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Abstract: Curved glass is widely used in 3C industry, and the market demand is increasing gradually.
Glass molding process (GMP) is a high-precision, high-efficiency 3D glass touch panel processing
technology. In this study, the processing parameters of fingerprint lock glass panels were deeply
analyzed. This paper first introduces the molding process of the glass panel, discusses the glass
forming device, and explains the heat conduction principle of the glass. Firstly, it introduces the form-
ing process of the glass panel, discusses the glass forming device, and explains the heat conduction
principle of the glass. Secondly, the simulation model of a fingerprint lock glass plate was simulated
by MSC. Marc software. The stress relaxation model and structure relaxation model are used in the
model, and the heat transfer characteristics of glass mold are combined to accurately predict the
forming process of glass components. The effects of molding temperature, heating rate, holding
time, molding pressure, cooling rate and other process parameters on product quality characteristics
(residual stress and shape deviation) were analyzed through simulation experiments. The results
show that, in a certain range, the residual stress is inversely proportional to the bending temperature
and heating rate, and is directly proportional to the cooling rate, while the shape deviation decreases
with the increase of temperature and heating rate. When the cooling rate decreases, the shape
deviation first decreases and then increases. Furthermore, a verification experiment is designed to
verify the reliability of the simulation results by measuring and calculating the surface roughness of
the formed products.

Keywords: GMP; process parameters; simulation; shape deviation; residual stress

1. Introduction

In recent years, the consumption of 3C products has increased significantly. With the
development of the Internet of Things and the advent of 5G, the combination of 3C products
and the Internet of Things industry promotes the birth of a smart home. A smart home
is widely accepted by the public because of its practical convenience, safety, reliability
and powerful functions, such as intelligent security series, intelligent switch series and
intelligent lighting series. According to the development and trends of the intelligent
door lock market, intelligent security is the most rigid demand product in a stylish home,
and as the first security line of every place, an intelligent door lock has become the focus
of public attention, from the earliest mechanical lock, to the advanced electronic lock and
intelligent lock, and then to the new generation of intelligent lock represented by fingerprint
identification, namely the fingerprint lock. The development of science and technology
and its industrialization permeate also triggered the development of the lock industry.
Appearance innovation will also become an important factor in market competition. Due to
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high transparency, good touch and extraordinary success rate of fingerprint identification,
the glass fingerprint touch plate is widely used in the manufacture of intelligent door locks.
Most intelligent door locks are equipped with a 3D glass fingerprint touch plate, as showed
in Figure 1. In addition, fingerprint locks also face the problems of inconsistent fingerprint
inspection standards, fingerprint forgery and reliability of theory and technology [1].

Figure 1. Glass fingerprint touch plate of different smart locks; (a) 3D fingerprint lock glass touch
plate; (b) 3D code lock glass touch plate.

The traditional manufacturing technology of optical components includes magneto-
optical polishing, ion beam polishing and single point diamond turning [2]. Due to the
high-precision and high quality requirements of modern fingerprint locks for touch plate
glass, the traditional manufacturing technology has proved difficult to adapt to the current
market demand. The glass molding process (GMP) is considered to be a novel method
and technology different from traditional processing. It can produce optical microstructure
of glass by copying the shape of the mold onto the heated glass preform without further
processing. This method has attracted extensive attention of many scholars because of its
scientific, efficiency and environmental protection [3–5]. In the GMP, the glass preform is
pressed and deformed by a high-precision mold with predetermined design shape under
appropriate temperature and load, to quickly obtain glass products with the final product
shape and optical function.

