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Abstract: Disopyramide (DPA) is as a class IA antiarrhythmic drug and its crystallization from
cyclohexane at ambient condition yields lower melting form crystals which belong to the monoclinic
centrosymmetric space group P21/n, having two molecules in an asymmetric unit. Crystal structure
analysis of pure DPA revealed closely associated DPA molecules aggregates via amide–amide dimer
synthon through the N–H···O hydrogen bond whereas the second amide hydrogen N–H engaged in
an intramolecular N–H···N hydrogen bond with N-nitrogen of 2-pyridine moieties. Crystallization
of DPA and phthalic acid (PA) in 1: 1 stoichiometric molar ratio from acetone at ambient condition
yielded block shape crystals of 1:1 DPA_PA salt. Its X-ray single crystal structure revealed the
formation of salt by transfer of acidic proton from one of the carboxylic acidic groups of PA to
the tertiary amino group of chain moiety (N3-nitrogen atom) of DPA molecules. DPA_PA salt
crystals belong to the monoclinic centrosymmetric space group P21/n, comprising one protonated
DPA and one PA¯ anion (hydrogen phthalate counterion) in an asymmetric unit and linked by
N–H···O and C–H···O hydrogen bonds. Pure DPA and DPA_PA salt were further characterized
by differential calorimetric analysis, thermal gravimetric analysis, powder x-ray diffraction and
infrared spectroscopy.

Keywords: disopyramide; phthalic acid; salt; crystal structure; metastable

1. Introduction

Recent past literature related to crystal engineering revealed that there is an inten-
sification of interest in the preparation, crystallization, solid-state characterization and
the studying of the X-ray single-crystal structure of active pharmaceutical ingredients
(APIs) and their novel solid forms that includes polymorph [1–5], multi-component crystal
such as cocrystals [6–8], salt [9], and solvate [10–14] due to their potential applications
in the improvement of physicochemical properties of APIs such as solubility [15–17],
stability [18–20], hygroscopicity [21], bioavailability [22–24] and so on. Further, advance-
ment in this research area directed towards the understanding crystal–structure, study-
ing supramolecular synthons, hydrogen/halogen bonding interaction and other various
non-covalent interactions within them [25–27] as well as correlating structure with the
physicochemical properties [28–32]. These structure-property relation studies are help-
ful and encourage many researchers towards designing and synthesis of new functional
molecular solids, and multi-component complexes of APIs, and other molecular entities
with desirable and specific chemical or physical properties [33–38].
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Disopyramide (2-diisopropylaminoethyl)-phenyl-2-pyridineacetamide (DPA) was de-
veloped [39] as a class IA antiarrhythmic drug with a pharmacological profile of action
similar to that of quinidine and procainamide in that targets sodium channels to inhibit
conduction [40,41]. Currently, DPA and [C21H30N3O]+[H2PO4]− disopyramide dihydro-
gen phosphate are intravenously and orally administrated for clinical use. DPA displaying
polymorphism behavior and two solid forms were reported in the literature and named as
a low-melting type crystal (85–87 ◦C) and a high-melting type crystal (95–98 ◦C) [42]. Of the
two crystal forms, the high melting point type crystal is thermodynamically stable, and the
low melting point type crystal is easily converted to the high melting point type crystal [42].
However, single-crystal X-ray data of either of crystal form were not present in the Cam-
bridge Structural Database (CSD), whereas the crystal structure of [C21H30N3O]+[H2PO4]−

disopyramide dihydrogen phosphate has been reported by Kawamura and Hirayama in
2011 [43]. Furthermore, X-single crystal structure of (+)-disopyramide (2R,3R)-bitartrate
salt was reported in 1980 for determining the absolute configuration of disopyramide by
Burke and Nelson [44], and the structure was not present in the CSD. Moreover, to the best
knowledge of the authors, not much research has been carried out with respect to creating
the novel salt form of DPA.

DPA has asymmetric carbon marked by a star that is connected to four different
groups shown in Figure 1a. It has a flexible molecular framework as well as the presence
of a hydrogen bond donor and acceptor site, and hence there will be a high possibility
to form multicomponent crystals. Thus, it could be the potential candidate in exploring
its different conformational modification by obtaining X-ray single crystal structures of
different solid forms of DPA.
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Figure 1. Structures of (a) racemic disopyramide (DPA) and (b) phthalic acid (PA).

We are going to focus on the crystallization and crystal engineering research on
active pharmaceutical ingredients (APIs), particularly on improving the physicochemical
properties of drug molecules by undertaking polymorphic study [45], making multi-
component crystals [46], such as its solvates [47], cocrystals [48], and salts [49]. In this
report, we discuss the X-ray single-crystal structure of the lower melting temperature form
of DPA and novel DPA_PA salt [Phthalic acid (PA), Figure 1b], detailed crystal structure
analysis and its characterization.

