavelength of 532 nm.
Photoluminescence (PL) spectrums were recorded in CCD using the same instrument
system with Raman by He–Cd laser line of 325 nm with fixed excitation intensity at
room temperature. Both measurement of PL and Raman use the same equipment. The
responsivity of samples was investigated by Zolix responsivity measurement system
(DSR600, Zolix, Beijing, China), which calibrated via standard silicon cells. The spectral
responsivity was measured in terms of the current signal within the range of 300–1000 nm
at 4 V bias under room temperature.

3. Results

Figure 1a shows the dramatic structure of the photodetector. Bi2Se3 is transferred
onto the ZnO nanowires and then onto a steam plate with platinum electrodes. The
morphologies of ZnO NWAs and 2D Bi2Se3 were further confirmed through SEM and AFM
exhibited in Figures S1 and S2 (Supplementary Materials). Due to stress and other reasons,
the Bi2Se3 split into several pieces after the transfer. The photodetector is made by the
standard semiconductor fabrication techniques. The interdigital metal electrodes, which
are defined on a 300 nm Pt layer by the conventional UV photolithography and lift-off
procedure, are 0.5 mm long and 300 µm wide, with a 200 µm gap. There were 10 fingers in
our interdigital structure, 5 up and 5 down [35], and Figure 1b is a physical image of the
detector.
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As a widely used non-damaged measurement, Raman spectroscopy could be used to
investigate intralayer vibration modes, interlayer vibration modes, and the layer coupling
in 2D materials effectively [36,37]. Figure 2 showed Raman curves of ZnO NWs, 2D Bi2Se3
and Bi2Se3/ZnO NWAs. Ascribed to the perpendicular laser incident direction relative to
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the c-axis of sample surface, there were only two peaks located in 100 cm−1 and 438 cm−1

corresponding to Elow
2 mode and Ehigh

2 mode of ZnO NWAs in curve (a), respectively, in

which the strong Ehigh
2 phonon mode peak was observed, indicating the good crystalline

quality [38–40]. Located at 72.8 cm−1, 133.3 cm−1 and 174.6 cm−1, three peaks observed
in curve (b) could be assigned to A1

1g, E2
g and A2

1g vibrational mode in turn for Bi2Se3 [41].
A1g modes were out of plane vibrations and Eg modes were vibrations in-plane [42]. There
were two peaks of ZnO NWAs and one peak of Bi2Se3 making their appearance in curve
(c), exhibiting the consistent material nature after compositing.
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Furthermore, it can be seen in Figure 2, after being transferred onto the ZnO nanowires,
the Bi2Se3 mode slightly shifts from 133.3 cm−1 to the lower frequency 132 cm−1 corre-
sponding to the 2D Bi2Se3. This can be ascribed to the effect of residual stress [43]. The
magnitude of the stress can be given by the following formula ε = ∆ω/χ, where χ is the
shift rates of Raman vibrational modes. Based on the previous literature reports, the shift
rates of E2

g mode under biaxial strain is ∼5.2 cm−1 per % strain [43,44]. Therefore, the stress
in the heterojunction should be 0.25%.