The GMP includes three stages: heating and soaking, forming and annealing and
cooling. In the heating and soaking stage, inert gas, such as nitrogen (N2), is first introduced
into the mold cavity to purify the air in the mold cavity by flowing. Then the glass preform
is given to the lower mold and heated to the molding temperature in a high-temperature
furnace. After soaking for a certain period time, the thermal balance between the mold and
the glass is achieved. In the pressing stage, a specified load is applied to the upper surface
of the upper die to make the upper die move down slowly to obtain the desired glass
shape. In the annealing and cooling stage, the mold and glass parts are annealed slowly,
while maintaining a slight pressure load to release the internal stress. Finally, mold and
glass components are rapidly cooled to room temperature, and the glass products are
obtained after demolding [6–8].
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Glass is just an amorphous material, and its thermal expansion coefficient, viscoelas-
ticity and structural relaxation change nonlinearly with temperature and time. Therefore,
it is sometimes difficult to control the geometric accuracy of glass components at high tem-
peratures [9,10]. Jain et al. [11] measured the temperature dependence of elastic modulus
of two glasses by Brillouin light scattering technique. The results demonstrate that the
elastic modulus decreases with the increase of temperature, but it increases obviously near
the transition temperature. Ming et al. [12] carried out electrochemical hybrid machining
of glass crystal, which combined the advantages of electrochemical machining and EDM
(Electrical Discharge Machining), and the experimental results effectively improved the ma-
chining accuracy of glass. Yan et al. [13] proposed a two-step hot pressing process based on
the nonlinear thermal expansion characteristics of glass and the dependence of specific heat
and thermal conductivity of glass on temperature, and established the heat transfer model
of glass. The modified Newtonian fluid model is used to simulate the high temperature
material flow of glass, and load change during the pressing process is accurately predicted.
Foreign scholars Anya et al. [14] have proved the relationship between structural relaxation
and temperature change of glass materials through experiments. Tao et al. [15] studied the
effect of thermal expansion coefficient and heat capacity on residual stress of BK7 molded
glass lens, and forecast their influence on residual stress by using three thermal expansion
coefficients and two heat capacity methods. The results demonstrate that the influence of
residual stress on the coefficient of thermal expansion and heat capacity is quite different.
The maximum radial tensile stress is different, and in the radial stress, the heat capacity
changing with temperature is 20% larger than the constant heat capacity. With the glass fin-
gerprint touch plate becoming the mainstream of the display industry, the size shrinkage of
glass after hot processing in the production process has become the main technical obstacle
faced by glass fingerprint touch plate manufacturers. Kim et al. [16] developed a numerical
method based on the structural relaxation model of the glass fingerprint touch plate to
analyze the shrinkage changes during annealing and subsequent deposition. It is found
that higher annealing temperature and longer annealing time can reduce the shrinkage
during the deposition process, and decrease the difference between the virtual temperature
and the deposition temperature at the end of annealing. Besides, the higher the deposition
temperature is, the greater the shrinkage of the deposition process is and the faster the
structural relaxation rate is.

To sum up, the GMP has obviously caused the research upsurge of domestic and
foreign scholars, but most of its research results focus on the optimization of process pa-
rameters and the numerical analysis of glass material models in the process of product
processing. The processing mechanism of glass product molding is rarely mentioned.
In addition, in order to improve the production efficiency, glass multi-station bending
machining technology (as shown in Figure 2) is adopted, including 4 heating stations,
3 molding stations and 4 annealing cooling stations. Therefore, this paper analyzes the pro-
cessing mechanism of intelligent fingerprint lock glass fingerprint touch plates, and gives
attention to the surface quality (residual stress, shape deviation) of glass products and the
heat transfer characteristics in the direction of glass thickness in GMP. The processing per-
formances include surface flatness, residual stress and heating. Firstly, MSC. Marc software
is used to simulate the heat transfer characteristics along the thickness direction of the
glass, as well as residual stress and surface shape deviation of the glass surface. Secondly,
the processing mechanism is analyzed. Finally, the experiment of the glass multi-stations
bending machine is compared and verified.
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Figure 2. Schematic diagram of multi station bending process (heating stations, molding stations
and annealing and cooling stations).

2. Basic Theory of Optical Glass Molding
2.1. Creep and Viscoelastic Properties of Glass Materials

The properties of glass will change significantly with the change of temperature.
When the glass temperature is less than the transition temperature Tg, the glass is hard
and brittle. At this time, the glass can be regarded as trustworthy, showing the charac-
teristics of rigid plastic material. However, when the transition temperature is above Tg
and the softening temperature is below softening point (SP), the glass shows significant
viscoelastic characteristics [17,18]. Creep is a mechanical behavior in which the strain of
viscoelastic materials increases gradually with time when submitted to a constant load.
Its strain response shows the dual properties of the Newtonian fluid and solid viscoelastic
property [19].