2. Materials and Methods
2.1. Materials

DPA and PA were purchased from Tokyo Chemical Industry Co. Ltd. (Tokyo, Japan).
All other analytical-grade solvents and reagents were commercially obtained and used
without further purification.
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2.2. Crystallization
2.2.1. DPA

The minimum amount of solvent cyclohexane was used to dissolve the DPA by soni-
cation at 25 ◦C; it was then immediately filtered and the resulting solution was maintained
at ambient temperature for 1–2 days, yielding a colorless block-shaped crystal.

2.2.2. DPA_PA Salt for Single X-ray Crystal Structure Analysis

DPA and PA were each taken in a molar ratio of 1:1, suspended in diethyl ether and
stirred at 25 ◦C and 170 rpm (IKA Plate_RCT 4, IKA, IKA® Japan K.K., Osaka, Japan)
for 5 days. After that, the precipitated material was recrystallized in acetone, yielding a
colorless block-shaped crystal.

2.2.3. DPA_PA Salt for Characterization (PXRD, DSC, IR, and TG)

DPA (0.5 mmole) and PA (0.5 mmole) in a 1:1 molar ratio was grinded in a mortar and
pestle for about 10 min to become a fine powder, then a few drops of acetone were added to
it, then again grinded for 10–15 min to obtain powder. From this grinded material, 150 mg
was used for the crystallization experiment. Colorless crystals were obtained on the side
wall of the vial by upon dissolving the 150 mg grinded material in 20 mL acetone under
sonication at a temperature 30 ◦C for 10 min; the resulting solution obtained after filtration
was left for slow evaporation at ambient condition for 3–4 days.

2.3. Single-Crystal X-ray Diffraction

The single-crystal X-ray diffraction data for DPA and DPA_PA salt were collected
at 93 K. The measurements were carried out in ω-scan mode with an R-AXIS RAPID
II (Rigaku Co., Tokyo, Japan) using the Cu-Kα X-ray obtained from rotating the anode
source with a graphite monochromator. The integrated and scaled data were empirically
corrected for absorption effects using ABSCOR [50,51]. The initial structure was solved
using the direct method with SIR 2004 and refined on F2 with SHELXL 2014 [52,53]. All
non-hydrogen atoms were refined anisotropically. The hydrogen atom attached to the
nitrogen N2 and N5 atom in pure DPA and the hydrogen atom attached to the nitrogen
N2 as well as hydrogen H5A present in between the O3 and O5 oxygen in the DPA_PA
salt were located using the differential Fourier map and refined isotropically. All other
hydrogen atom positions were calculated geometrically and included in the calculation
using the riding atom model; the calculations were performed for all the hydrogen atoms.
Moreover, in the DPA_PA salt, protonated DPA molecules display disordered structure in
which two molecules with opposite configuration share the same site. Their occupancies
were fixed to 0.5.

The molecular graphics were produced using Mercury 4.1.0 software [54]. CCDC
2065231 contains the supplementary crystallographic data for the DPA and CCDC 2065230
contains the supplementary crystallographic data for the DPA_PA salt, and can be obtained
free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif (accessed on 2 April 2021).

2.4. Powder X-ray Diffraction (PXRD)

The PXRD patterns of all samples were measured in the reflectance mode using a
SmartLab diffractometer (Cu Kα source (40 kV and 200 mA), D/teX ultra-high-speed
position-sensitive detector, Rigaku). Diffraction patterns (2θ) were collected from 5◦ to 40◦

at 25 ◦C with a step of 0.01◦ and a scan speed of 20◦/min.

2.5. Differential Scanning Calorimetry (DSC) and Thermogravimetric (TG) Measurements

DSC and TG measurements were carried out with the Thermo plus EVO2-DSC 8230
and the Thermo plus EVO2-TG8120 TG-DTA, respectively (Rigaku). The DSC sample
(~3 mg) was placed in an aluminum-crimped pan, measured at a speed of 5 ◦C/min from
25 to 250 ◦C under nitrogen gas (flow rate = 50 mL/min. The TG sample (~10 mg) was

www.ccdc.cam.ac.uk/data_request/cif
www.ccdc.cam.ac.uk/data_request/cif
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placed into an aluminum-open pan, respectively, and measured at a speed of 5 ◦C/min
from 25 to 250 ◦C under nitrogen gas (flow rate = 50 mL/min for DPA, PA and 100 mL/min
for DPA_PA salt).

2.6. Fourier Transform Infrared Spectroscopy (FT-IR)

The infrared spectra of samples were obtained using FT-IR (FT-IR-4200 spectrometer,
JASCO Co., Tokyo, Japan) with an attenuated total reflection (ATR) unit (ATR-PRO 670H-S,
JASCO Co.). The spectrum recorded represents an average of 64 scans obtained with a
resolution of 4 cm−1 at room temperature. The spectra were collected in the wavenumber
ranging from 4000 to 400 cm−1. The internal reflectance element used in this study was a
diamond trapezoid having 45◦ entrance and exit faces.

