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Abstract: Massive high-strength concrete structures tend to have a high risk of cracking. Ground
slag powder (GSP), a sustainable and green industrial waste, is suitable for high-strength concrete.
We carried out an experimental study of the effects of GSP with a specific surface area of 659 m2/kg
on the hydration, pore structure, compressive strength and chloride ion penetrability resistance of
high-strength concrete. Results show that adding 25% GSP increases the adiabatic temperature rise of
high-strength concrete, whereas adding 45% GSP decreases the initial temperature rise. Incorporating
GSP refines the pore structure to the greatest extent and improves the compressive strength and
chloride ion penetrability resistance of high-strength concrete, which is more obvious under early
temperature-matching curing conditions. Increasing curing temperature has a more obvious impact
on the pozzolanic reaction of GSP than cement hydration. From a comprehensive perspective, GSP
has potential applications in the cleaner production of green high-strength concrete.

Keywords: GSP; high strength; hydration; strength; penetrability

1. Introduction

Currently, high-rise buildings have become increasingly widespread in China due
to their advantages in space, stability and unique design [1,2]. They typically symbolize
the landscape architecture and construction of a city, such as the Shanghai Tower (632 m),
the Shenzhen Ping’an Finance Centre (599 m) and the China Zun in Beijing (528 m). The
foundation structures of high-rise buildings with heavy loads are extremely deep and wide,
which is typical for massive high-strength concrete structures [1]. During the hydration
process, substantial hydration heat is generated in massive high-strength concrete, result-
ing in a high internal temperature rise because of its slow heat dissipation [3–6]. After
hardening, large tensile stresses are formed due to restrained thermal and autogenous
shrinkage deformations, which are the main driving forces of cracking in concrete [7].

Using supplementary cementitious materials (SCMs) to lower early heat and attendant
volume changes is the most common preventative method [8–12]. The application of SCMs
in concrete also has positive effects on workability, pumpability, strength and permeability
resistance to chemical attacks [13–21]. Meanwhile, SCMs, as mineral admixtures to replace
cement in high-strength concrete, reduce the carbon footprint in cement and concrete pro-
duction and are conducive to sustainable development due to the conservation of natural
resources [22–24]. Slag, as one of the most suitable SCMs, has been extensively identified
and used to directly replace cement, minimizing cracking in massive concrete applications.
Slag is a non-metallic residual generated from blast furnaces when iron is extracted from its
ore [25,26]. Molten slag, comprising mostly silicates and alumina, is swiftly quenched with
abundant water [27]. The rapid cooling method results in amorphous phases of slag (nearly
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80% content), which is responsible for its pozzolanic activity [28]. Compared to Portland
cement, slag has a lower specific gravity [29]. The colour of slag varies from dark grey
to white depending on the moisture inside, its chemical composition and its granulation
efficiency [30]. The replacement rate for slag during the production of concrete varies
from 30% to 85%, and 50% is typically used in most applications [10,31]. Incorporating as
little as 30% slag can reduce the cumulative heat by 25% after the initial 48 h [31,32]. The
cementitious activity of slag needs to be further improved for wider application. These
inherent attributes are not easy to change, including the chemical composition, amorphous
phase content and alkali concentration of the cement system [33,34]. However, the fineness
of slag can be further enhanced by drying and subsequent grinding in a rotating ball mill
to a finer powder with a specific surface area of 600 m2/kg−700 m2/kg, which is called
“ground slag powder (GSP)” in this study.

Many studies have proven that the pozzolanic reaction rate is increased by improving
the fineness of slag, which has a great impact on the development of strength and durability.
He et al. [35] used two methods to prepare GSP, including the wet-milling method and
the dry-separation method, to improve its early reactivity. They verified that the setting
time gradually decreased with the dry-separation slag and increased with the wet-milling
slag [35]. Moreover, a system containing wet-milling slag had higher electrical resistivity
and better mechanical properties [35]. Liu et al. [36] investigated the contribution ratios of
GSP to a GSP-cement-steel slag ternary cementitious material system and found that
GSP caused an obvious improvement in the hydration and mechanical properties at
every stage due to its close-packing effect [36]. Zhang et al. [37] found that the ultimate
hydration heat initially increased and then decreased sharply with increasing proportions
of GSP [37]. Meanwhile, adding GSP had a slight impact on chemical shrinkage but
increased the chloride binding capacity [37]. Mohan et al. [38] conducted experiments
on the influence of silica fume and GSP on the properties of self-compacting concrete.
They found that incorporating GSP is a better way to decrease free shrinkage due to
the diminished water withholding and improved sulphate and acid attack resistance of
self-compacting concrete [38]. Pradeep Kumar et al. [39] reported a modification of the
corrosion property of concrete with the use of GSP. Using GSP reduced the workability and
water absorption of concrete, enhanced the bond strength of the steel rebar, and remarkably
reduced rebar corrosion [39].