2.1.1. Viscoelastic Model and Stress Relaxation of Optical Glass

Viscoelastic models tend to describe the creep behavior of glass in engineering.
Common viscoelastic models include the Maxwell model, Kelvin model, Boggs model and
their corresponding generalized models. Zhou et al. [20,21] compared these models and
found that the generalized Maxwell model may be the best model to describe the viscoelas-
tic deformation and stress relaxation of glass at high temperature, and established five pairs
of generalized Maxwell models to describe the deformation of glass in the pressing stage,
and successfully simulated the pressing and annealing processes of GMP under different
conditions. Yan [13] studied these models and considered that the generalized Maxwell
model can fully express the viscous strain of glass fluid in softening state and elastic strain
in caring state. The simple Maxwell model is a binary model composed of linear spring
elements and linear viscous damper elements in series, while the generalized Maxwell
model is comprised of n simple Maxwell models in parallel. The model uses multiple re-
laxation times to describe the viscoelastic characteristics of materials, which is closer to the
ideal relaxation time curve of polymer viscoelasticity, as shown in Figure 3a [22], where ηi
is the viscosity of the damper and Gi is the shear modulus of the spring. The constitutive
equation of a viscoelastic body can be expressed by Equation (1) [23].

σij(t) =
∫ t

0
G1
(
t− t′

)∂εij(t′)
∂t′

dt′ (1)

where σij and εij is stress and strain respectively, and G1 is the elastic modulus of
stress relaxation.
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Figure 3. Theoretical model of glass materials. (a) Generalized Maxwell model; (b) Simple thermos-
rheological phenomena.

When the glass is heated in the transition temperature range, it is easy to produce
deformation under the action of a constant load. This deformation is comprised of instan-
taneous deformation (elastic effect) and continuous deformation (viscous effect) which
changes with time. However, the load will decay with the time of glass deformation.
This phenomenon is known as called stress relaxation. The relaxation modulus with time
can be expressed by Equation (2) [24].

G1(t) = 2G
n

∑
i=1

ωie−t/τi (2)

where G is the instantaneous elastic shear modulus, ωi is the weight coefficient of the
relaxation function, and τi is the relaxation time.

2.1.2. Heat Flow Characteristics

The change of relaxation modulus of glass is closely linked to temperature. At low
temperatures, the relaxation of glass is very slow. With the increase of temperature, the re-
laxation modulus of glass becomes very fast. The change of glass relaxation modulus
with temperature in the same coordinate system at different temperatures is shown in
Figure 4 [25–27]. The abscissa is time t, the ordinate is the ratio of stress relaxation mod-
ulus ψ (T), T1 and T2 are different stress relaxation temperatures and TR is the reference
temperature. It can be observed in the figure that the stress relaxation curves at differ-
ent temperatures move horizontally on the logarithmic time axis and the shape remains
unchanged. This property of glass materials is called thermorheological simplicity (TRS).
Generally, the stress relaxation modulus at other temperatures has to be calculated with the
help of stress relaxation at the reference temperature. Therefore, it is necessary to introduce
the transfer factor A(T), which is expressed as follows [28]:

A(T) =
τ(t)

τ(TR)
(3)

where τ(TR) is the relaxation time at a certain reference temperature T, while the relaxation
time at other temperatures τ(t) can be obtained by A(T). The temperature effect of transfer
factor A(T) can be described by William-Landel-Ferry (WLF) equation as follows [29];

ln(A(T)) = − C1(T − TR)

C2 + (T − TR)
(4)

where C1 and C2 are constants of WLF equation, which are determined by the type of glass.
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Figure 4. Structural relaxation phenomenon of viscoelastic glass material [28].

2.2. Structural Relaxation

During the annealing and cooling process of GMP, the temperature applied to the glass
decreases from above the transition temperature to room temperature, and the volume of
the glass changes with time due to the sudden change of temperature. This phenomenon is
called structural relaxation, as showed in Figure 4 [30,31].

When the glass temperature changes from T1 to T2, the response function of volume
with time can be described by Equation (5) [22].

Mv(ξ(t)) =
V(t)−V2(∞)

V2(0)−V2(∞)
=

Tf (t)− T2

T1 − T2
(5)

where ξ(t) is the reduction time of the material, 0 and ∞ are the transient and steady-state
characteristics of the glass, and Tf (t) is the temperature at time t. According to Equation (5),
Narayanaswamy et al. proposed a structural relaxation model based on the formula,
which is expressed as follows [17]:

Tf (t) = T(t)−
∫ t

−∞
Mv
(
ξ(t)− ξ

(
t′
)) d

dt′
(
T
(
t′
))(

dt′
)

(6)

The calculation formula of Mv(ξ) and ξ(t) is as follows [32]:

Mv(ξ) =
n

∑
i=1

(ωg)· exp
(
− ξ

τi

)
(7)