3. Results and Discussion
3.1. Crystal Structure of DPA

Suitable crystals of DPA were grown from the cyclohexane solvent by slow evaporation
at ambient conditions. Its structure was determined by single crystal X-ray diffraction and
showed that it crystalized in monoclinic centrosymmetric space group P21/n, containing
two symmetry independent molecules (designated as A and B molecules) in the asymmetric
unit and which have opposite configuration. The Oak Ridge Thermal Ellipsoid Plot
(ORTEP) of DPA is shown in Figure 2a. In the structural overlay studies two conformers
which, having similar configuration, are used and reveal a minor conformational difference
at the amide group, phenyl and 2-pyridine moieties, whereas difference at iso-propyl moiety
was found to be more as shown in Figure 2b. Furthermore, interestingly in both molecules
A and B of DPA, the phenyl ring moiety is nearly coplanar with the chain moiety (excluding
the iso-propyl moiety) whereas the 2-pyridine moiety is oriented nearly perpendicular to
the planar part as shown in Figure 2b. The crystallographic information and geometrical
parameters for the hydrogen bonding interaction are summarized in Tables 1 and 2.
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Figure 2. (a) The Oak Ridge Thermal Ellipsoid Plot (ORTEP) diagram of Molecule A and Molecule B of DPA, showing the
atom numbering scheme in. Thermal ellipsoid drawn at 50% probability level, and H-atoms are shown as small spheres with
arbitrary radii. Both symmetry independent molecules A and B in the asymmetric unit display the N-H···N intramolecular
hydrogen bond in S1

1(6) motif; (b) Structural overlay of two conformers in DPA which, having similar configuration, reveal
considerable conformational differences at the iso-propyl moiety present on the tertiary N-atom of chain moiety. Molecule B‘
is inversion symmetry related to Molecule B.
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Table 1. Crystallographic data table for the DPA and DPA_PA salt.

Parameters DPA DPA_PA

Empirical formula C21H29N3O C29H35N3O5
Formula weight 339.47 505.60
Temperature [K] 93(2) 93(2)
Wavelength [Å] 1.54187 1.54187
Crystal system Monoclinic Monoclinic

Space group P21/n P21/n
Unit cell dimensions

a [Å]
b [Å]
c [Å]
α [◦]
β [◦]
γ [◦]

17.2970 (3)
10.7861 (2)
21.4831 (4)

90
99.385 (7)

90

14.2741 (4)
7.8827 (2)
23.5355 (7)

90
91.428 (6)

90
Volume[Å3] 3954.39 (15) 2647.35 (13)

Z and Z’ 4, 2 4, 1
Density (calculated) [g/cm3] 1.140 1.269

Absorption coefficient [mm−1] 0.552 0.705
F (000) 1472 1080.0

Crystal size [mm x mm x mm] 0.247 × 0.231 × 0.221 0.49 × 0.47 × 0.23
Theta range for data collection [◦] 3.048 to 68.192 3.582 to 68.188

Index ranges −20 <= h <= 20, −12 <= k <= 12,
−25 <= l <= 25

−17 <=h <= 17, −9<= k <=9,
−28 <=l <= 28

Reflections collected 44379 29013
Independent reflections 7200 [Rint = 0.0215, Rsigma = 0.0129] 4847 [Rint = 0.0412, Rsigma = 0.0326]

Completeness to theta = 67.687◦ 99.9% 100%
Absorption correction Semi-empirical from equivalents Semi-empirical from equivalents

Max. and min. transmission 0.873 and 0.711 0.850, 0.513
Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2

Data/restraints/parameters 7200/0/475 4847/0/350
Goodness-of-fit on F2 1.052 1.079

Final R indices [I>2sigma(I)] R1 = 0.0416, wR2 = 0.1024 R1 = 0.0434, wR2 = 0.1123
R indices (all data) R1 = 0.0435, wR2 = 0.1040 R1 = 0.0489, wR2 = 0.11659

∆ρmax, ∆ρmin (e·Å–3) 0.424 and −0.215 0.265/−0.171

Table 2. Geometrical parameters of the hydrogen bond interaction in DPA and DPA_PA salt.