Based on the literature available, there is still a lack of research on the properties
of GSP high-strength concrete. Hence, this study aims to investigate the feasibility of
using GSP as a mineral admixture in high-strength concrete. In this paper, high-strength
cement concrete with a design strength of C75 was prepared as the reference sample. Two
substitution rates of GSP (25% and 45%) and two curing conditions (a standard curing
condition and a temperature-matching curing condition) were selected. The adiabatic
temperature rise, pore structure, hydration products, compressive strength and chloride
ion penetrability resistance of high-strength concrete were measured. Effects of elevated
early temperatures on the properties of plain cement concrete and GSP concrete were
analyzed. The results of this study can provide considerable theoretical guidance for the
use of GSP in massive high-strength concrete applications.

2. Materials and Methods
2.1. Raw Materials

Water-quenched blast-furnace slag powder was produced by Xingye Materials Co.,
Ltd., Xingtai, Hebei province, China. Portland cement with a strength grade of 42.5 was
supplied by Jinyu Cement Co., Ltd., Beijing, China. The slag powder is further ground into
GSP in the laboratory. The chemical compositions of raw materials are given in Table 1.
The mass coefficient (K = w(CaO + MgO + Al2O3)/w(SiO2 + MnO + TiO2)) of the GSP
used was 1.97 according to the Chinese national standard (GB/T 203-2008). The specific
surface areas of the cement and GSP were 341 m2/kg and 659 m2/kg, respectively. Coarse
aggregates of concrete are crushed limestone of 5 to 20 mm in size. Fine aggregates of
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concrete are river sand with a fineness modulus of 2.9. The workability of fresh concrete
was adjusted using a polycarboxylate superplasticizer.

Table 1. Chemical compositions of the cement and ground slag powder (GSP)/%.

CaO SiO2 Al2O3 MgO Fe2O3 SO3 Na2Oeq * f-CaO LOI

Cement 62.71 22.33 4.75 1.98 2.78 2.37 0.68 0.64 2.03
GSP 39.47 30.14 18.64 8.68 0.75 0.24 0.86 - 1.04

* Na2Oeq = Na2O + 0.658K2O; LOI: loss on ignition.

2.2. Mix Proportions

Table 2 shows the mix proportions of the high-strength concrete. The total amount of
binder was 550 kg/m3. A water/binder ratio of 0.28 and a sand ratio of 0.43 were selected.
Plain cement concrete was regarded as the reference sample (sample C). Two substitution
rates of GSP (25% and 45% by mass) were used, corresponding to sample S25 and sample
S45. Cubic concrete samples with side lengths of 100 mm were prepared. Each sample had
a total of 36 square concrete specimens. The paste had the same water/binder ratio and
substitution rates as the concrete. Fresh pastes were cast into plastic tubes and cured under
the same curing conditions as the concrete.

Table 2. Mix proportions of high-strength concrete/kg·m−3.

Sample Cement GSP Fine
Aggregate

Coarse
Aggregate Water Superplasticizer

C 550 - 751 995 154 5.5
S25 412.5 137.5 751 995 154 8.25
S45 302.5 247.5 751 995 154 11

2.3. Curing Conditions and Test Methods

In this study, two curing conditions for the concretes and pastes were set—the standard
curing condition (symbol S) and the temperature-matching curing condition (symbol M).
Thus, sample SS25 represents S25 concrete cured under the standard curing condition,
and sample MS45 represents S45 concrete cured under the temperature-matching curing
condition. The standard curing condition required a constant temperature (20 ◦C ± 2 ◦C)
and relative humidity (>95%). The temperature-matching curing condition needed to be
adjusted according to the adiabatic temperature rise curve of the concrete. The adiabatic
temperature rise curve of high-strength concrete for the initial 7 d was determined by a
temperature measuring instrument (50 L) with an accuracy of ±0.1 ◦C.