ξ(t) =
∫ t

0
exp

[
∆H
TR
− x∆H

T(t′)
− (1− x)∆H

Tf (t′)

]
dt′ (8)

It can be deduced from the above formula that the volume change of glass at tempera-
ture T is as follows:

V2(t)−V1(∞)

V1(∞)
=
∫ Tf (t)

T1

α1
(
T′
)
dT′ +

∫ Tu

Tf (t)
αg
(
T′
)
dT′ (9)

2.3. Heat Transfer Model

The forming process of glass belongs to the problem of thermo-mechanical coupling,
so there is not just heat transfer, but also mechanical force. As shown in Figure 5, the heat of
glass during processing mainly comes from contact heat transfer of the mold and convection
of nitrogen and thermal radiation, among which the influence of thermal radiation is small
and can be ignored [33]. The thermal bending process of glass is based on the isothermal
forming method; that is, the glass preform is pressed at the same temperature as the mold.
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However, due to the delay of temperature rise inside the glass preform and the difficulty
in detecting the temperature change of glass, it is of great significance to establish a GMP
heat transfer model for realizing heat balance [13].

Figure 5. Schematic diagram of glass heat source.

To establish the heat transfer model, the heat conduction relationship inside the glass
material should be considered first, which can be deduced from Equation (10):

ρCP
∂T
∂t

= K∇2T (10)

Where ρ is the density of the material and t is the heating time of the glass. CP and K
denote the specific heat capacity and thermal conductivity of glass respectively, and these
two parameters are closely related to the change of temperature [34].

In the heating and soaking stage of glass, the heat transfer of mold and the heat
convection of nitrogen are the main reasons for the temperature rising of glass. The heat
transfer equation can be calculated by Equations (11) and (12):

−K
∂T
∂m

= hM(T − TM) (11)

−K
∂T
∂n

= hN(T − TN) (12)

where hM is the interfacial thermal conductivity of glass and mold, hN is the heat transfer
coefficient of nitrogen and glass, and T, TM, TN are the temperatures of glass, mold and
nitrogen respectively. Generally, the value of hM is 2800 W/(m2k), and the value of hN is
20 W/(m2k) [35].

3. Experimental Setup

In this study, the glass multi-stations bending machine (as shown in Figure 6) is used
for glass molding experiment, and PLC automatic control system is adopted for multi-
stations bending machine. The highest molding speed of glass parts can reach 60 pcs/h.
The production efficiency can be effectively improved by multi station assembly line
operation. The machine is designed and built by Guangdong intelligent robot research in-
stitute. The schematic diagram of glass-multi station bending machine is shown in Figure 7.
The machine is mainly composed of a control cabinet, heating station (4), molding station
(3), annealing cooling station (4), box, import and export mechanism, etc. The experimental
process is divided into the heating stage, molding stage, annealing stage and cooling stage,
a total of 11 stations. In the heating station and molding station, one station can be divided
into a heat shield, heating plate (with built-in heating pipe), heat conducting plate, mold,
glass preform, etc. In the annealing station and cooling station, heating pipe is replaced by
the cooling pipe.
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Figure 6. Intelligent fingerprint lock glass fingerprint touch plate bending machine.

Figure 7. Boundary conditions of three stages.

During the production cycle, glass preforms and molds enter a furnace full of nitrogen.
After 4 heating stations, the temperature of glass preform and mold rises from room
temperature to bend temperature. Then, the glass preform and mold enter three molding
workstations. The glass is committed under the pressure of the upper die, while the
temperature of the glass remains unchanged. Finally, after four annealing and cooling
stations, the glass assembly and mold temperature are cooled to room temperature.

4. Simulation Modeling of GMP

The main size of the intelligent fingerprint lock glass fingerprint touch plate is rela-
tively large, and the surface accuracy of the glass fingerprint touch plate is required to be
high, and the heat transfer in the thickness direction can’t be ignored, which makes the
glass processing process difficult to control. In order to reasonably analyze the processing
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mechanism, this paper establishes the finite element model of the glass fingerprint touch
plate based on the commercial non-linear software MSC. Marc.

4.1. Material Selection for Mold and Glass Preform

The glass optical element studied in this paper is a glass fingerprint contact plate.
Graphite is a kind of mold material which is often used in mold manufacturing because
of its good physical and chemical stability and thermal stability over 1000 ◦C. The ther-
momechanical coupling parameters of mold and glass material are shown in Table 1 [36].
According to the theoretical model of glass material in 2.1 and 2.2, the parameters of stress
relaxation and structural relaxation of the glass are shown in Table 2 [37]. In addition,
the WLF model of MSC. Marc was used to simulate the viscosity curve of the glass material
during the heating period, and Narayanswamy model was used to simulate the structural
relaxation with temperature during the annealing cooling stages.