D-H···A D-H (Å) H···A (Å) D···A (Å) D-H···A (◦) Symmetry Codes

DPA

N2-H2B···N1 0.887 (17) 1.965 (17) 2.7006 (16) 139.5 (14) Intramolecular
N2-H2A···O2 0.890 (16) 2.025 (16) 2.8959 (15) 166.2 (14) −x + 3/2, y − 1/2, −z+1/2
N5-H4B···N4 0.887 (17) 1.970 (17) 2.7035 (16) 139.1 (14) Intramolecular
N5-H4A···O1 0.890 (17) 2.046 (17) 2.9286 (14) 171.1 (14) −x + 3/2, y + 1/2, −z+1/2
C2-H2···O2 0.95 2.677 3.605 165.71 −x + 3/2, y − 1/2, −z+1/2

C10-H10···O2 0.95 2.62 3.3855(15) 138 x, y, z
C11-H11···Cg4 0.95 2.98 3.7910(13) 145 x, y, z
C32-H32···Cg2 0.95 2.90 3.7631(13) 152 −1 + x, y, z

C42-H42A···Cg4 0.98 2.93 3.6320(18) 129 1/2 − x, 1/2 + y, 1/2 − z
Cg2 centroid of the ring (C1-C2-C3-C4-C5-C6), Cg4 centroid of the ring (C22-C23-C24-C25-C26-C27) of molecule A and molecule B

of DPA respectively
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Table 2. Cont.

D-H···A D-H (Å) H···A (Å) D···A (Å) D-H···A (◦) Symmetry Codes

DPA_PA salt

N2-H2A···O4 0.88 (2) 2.02 (2) 2.895 (2) 174 (19) x, y, z
N2-H2B···O1 0.920 (18) 2.071 (18) 2.9910 (17) 177.8 (18) −x, 2 − y, 1 − z
N3-H3A···O2 1.00 1.72 2.7159 (16) 173 −1/2 + x, 3/2 − y, 1/2 +z
O5-H5A···O3 1.11(2) 1.30 (2) 2.4047 (19) 172 (2) Intramolecular
C2-H2···O1 0.95 2.52 3.4269 (19) 159 −x, 1 − y, 1 − z
C9-H9···O4 0.95 2.36 3.294 (2) 167 x, y, z

C15-H15B···N1 0.99 2.57 3.078 (2) 112 Intramolecular
C17-H17C···O1 0.98 2.54 3.4952 (19) 166 Intramolecular
C22-H22···O2 0.95 2.33 2.674 (2) 101 Intramolecular
C25-H25···O4 0.95 2.33 2.688 (2) 101 Intramolecular

C17-H17A···O2 0.98 2.685 3.359 (2) 126.23 −1/2 + x, 3/2 − y,1/2 + z
C14-H14B···O2 0.99 2.603 3.0812(18) 109.73 −1/2 + x,3/2 − y, 1/2 + z
C11–H11···O2 0.95 2.711 3.519 143.35 1 − x, 2 − y, 1 − z

C18-H18A···Cg5 0.98 2.93 3.6222(18) 129 −x, 1 − y, 1 − z
C29–O4··· Cg2 3.4808 (16) 146. 59 (14) x, y, z
C29–O4··· Cg3 3.4808 (16) 146.59 (14) x, y, z

Cg2 centroid of the ring (C1-C3-C2-C1A-C6-C5), Cg3 centroid of the ring (N1-C2-C3-C1-C5-C6) of disordered protonated DPA, Cg5
centroid of the ring (C22-C23-C24-C25-C26-C27) of PA¯ anion in the DPA_PA salt

In the crystal structure of pure DPA, two closely associated DPA molecules, that is,
molecules A and B aggregate via amide homodimer through N–H···O hydrogen bonds,
namely N2-H2A···O2, N5-H4A···O1 hydrogen bonds involving amide hydrogen N–H and
amide C=O oxygen from both DPA molecules resulting R2

2(8) ring motifs involving two
donor and two acceptor atoms. Whereas second amide hydrogen N–H in both symmetry
independent DPA molecules formed an intramolecular N-H···N hydrogen bond with the N-
nitrogen atom of 2-pyridine moiety in S1

1(6) motif, namely N2-H2B···N1 and N5-H4B···N4,
and hence it controls orientation of 2-pyridine moiety of DPA molecules in the crystal
structure as shown in the Figure 3.
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1(6) motif. Dotted lines indicate the non-covalent interaction
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Packing of the dimeric unit down the c-axis, resulting in a 1-D chain of the dimeric
unit along the ab-diagonal, wherein dimeric units of DPA are linked through C-H···O
and C-H···π interaction, containing alternate arrangements of vertically and horizontally
oriented dimeric units. In this association C10-H10, C11-H11 hydrogen of 2-pyridine moiety
of molecule A and C32-H32 hydrogen of 2-pyridine moiety, and C42-H42A hydrogen
of iso-propyl moiety of molecules B are involved in the alternate C10-H10···O2, C11-
H11···Cg4, and C32-H32···Cg2, C42-H42A···Cg4 interaction shown Figure 4a. The dimeric
unit assembled helically along the b-axis to form a helical chain of the dimeric unit as
shown in Figure 4b and dimeric unit along the b-axis linked through longer and roughly
linear C2-H2···O2 (H2···O2, 2.67 Å, Angle 165.71◦) interaction.
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alternate arrangement of vertically and horizontally oriented dimeric unit along the ab-diagonal; they are associated through
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Combining the above mentioned packings resulted in the 2-D packing of the dimeric
unit in the ab-plane, as shown Figure 5. In this packing, the neighboring helical chain of
the dimeric unit packed in the ab-plane through the alternate C10-H10···O2 C11-H11···Cg4,
and C32-H32···Cg2, C42-H42A···Cg4 interaction generate the 2-D packing of the dimeric
unit in the ab-plane, as shown in Figure 5.