The compressive strength and chloride ion penetrability resistance of concrete for
each concrete mixture were obtained from an average of three specimens. The pastes were
prepared for the tests of pore structure, Ca(OH)2 (CH) content, and non-evaporable water
content. First, the hardened paste was broken into small pieces (less than 5 mm). Then,
the pieces were soaked in ethanol (Tongguang fine chemicals company, Beijing, China)
for 24 h at test ages. Finally, all pieces were dried in the oven at 110 ◦C. For tests of CH
content and non-evaporable content water content, dried pieces were further ground into
ultrafine powder. The pore structure of hardened paste at ages of 28 d and 90 d was
measured with a mercury intrusion porometer (MIP, AUTOPORE II 9220 manufactured
by Micromeritics, America) with a maximum mercury intrusion pressure of 300 MPa. The
CH content was determined by thermogravimetric (TG) and derivative thermogravimetric
(DTG) analyses. TG and DTG curves were obtained using Instrument TGA 3+ (METTLER
TOLEDO, Switzerland) in an N2 atmosphere from 30 ◦C to 900 ◦C at 14 d, 28 d and 90 d.
The non-evaporable water content Wn was determined using the following Equation (1):

Wn = (m1 − m2)/m1 − (1 − α) LOIC − αLOIS, (1)
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where m1 is the dried mass of hardened paste at 110 ◦C, m2 is the mass of hardened paste
after heating at 1050 ◦C, α represents the replacement rate of GSP, and LOIC and LOIS
represent the loss on ignition of cement and GSP, respectively.

3. Results and Discussion
3.1. Adiabatic Temperature Rise

The adiabatic temperature rise curves of plain cement concrete and GSP concrete
for the initial 7 d are depicted in Figure 1. It is obvious that the growth trends of the
three temperature curves are similar. The temperature rose sharply before 24 h and
remained stable after 150 h. The final temperature rises of samples C, S25 and S45 were
56.56 ◦C, 60.58 ◦C and 54.07 ◦C, respectively. This illustrates that the incorporation of
25% GSP increases the adiabatic temperature rise by 4.02 ◦C and incorporating 45% GSP
decreases the adiabatic temperature rise by 2.49 ◦C. Note that sample S25 exhibited the
maximum temperature rise. This indicates that the promoting effect of GSP on cement
hydration exceeds the negative effect due to cement reduction. The promoting effects
derived from two main contributing factors [34]. One is the heterogenous nucleation
effect [34]. Compared to cement particles, GSP has finer particles, of which the specific
surface area is 659 m2/kg. Finer slag particles can serve as heterogeneous nucleation and
crystallization sites of C–S–H gel and CH, thus improving the degree of cement hydration.
The other is related to the higher reactivity of slag, which participates in pozzolanic
reactions at an early stage, thus promoting cement hydration. The drop in the adiabatic
temperature rise is attributed to a significant reduction in cement content.
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3.2. Compressive Strength

The compressive strengths of plain cement concrete and GSP concrete under standard
curing conditions are shown in Figure 2a. It can be easily observed that the compressive
strength of concrete slightly increased with GSP at all ages. The compressive strengths
of concrete at ages of 7 d, 28 d, 90 d and 180 d were more than 70 MPa, approximately
80 MPa, 85 MPa and 90 MPa, respectively. Compared to the 7 d compressive strength, the
growth rates of the strength at the ages of 28 d, 90 d and 180 d were approximately 12%,
20% and 24%, respectively. Thus, the growth rates of the compressive strengths of plain
cement concrete and GSP concrete showed little difference at the same ages under standard
curing conditions. Compared to the compressive strengths of plain cement concrete, the
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growth rates in strength due to the addition of GSP were calculated and are presented in
Figure 2b. The growth rate of sample SS25 at all ages was relatively low, at no more than
2%. The growth rate of sample SS45 was higher than that of sample SS25 at all ages. In
particular, the 28 d growth rate of sample SS45 reached 6%. The growth rate is related
to pore structure and hydration products. Compared to sample SS25, sample SS45 has a
higher substitution rate and the presence of GSP with finer particles has a more positive
influence on early hydration, resulting in a higher growth rate.
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Figure 2. (a) Compressive strength of high-strength concrete under standard curing condition; (b) growth rate of compressive
strength at different ages.