Since the photoluminescence characteristic could give an index to the degree of
electron and hole recombination of different materials, PL test was carried out on ZnO
NWAs and Bi2Se3/ZnO NWAs to find out the change after the heterojunction forming in
Figure 3. The sharp emission peak of ZnO NWAs with high intensity at 377 nm derived
from near band-edge emissions [45]. In contrast, caused by oxygen vacancies [46] and
chemisorbed O2 in the air [47,48], the peak emerging at the visible region is relatively
weak, suggesting the high crystal quality. The PL spectrum of Bi2Se3/ZnO NWAs presents
an obvious decrease in near band-edge emissions peak in ZnO NWAs, indicating the
weakened electron hole recombination. The anomalous decreased PL emission mainly
originated from the more efficient separation of photogenerated carriers at the strain-
tailored heterointerfaces [43]. In the test of photoluminescence spectrum, we found that
ZnO interband luminescence peaks also moved significantly, from 377 nm of simple ZnO
nanowires to 378 nm of heterojunctions, which was caused by the band changes brought
by stress, according to the relevant literature reports [43]. In the visible light part, the
luminous emission peak shifts from 550 nm to 510 nm. It is believed that the radiant peak
at 510 nm could be ascribed to the emission of Bi2Se3 [49]. Furthermore, it can be found
that after composition with Bi2Se3, the luminescence in the visible region is significantly
enhanced, combining with the analysis of the Bi2Se3/ZnO NWAs heterojunction energy
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band structure below. It can be deduced that Bi2Se3 and ZnO form a type-I band structure,
leading to the transfer of photogenerated electrons from ZnO to Bi2Se3. This electron
transport process results in the reduction of ZnO emission and the enhancement of Bi2Se3
emission. This will be discussed in detail in the energy band section.
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To assess the photoresponse performance of Bi2Se3/ZnO NWAs heterojunction, Pt
interdigital electrode was sputtered with a mask to fabricate photodetector, as depicted
in Figure 1. Responsivity performance is measured as shown in Figure 4. The spectral
responsivity was measured in terms of the current signal in the range of 300–1000 nm at
4 V bias. All the samples revealed UV photoresponse with a cutoff wavelength of 365 nm.
This can be attributed to the response of ZnO nanowires. After being transferred with the
Bi2Se3, the response of ZnO nanowires enhanced from 0.046 AW−1 to 0.15 AW−1, three
times higher than the bare ZnO nanowires. Furthermore, the photocurrent of Bi2Se3/ZnO
NWAs at visible and near-infrared regions is also increased compared with bare ZnO
NWAs. The spectral responses in the visible and near infrared regions are from Bi2Se3,
corresponding to the band gap and PL spectrum of Bi2Se3 [50]. The performance of
ordinary photodetectors constructed by nanowire and transferred 2D material could be
restricted to a large extent. It is difficult to obtain effective responsivity promotion for them
as the result of high interface impedance brought by impurity introduced during transfer
and the limited contact area between materials of one and two dimensions. Therefore,
the performance could be restricted to a large extent. In contrast, the threefold increase
responsiveness of the Bi2Se3/ZnO NWAs photodetector shows it is superior to similar
detectors owing to the repressed back scattering caused by the intrinsic characteristic of
TI [32,51]. In addition, the spectral test shows that the heterojunction not only significantly
improves the photoelectric response in the ultraviolet region but also has good spectral
response in the visible to near-infrared region, indicating that the heterojunction device
has the ability to prepare wide-spectrum detectors.

For ZnO based optoelectronic devices, oxygen molecules adsorbed on the surface of
the ZnO nanowires capture the free electrons, due to the surface adsorption and desorption.
Therefore, a depletion layer with low conductivity is created near the surface of the film,
and results in a reduced photocurrent [52,53].
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In order to study the enhance response mechanism of Bi2Se3/ZnO NWAs heterojunc-
tions, the energy band structure of heterojunctions is analyzed. For the heterojunction,
band alignment also plays a crucial role in the spectral response characteristics [54].

The band structure of Bi2Se3/ZnO can be deduced from the Anderson model shown in
Figure 5 [55,56]. Based on previously reported energy band data of Bi2Se3 and
ZnO [33,34,43,49,50,52,57,58], the conduction band offset (CBO) of the Bi2Se3/ZnO hetero-
junction is worked out to be 1.67 ± 0.15 eV. With this band alignment, electrons can easily
drift from ZnO to the Bi2Se3. As a result, the recombination of electrons and holes may
mainly take place on the Bi2Se3 side rather than in ZnO nanowires. This will mitigate the
impact of the ZnO surface adsorption and desorption. Hence, at the same time of leading
to an increase in the UV current of the Bi2Se3/ZnO NWAs heterojunction, the drifting of
electrons also results in a decrease of ZnO emission in the UV region. In this way, the
realization of Bi2Se3/ZnO NWAs heterojunction photodetectors makes responsivity of
Bi2Se3/ZnO NWAs improve noticeably in the UV region, however, the absorption range
broadened effectively.Crystals 2021, 11, x FOR PEER REVIEW 7 of 9 
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injects a large number of electrons into the ultrathin 2D material to enhance responsivity 

of Visible-Near Infrared wavelength while exporting electrons to the electrode rapidly to 

avoid electron and hole recombination, making it a promising and yet-to-be-extended 

way for novel exploration for more applications. 
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Figure 5. Electronic band alignment for Bi2Se3/ZnO NWAs structure.

4. Conclusions

In summary, this work presents a novel broadband heterojunction photodetector based
on 2D Bi2Se3/ZnO NWAs. Combining the merit of 2D Bi2Se3 and ZnO, the responsivity
spectrum of the photodetector exhibited the improved responsivity covering UV-Visible-
Near Infrared range. The properties of a responsivity of 0.15 A/W, nearly three times to the
bare ZnO, benefit from unique advantages of type-I band alignments. More importantly,
the special heterojunction photodetector with type-I energy band structure injects a large
number of electrons into the ultrathin 2D material to enhance responsivity of Visible-Near
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Infrared wavelength while exporting electrons to the electrode rapidly to avoid electron
and hole recombination, making it a promising and yet-to-be-extended way for novel
exploration for more applications.
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