Furthermore, such 2-dimensional structure of the dimeric unit assembled loosely due
to the absence of strong interaction along the c-axis. In this direction, that is, along the
c-axis, the 2-D network of dimeric units interact with each other by weak non-covalent
interactions and hydrophobic forces between adjacent phenyl and iso-propyl groups and
such packing of dimeric unit in the ac-plane creates a solvent assessable void of size 54.85
Å3 per unit cell and 1.4% of unit cell volume, calculated by using contact surface from
Mercury 2020, 2.0 software [54] shown in Figure 6. Crystal with assessable solvent void is
recently reported in [55].
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3.2. Crystal Structure of DPA_PA Salt

DPA and PA in the 1: 1 stoichiometric molar ratio were crystallized from acetone at
ambient condition to obtain a colorless block shape crystal. The ∆pKa difference between
DPA (pka: 8.36) and coformer PA (pKa: 2.94, 5.41) is more than 3 and salt formation was
expected based on the basic rule of three [56]. The X-ray single-crystal structure confirmed
the formation of DPA_PA salt with approximately similar C–O bond lengths C28-O2, 1.2438
(18), C28-O3, 1.2676 (19) Å) of the (COO¯) carboxylate group of PA. These approximate
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similarities in the bond length of C–O confirmed the transfer of an acidic proton from one
of the carboxylic acidic group of PA to the N3-nitrogen atom of the tertiary amino group
(chain moiety) of DPA. DPA_PA salt crystalized in the monoclinic centrosymmetric P21/n
space group comprising one protonated DPA and one PA¯ anion in an asymmetric unit,
revealing the molecular salt in the 1:1 molar ratio. In the crystal structure of DPA_PA salt,
protonated DPA molecules displayed positional disorder and ratio fixed 0.5/0.5 for the two
disordered components. DPA is a racemic compound consisting of R and S configurations.
These two racemic components R and S are found to occupy the same site with 0.5 and 0.5
occupancy in DPA_PA. In this disorder model, phenyl and pyridine ring were exchanged
between R and S, and the other part of DPA molecule was completely overlapped in
DPA_PA salt. (Figure 7a).
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through the N–H∙∙∙O hydrogen bond like DPA alone with different symmetry operation 
(Table 2 and Figure 8a). There is no direct association between the PA¯-PA¯ anion ob-
served in DPA_PA salt. However the protonated DPA molecule linked PA¯ anions alter-
natively through N–H∙∙∙O, and charge assisted the N+–H∙∙∙O¯ hydrogen bond shown in 
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Figure 7. (a) ORTEP diagram of DPA_PA salt, showing the atom numbering scheme wherein C1, N4A and N1, and C1A
share the same position. Thermal ellipsoid drawn at 50% probability level, and H-atoms are shown as small spheres with
arbitrary radii. DPA_PA salts, displaying intramolecular hydrogen bonds O5-H5A···O3, C17-H17C···O1, C22-H22···O2,
C25-H25···O4 C15-H15B···N1 and intermolecular hydrogen bonds N2–H2A···O4 and C9–H9···O4, C=O4···π between the
salt pair. (b) The disordered DPA molecule in salt crystal. R and S configuration molecules occupied the same site with 0.5
and 0.5 occupancy.
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A similar phenomenon was also observed in the crystal structure of ketoconazole [57].
Interestingly, in the one configuration, the phenyl ring is roughly coplanar with chain moi-
ety (excluding the iso-propyl moiety), whereas in other configuration, the 2-pyridine moiety
is roughly coplanar with the chain moiety (excluding the iso-propyl moiety). (Figure 7b).

Both the component in the asymmetric unit, that is, protonated DPA and PA¯ anion
linked by strong N2–H2A···O4 hydrogen bond and C9–H9···O4 hydrogen bonds and
such assembly in salt facilitated the formation C=O···π interaction between the carboxyl
C=O4 of PA¯ anion and phenyl ring Cg2 in one configuration/2-pyridine ring Cg3- in
other configuration. In the crystal structure of salt, PA¯ displaying an intramolecular
strong O5-H5A···O3 hydrogen bond in which hydroxyl (O5-H5A) of the carboxyl group
of the PA¯ anion donates H5A hydrogen intramolecularly to an O3-oxygen atom of
the carboxylate group of the PA¯ anion and other C-H···O intramolecular hydrogen
bonds namely, C22-H22···O2, C25-H25···O4 present in PA¯ anion and C17-H17C···O1,
C15-H15B···N1 in protonated DPA which stabilize the conformation the salt as shown in
Figure 7a. The crystallographic information and geometrical parameters for the hydrogen
bonding interaction are summarized in Tables 1 and 2.