The compressive strength and growth rate of compressive strength under temperature-
matching curing conditions are presented in Figure 3a,b, respectively. The compressive
strength of high-strength concrete significantly increases with GSP at all ages under
temperature-matching curing conditions, which is different from the trend under stan-
dard curing conditions. Compared to the 7 d compressive strength, the growth rates of
the strength at 28 d and 90 d were approximately 11% and 21%, respectively. However,
the growth rates of 180 d compressive strength were approximately 22%, 28% and 30%,
respectively. The growth rate of GSP concrete at 180 d was higher than that of plain cement
concrete. Meanwhile, compared to the compressive strength of plain cement concrete, the
growth rates of strength at different ages due to the addition of GSP under temperature-
matching curing conditions (Figure 3b) were higher than those under standard curing
temperatures (Figure 2b). In addition, the growth rate increased with GSP. In particular, the
180 d growth rates were the highest. This result indicates that the temperature-matching
curing conditions have a more positive effect on the development of the late compressive
strength of GSP concrete. Elevated temperatures promote the pozzolanic reaction of GSP.
The pozzolanic reaction of GSP consumes CH and forms C–S–H gel, improving the density
of the interfacial transition zone between the cement and aggregates [40,41]. Furthermore,
C–S–H gel plays a key role in mechanical performance. When GSP is added to the cementi-
tious system, Al3+ is released from the slag and finally forms a C–(A)–S–H gel, leading to
an increase in the Al/Si molar ratio and a decrease in the Ca/Si molar ratio [42,43]. C–S–H
with higher Al/Si and lower Ca/Si ratios has a higher bonding capacity and thus improves
the compressive strength [40–44].
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3.3. Chloride Ion Penetrability Resistance

The chloride ion penetrability resistance of concrete at ages of 28 d and 180 d under
standard curing conditions are shown in Figure 4. It can be seen in Figure 4 that the
chloride ion penetrability grades of sample SC were “moderate” and “low” at 28 d and
180 d, respectively. However, the penetrability grades of samples SS25 and SS45 fell to the
“low” level and the “very low” level at the two ages. Therefore, substitution with GSP can
improve the chloride ion penetrability resistance of high-strength concrete, and the effect
increases with increasing GSP. This is because the filling effect of grinding slag fills the
pore structure of concrete, and the pozzolanic reaction consumes CH in the transition zone,
resulting in more C–S–H gel, which refines the pore structure.
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The chloride ion penetrability resistance of concrete at 28 d and 180 d under temperature-
matching curing conditions are presented in Figure 5. Significantly, as the age increases,
the chloride ion penetration resistance of concrete did not change. The chloride ion pene-
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trability grades of sample MC were “moderate” at the two ages. The penetrability grades
of both samples MS25 and MS45 fell to the “very low” level at the same time. The GSP
content has little effect on the chloride ion penetration resistance of concrete with further
hydration. This is because the pozzolanic reaction of GSP mainly occurred at an early age
and increasing the early curing temperature promoted the reaction of GSP, which had an
adverse effect on the late reaction. In terms of the chloride ion penetration resistance, com-
bined with the results under standard curing conditions, increasing the curing temperature
has a greater influence on high-strength concrete mixed with 25% GSP.
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3.4. Pore Structure

The differential pore size distributions of different hardened pastes under standard
curing conditions are presented in Figure 6. As shown in Figure 6, the most likely pore
sizes of samples SC, SS25 and SS45 at 28 d were 62.1 nm, 30.2 nm and 13.94 nm, respectively.
With further hydration, the pore structure of the hardened paste becomes dense. The
most likely pore sizes of samples SC, SS25 and SS45 at 28 d were 40.7 nm, 5.42 nm and
3.39 nm, respectively. The most likely pore size obviously decreased with GSP due to
its positive effects on pore structure. Pores in hardened paste can be divided into four
types, depending on their diameters and functions, according to Mehta’s opinion: >100 nm,
50–100 nm, 4.5–50 nm and <4.5 nm [45,46]. Pores larger than 100 nm (also called harmful
pores) have adverse effects on the development of mechanical strength and the permeability
of hardened matrices [36]. Thus, the detailed pore size distribution of the hardened paste
is presented in Figure 7. Figure 7a shows that the porosities of samples SC, SS25 and SS45
at 28 d were 21.52%, 20.81% and 17.29%, respectively. The porosities at 90 d, shown in
Figure 7b, were 16.77%, 16.79% and 19.09%, respectively. Compared to the plain cement
paste (sample SC), the total porosity and the volume of harmful pores in hardened paste
at 28 d were significantly reduced due to the addition of GSP. However, the total porosity
in hardened paste containing 45% GSP (sample SS45) was the largest at 28 d due to more
harmless pores (<4.5 nm).
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The differential pore size distributions of different hardened pastes under temperature-
matching curing conditions are presented in Figure 8. The most likely pore sizes of samples
MC, MS25 and MS45 at 28 d were 24.3 nm, 49.0 nm and 5.4 nm, respectively. With further
hydration, the pore structure of the hardened paste becomes denser. The most likely pore
sizes of samples MC, MS25 and MS45 at 90 d were 17.1 nm, 5.7 nm and 5.0 nm, respectively.
The detailed pore size distribution of the hardened paste is presented in Figure 9. Figure 9a
shows that the porosities of samples MC, MS25 and MS45 at 28 d were 24.74%, 17.09% and
16.23%, respectively. The porosities at 90 d, shown in Figure 9b, were 22.20%, 16.35% and
11.31%, respectively. Compared to the plain cement paste (sample MC), the total porosity
and the volume of harmful pores in hardened paste containing 25% GSP were significantly
reduced. Sample MS25 had lower total porosity than sample MC. However, the volumes
of harmful pores of both pastes showed little difference.
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3.5. CH Content