Hereafter, one conformer of disordered protonated DPA molecule used for discussion
of crystal structure and packing of DPA_PA salt. Crystal structure of DPA_PA salt reveals
the presence of a dimeric association between the protonated DPA molecule through the
N–H···O hydrogen bond like DPA alone with different symmetry operation (Table 2 and
Figure 8a). There is no direct association between the PA¯-PA¯ anion observed in DPA_PA
salt. However the protonated DPA molecule linked PA¯ anions alternatively through
N–H···O, and charge assisted the N+–H···O¯ hydrogen bond shown in Figure 8b, in which
one PA¯ anion associated with the protonated DPA molecule by forming the N–H···O
hydrogen bond involving carbonyl C=O4 oxygen of the carboxyl group of PA¯ anion
and amide N-H2A hydrogen of protonated DPA. Whereas the other PA¯ anion associated
by forming a charge assisted N+–H···O¯ hydrogen bond by using carboxylate (COO¯)
O2-oxygen of the PA anion and the protonated tertiary amino group N3+-H3A hydrogen
of protonated DPA; both associations were supported by C–H···O interaction as shown
in Figure 8b.

In the crystal structure of DPA_PA salt, two inversion-symmetry related protonated
DPA molecules form amide homodimer, via a pair of strong N2–H2B···O1 hydrogen bonds
in R2

2(8) ring motif that involve two acceptor and two donor atoms. In this association,
protonated DPA donates amide hydrogen N2–H2B to amide carbonyl (C=O1) oxygen of
inversion-symmetry related protonated DPA molecules in dimeric N2–H2B···O1 hydrogen
bonding interaction. Further, this amide homodimer of protonated DPA molecule linked to
two PA anions through N2–H2A···O4 hydrogen bonding interaction between the second
hydrogen of amide N2–H2A and carbonyl (C=O4) oxygen of the carboxyl group of the
PA¯ anion and further supported by C9–H9···O4 interaction, between C9–H9 hydrogen of
the phenyl ring of protonated DPA and carbonyl (C=O4) oxygen of the carboxyl group of
the PA¯ anion resulting basic dimeric unit shown in Figure 9.

The dimeric unit linked to four n-glide related neighboring dimeric units through
charge assisted strong and linear N+–H···O¯ hydrogen bonding interaction and supported
by two longer and non-linear C–H ···O¯ interactions, namely C17–H17A ···O2¯, C14–
H14B ···O2¯ resulting 2-D packing. In this association, the carboxylate (COO¯) O2-
oxygen of PA¯ anion is made hydrogen bond with N3+–H3A (protonated tertiary amino
nitrogen) hydrogen of protonated DPA via the charge assisted strong N3+–H3A···O2¯
hydrogen bond; such association was further supported by longer and non-linear C–
H···O¯ interaction, namely C17–H17A···O2¯, C14–H14B···O2¯ interactions and resulting
packing view down the a-axis is shown in Figure 10a (above). In this packing, the dimeric
unit assembled along the b-axis through the short C2–H2···O1 hydrogen bond between
amide carbonyl (C=O1) oxygen and C2–H2 hydrogen of 2-pyridine moieties of the next
dimeric unit along the b-axis and supported by weak C18-H18A···Cg5 interaction between
the C18–H18A hydrogen of iso-propyl moieties of protonated DPA and the π cloud of the
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aromatic ring (C22-C23-C24-C25-C26-C27) of PA¯ anion; the resulting association is shown
in Figure 10a (down). Similar packing views in the ac-plane, reveal that the neighboring
dimeric unit assembled along the ac-diagonal through hydrogen bonding, wherein there
is an alternate arrangement of protonated DPA amide dimer and PA¯ anion as shown
in Figure 10b.
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Further, such a two-dimensional network of dimeric unit assembled centrosymmetri-
cally along the a-axis (parallel to the ac-diagonal) through longer and weak C11–H11···O2¯
interaction between C11-H11 hydrogen of the phenyl ring of protonated DPA and car-
boxylate (COO¯) O2-oxygen of PA¯ anions resulting in three-dimensional packing of the
dimeric unit in the ac-plane, as shown in Figure 11.
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3.3. Structural Overlay

DPA (Figure 12a), has freely rotatable groups connected to asymmetric carbon marked
by a star and anticipated to display conformational or orientational changes in its solid
forms. The structural overlay of the DPA molecule by overlapping the (C-C-C-N) backbone
chain, shown in Figure 12b, reveals conformational and orientational differences owing to
rotational freedom around the C−C, C-N bonds. Conformational difference in both solid
forms could be characterized by torsion angles τ1, τ2, τ3 and τ4 as shown in Figure 12a,
and the dihedral angle between the phenyl and 2-pyridine moieties and values listed in
Table 3. In pure DPA crystal structure, both conformers in the pure DPA crystal display
slight difference in torsion angles τ1 (−179.78, −171.37), while values of τ2 (177.67, 177.17)
and τ3 (−1.01, 3.01) are comparable and indicate that the (C-C-C-N) backbone chain moiety
connecting to the phenyl ring are nearly coplanar in molecule A, while there is a slight
deviation observed in coplanarity in B molecules. On the other hand, the 2-pyridine
ring is roughly perpendicular to the planar part of A and B molecules. The dihedral
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angle between the phenyl and 2-pyridine rings is 87.16◦ and 79.83◦ in molecules A and B,
respectively. In DPA_PA salt crystal structure, the torsion angles τ1 and τ2 are −177.58◦,
−175.47◦ suggesting coplanarity in the backbone chain as pure DPA, whereas torsion
angles τ3 −16.81◦ indicate deviation in coplanarity in backbone chain moiety and the
phenyl ring. Further, the dihedral angle between the phenyl and 2-pyridine moiety is
significantly changed to 59.43◦and such deviation in orientation of 2-pyridine and phenyl
moiety could be due to the association of salt former (PA) with drug (DPA) through
hydrogen bond in this direction. However, the torsional value τ4 is for the orientation of
the amide group with a planar part; it is nearly similar for both conformers in pure DPA,
and such orientation of the amide group brings 2-pyridine moiety close enough to facilitate
an intramolecular hydrogen bond between amide N-H hydrogen and N-atom of 2-pyridine
moiety. Whereas in the DPA_PA salt a conformational twist is observed at amide group
as shown in Figure 12b to facilitate the intermolecular hydrogen bond between amide
N-H hydrogen of protonated DPA and carbonyl oxygen (C=O) of the carboxyl group PA¯
anion. Moreover, iso-propyl moiety present on tertiary nitrogen in all molecules shows
conformational/orientational difference.
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Figure 12. (a) Chemical structure of DPA, in which the (C-C-C-N) backbone chain is marked by a red color bond and (b)
Structural overlay of DPA molecules in both solid forms showing significant conformational variation; Green-Molecule A,
Red-Molecule B‘ in DPA, Light green-DPA molecules from DPA_PA salt.

Table 3. Torsional/dihedral angle in DPA and DPA_PA.

τ1
◦ τ2

◦ τ3
◦ τ4

◦ Dihedral Angle ◦

DPA Molecule A −179.78 177.67 −1.01 63.83 87.16(6)
DPA Molecule B‘ −171.37 177.17 3.12 63.90 79.83(6)

DPA from Salt −177.60 −175.45 −16.81 69.39 59.43(7)
In DPA Molecule A: τ1—C7-C14-C15-N3, τ2—C6-C7-C14-C15, τ3—C1-C6-C7-C14, τ4—C13-C7-C14-C15; In DPA
Molecule B‘: τ1—C28-C35-C36-N6, τ2—C27-C28-C35-C36, τ3—C22-C27-C28-C35, τ4—C34-C28-C35-C36; DPA
from Salt: τ1—C7-C14-C15-N3, τ2—C8-C7-C14-C15, τ3—C4-C8-C7-C14, τ4—C13-C7-C14-C15. The dihedral
angle is the angle between planes of the phenyl and 2-pyridine ring in DPA.

Crystal structure analysis showed that the drug–drug amide homosynthon retained
in salt as in pure DPA (differed in symmetry operation). Further, the density of DPA alone
and its salt DPA_PA calculated from single crystal X-ray diffraction were found to increase
from 1.140 g/cm3 in DPA to 1.269 g/cm3 in the salt, indicating denser packing in salt.

3.4. Characterization of DPA and DPA_PA Salt
3.4.1. PXRD

The PXRD pattern recorded for commercially available DPA, DPA crystals, DPA_PA
salt and PA. The PXRD pattern of the commercially available DPA and DPA crystal is
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matched to reveal that both are in the same crystalline phase. Further PXRD patterns of the
salt are different from individual components, suggesting formation of a new crystalline
phase in the solid-state. (Figure S1). Furthermore, the overlapping of the experimental
PXRD pattern of these crystals matched well the simulated PXRD pattern obtained from
the single-crystal X-ray data, confirming the homogeneity of the sample.

3.4.2. FT-IR Spectrum

Considered as a reasonable and reliable technique to detect the formation of the multi-
component crystal, Fourier transform infrared (FT-IR) spectroscopy is a very important tool
to determine typical carboxylate anion and confirm the proton transfer when carboxylic
acid is used as a coformer.