The main hydration products of cement after 110 ◦C are CH and C–S–H gel. TG and
DTG analyses can express the mass loss resulting from the decomposition of the hydration
products. TG and DTG curves of hardened pastes under standard curing conditions at
different ages are presented in Figure 10. It is obvious that the mass loss of sample SC was
lower than that of samples SS25 and SS45 at the same ages, especially at early ages (14 d
and 28 d). However, the gap between samples SS25 and SS45 was small. As seen from
the DTG curves, there are two distinct peaks. One peak represents the dehydration of the
C–S–H gel before 200 ◦C, and the other is associated with the decomposition of CH within
a temperature range of 400 ◦C–500 ◦C [46,47]. It is worth noting that a smaller peak can be
found at approximately 800 ◦C, especially at 90 d. This peak is related to the decomposition
of CaCO3 originating from the carbonation of CH. The total CH content was calculated
based on the mass losses, corresponding to the decomposition of CH and CaCO3.
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Therefore, the CH content of hardened paste at different ages under standard curing
conditions is shown in Figure 11. It is clear that the CH content declined as the incorporation
of GSP increased at early and late ages, which can be primarily attributed to the reduction in
the cement content. Furthermore, unlike cement, GSP does not produce CH, but consumes
a certain amount of CH due to its pozzolanic reaction. In order to better explain the
influence of GSP on the cement system, the CH contents of plain cement systems were
calculated using reduction factors of 0.75 (25% GSP) and 0.55 (45% GSP), respectively.
The calculation results are also marked in Figure 11. At 14 d, compared to those of the
cement after the calculation with reduction factors of 0.75 and 0.55, the CH contents of
samples SS25 and SS45 were significantly higher. This indicates that the promoting effects
of GSP on the cementitious system exceeded the pozzolanic effect of GSP. These promoting
effects on cement hydration can be attributed to the dilution effect and the nucleation effect,
which forms a higher effective water/cement ratio and a larger growth space for hydration
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products. At an early age, hydration of cement in the cementitious system is dominant.
At 28 d, the CH contents in the cement paste after calculation and the corresponding
hardened paste containing GSP showed little difference. However, with further hydration,
the pozzolanic reaction of GSP consumed more CH, leading to a lower CH content in
composite systems at 90 d.
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Figure 11. CH content of hardened pastes under standard curing conditions.

The TG and DTG curves of hardened pastes at different ages under temperature-
matching curing conditions are presented in Figure 12. As shown in Figure 12, the trend in
mass losses was obviously different from that observed under standard curing conditions
(Figure 10). The gaps between samples MC, MS25 and MS45 were relatively small at
all ages. There are also two endothermic peaks on the DTG curves at approximately
100 ◦C and 450 ◦C, corresponding to the sequential decomposition of C–S–H gel and CH
crystals. Another absorption peak is located at approximately 650 ◦C, which represents the
decomposition of CaCO3.