FT-IR spectra were obtained for commercial DPA, prepared DPA crystal, PA and
DPA_PA salt (Figure S2). FT-IR spectrum of commercial DPA and prepared DPA crys-
tal showed same characteristic peaks, which were observed as amide N-H stretching
at 3263 cm−1, amide C=O stretching and NH2 deformation overlap peak at 1664 cm−1,
whereas in DPA_PA amide N-H stretching was observed at 3354.57 cm−1, amide C=O
stretch and NH2 deformation at 1680, 1625 cm−1, respectively [58]. The blue shift of
amide-derived peaks suggests the possible changes in the hydrogen bonding interaction
between molecules due to the formation of a new solid form [59,60]. In general, for
tertiary amine salts, a broad band at 2300–2700 cm−1 was due to the NH+ stretching,
which was also observed in DPA-PA salt, revealing the protonation of tertiary amine in
DPA [60,61]. In addition, the peaks at 1590 and 1568 cm−1 in DPA were probably attributed
to benzene and pyridine rings. It was observed that similar peaks appeared with minor
differences in DPA_PA salt. Hence, it appears there is no chemical interaction on benzene
and pyridine rings.

Due to the hydrogen bond of the PA dimer, pure PA existed over a broad band
around 2800 cm−1, attributed to the OH group, which shifts to 3191 cm−1 in DPA_PA
salt. The carbonyl stretches of two carboxylic acid groups of PA were observed at 1666
and 1583 cm−1, which appeared at 1679 cm−1 for the COOH group and 1556 cm−1 for the
COO¯ group in DPA-PA salt [62].

In short, the appearance of a broad band at 2300–2700 cm−1 and a peak at 1556 cm−1,
where the ionized tertiary amine and carboxylate group could be observed, respectively,
indicate a proton transfer from the salt former PA to DPA, confirming the salt formation
between DPA and PA.

3.4.3. Thermal Properties

The thermal properties of the DPA and DPA_PA salt were evaluated by DSC and
TG measurements. DSC revealed a single sharp endotherm at 84 ◦C in agreement with a
reported metastable form at 85 ◦C. In the DSC curve of the DPA_PA salt, the endothermic
peak at around 161 ◦C is the melting point of salt, which is significantly different from DPA
(84 ◦C) and PA (216 ◦C) (Figure S3). TG data of the DPA single crystal revealed that no
weight loss before melting confirmed the absence of any solvent or hydrate in the crystal
lattice as same as that of DPA commercial. Also, the thermal stability and decomposition
processes of DPA_PA salt have been shown, measured by simultaneous TG in flowing air.
The DPA_PA salt is stable until 160 ◦C (Figure S4). There are no thermal moments for all
crystals before the melting process, indicating that these crystals are unsolvated.

4. Conclusions

Pure DPA and its 1:1 DPA_PA salt crystals have been obtained from the slow solvent
evaporation method and both belong to the centrosymmetric monoclinic crystal system
having a P21/n space group. The asymmetric unit of pure DPA contains two molecules
while 1:1 DPA_ PA salt contains one protonated DPA and one PA¯ anion.

Crystal structure analysis of pure DPA showed two closely associated molecules
formed amide–amide dimer through an N-H···O hydrogen bond and resulting in the R2

2(8)
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ring motifs. Dimeric units were assembled in the ab-plane through C-H···O and C-H···π
interaction, whereas it packed loosely along the c-axis via weak non-covalent interaction.
Crystal structure analysis of 1: 1 DPA_ PA salt showed a strong association between the
drug and the salt former leading to compact molecular packing, with an increase in crystal
density compared to DPA alone. In salt, two inversion symmetry related protonated DPA
molecules formed amide homodimer through an N-H···O hydrogen bond in R2

2(8) ring
motifs and such dimer is hydrogen bonded to two PA¯ anions through N-H···O and
C-H···O hydrogen bonds to form the basic dimeric unit comprising two protonated DPA
and two PA¯ anion. Furthermore, dimeric units linked to four n-glide related neighboring
dimeric units through a strong N+–H···O¯ hydrogen bond resulted in a 2-Dimentional
packing network. Such a 2-D network assembled in centrosymmetric fashion along the
a-axis through weak C-H···O interaction resulting 3-D packing in the ac-plane.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cryst11040379/s1, Figure S1. PXRD patterns of (a) commercial DPA; (b) DPA crystal, (c)
simulated DPA, (d) PA, (e) DPA_PA salt and (f) simulated DPA_PA salt, Figure S2. FT-IR spectra of (a)
commercial DPA; (b) DPA crystal, (c) PA, (d) DPA_PA salt, Figure S3. DSC profiles of (a) commercial
DPA, (b) DPA crystal, (c) PA, (d) DPA_PA, Figure S4. TG curves of commercial DPA (yellow), DPA
crystal (gray), PA (orange), DPA_PA salt (blue).
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