The CH contents of different hardened pastes, including measured values and normal-
ization marks, under temperature-matching curing conditions are indicated in Figure 13.
At 14 d, the CH contents in the cement paste after calculation and the corresponding
hardened paste containing GSP showed little difference. This indicates that the CH content
remained balanced between production from cement hydration and consumption due to
the pozzolanic reaction of GSP. Currently, the promoting effect of GSP on the cementitious
system can compensate for its negative effect on CH content due to the pozzolanic effect.
At 28 d, compared to those of the cement after calculation with reduction factors of 0.75
and 0.55, the CH contents of samples SS25 and SS45 were significantly lower. At 90 d,
the gap in CH contents between the cement paste and hardened paste containing GSP
became wider. This indicates that the pozzolanic effect of GSP proves its importance with
further hydration. Compared to that observed under standard curing conditions, the
gap in the CH content at 14 d was obviously smaller under temperature-matching curing
condition. Elevated curing temperature has a greater impact on the pozzolanic reaction of
GSP, consuming more CH.
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3.6. Non-Evaporable Water Content

The non-evaporable water contents of hardened paste under two curing conditions are
presented in Figure 14a,b, respectively. The lowest non-evaporable water content of hard-
ened paste exceeded 12% under both curing conditions. Under standard curing condition,
the non-evaporable water content of hardened paste containing GSP was slightly higher
than that of sample SC. In particular, hardened paste containing 25% GSP showed the
highest non-evaporable water content. This indicates that the promoting effects, including
the dilution effect and the nucleation effect of GSP on the cement hydration, were obvious
at early and late ages. The results agree with the results of the adiabatic temperature rise of
concrete (Figure 1). In theory, the hydration of Portland cement per gram produces 0.25 g
of non-evaporable water, but the pozzolanic reaction of slag per gram generates 0.30 g of
non-evaporable water [48]. Meanwhile, increasing the fineness of active powder has a more
positive effect on the pozzolanic reaction [48]. Therefore, the faster reaction of GSP results
with a higher temperature rise rate was observed for sample SS25 (Figure 1), along with the
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higher non-evaporable water content of sample SS25. However, the gap in non-evaporable
water contents between samples SC and SS45 was relatively small, resulting from a sharp
reduction in cement content. Combined with the results of compressive strength under two
curing conditions, sample SS45 had the highest compressive strength. The compressive
strength of concrete depends not only on the amount of hydration products, it is also
closely related to the pore structure. Sample SS45 had the lowest total porosity and volume
of harmful pores, which resulted in the highest compressive strength.
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Under temperature-matching curing conditions, the trend of the non-evaporable water
content was similar to that under standard curing conditions (Figure 14a). However, the
non-evaporable water content of hardened paste became higher than that under standard
curing conditions. Increasing the early curing temperature evidently improves the hydra-
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tion rate of the plain cement and composite binder. Meanwhile, the highest non-evaporable
water content was observed for sample SS45 at 90 d. Replacing cement with GSP markedly
increased the late non-evaporable water content under temperature-matching curing condi-
tions. It is worth noting that the non-evaporable water content of hardened paste containing
GSP under two curing conditions reached or exceeded the content of cement paste after 14
d of curing. A previous study on ordinary slag showed that the same non-evaporable water
content with replacement rates of 50%–70% can be achieved after 60 d of curing [28,49].
This indicates that the fineness of slag plays an important role in cement hydration and the
pozzolanic reaction of mineral admixtures.

4. Conclusions

(1) Adding 25% GSP increases the adiabatic temperature rise of high-strength concrete
due to the promoting effects on cement hydration, whereas adding 45% GSP de-
creases the adiabatic temperature rise, which can be attributed to a reduction in
cement content.

(2) Compared to the compressive strength of plain cement concrete, the growth rates of
strength at different ages due to the addition of GSP under temperature-matching cur-
ing conditions are higher than those under standard curing temperature. Temperature-
matching curing conditions have a positive effect on the development of the late
compressive strength of GSP concrete.

(3) Compared to plain cement systems, cementitious material systems containing GSP
tend to have lower total porosity and a lower volume of harmful pores. The dense pore
structure of the GSP system leads to better chloride ion penetrability resistance of the
concrete, which is more distinct under early temperature-matching curing conditions.
Increasing the curing temperature has a greater influence on high-strength concrete
mixed with 25% GSP.

(4) The improvement effects of incorporating GSP on the late non-evaporable water
content of hardened paste are significant under early temperature matching curing
conditions. However, the effect of elevated temperatures on the early non-evaporable
water content are limited. Increasing early curing temperatures has a more obvious
effect on the pozzolanic reaction of GSP than the hydration of cement.
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