Table 1. Mechanical Properties of glass and graphite.

Properties Glass Graphite

Young’s modulus E(GPa) 72.6 10.2
Poisson rate ν 0.206 0.25

Density ρ(g/cm3) 2.51 1.78
Thermal conductivity K(W/m ◦C) 1.1 151

Specific heat Cp(J/Kg ◦C) 858 720

Thermal expansion coefficient (◦C) Liquid 3.43 × 10−5

Solid 1.143 × 10−5 4.8 × 10−6

Table 2. Relaxation model parameters of G-11 glass.

Properties Time(s) Value

Stress relaxation (Shear
modulus(MPa))

0.0689 12566
0.0065 12615
0.0001 4582

Structural relaxation (Weights)

3.0 0.108
0.671 0.443
0.247 0.166
0.091 0.161
0.033 0.046
0.008 0.077

4.2. Boundary Conditions

In the GMP, the initial temperature of the whole simulation model is 25 ◦C, and
the whole process is divided into three stages: heating and soaking, pressing, annealing
and cooling. In the heating and soaking stage, the glass preform and mold are heated
from room temperature to about 640 ◦C in 480 s, which is slightly higher than the glass
transition temperature, and then soaked for a period of time to make the temperature of
the glass body and mold evenly distributed. The whole heating and soaking process takes
about 600 s. During the pressing process, the upper die moves 15 mm for about 600 s at a
constant pressure of about 50 MPa in the negative direction of z-axis, and then maintains
a pressure of 500 N in the upper die to obtain the required glass shape. The annealing
stage takes about 500 s, and the temperature of glass and die at the end of annealing is
reduced to 300 ◦C. In the process of annealing and cooling, firstly, the internal stress of
the glass is released slowly, and then nitrogen is introduced into the system to absorb
the heat of the glass and the mold, so that it can be quickly cooled to room temperature.
The specific boundary conditions are shown in Figure 7. In addition, a simplified shear
stress friction model was used to simulate the interface friction between glass and mold.
The friction coefficient is 0.65, and the contact model is selected MSC. Marc This model can
well simulate the friction changes caused by stick slip friction [7].
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Figure 8 shows the simulation model of GMP. The dimensions of glass plate preform
are 348 mm, 66.6 mm and 2 mm. The mold mesh is generated by solid tetrahedral element.
The glass preform mesh is obtained by extending the plane quadrilateral element, and the
forming area of the glass preform and the mold is refined. The experimental results show
that if the mesh size of the model is increased by 2 times, the calculation results is not
changed significantly. Finally, the mesh number of the mold and the glass preform is
262,616 and 20,712 respectively.

Figure 8. Finite element model and mold of fingerprint lock glass touch plate.

5. Results and Discussion
5.1. Effect of Molding Temperature on Forming Quality

GMP is a complex multi input and multi output thermomechanical coupling forming
process. Due to the viscoelastic properties of glass, different bending temperatures have
obvious influence on the final forming quality of glass. In order to study the influence of
bending temperature on the forming of glass plate, three groups of simulation experiments
were carried out.

The simulation results of the experiment are shown in Figures 9 and 10. It can be seen
from Figure 9 that when the bending temperature is 610 ◦C, the maximum temperature
difference of the glass plate is 2.3 ◦C (Figure 9a). With the bending temperature increasing
to 670 ◦C, the maximum temperature difference drops to 0.6 ◦C (Figure 9c). Generally,
the temperature difference of the three groups of glasses is within 3 ◦C, and the temperature
distribution is more uniform. In the GMP, the glass preform is bent under the action of
bending stress, and the internal reaction force is produced. Due to the characteristics of
glass material, after annealing, the force will continue to exist in the form of residual stress
inside the glass plate. As shown in Figure 10, the maximum residual stress of the glass
plate in Experiment 1 is 15.5 MPa, which is mainly located in the hole and bending position
of the glass plate. Similarly, the maximum residual stress of Experiment 2 and Experiment 3
were 19.9 MPa (Figure 10b) and 26.9 MPa (Figure 10c), respectively.
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Figure 9. Temperature difference distribution results (molding temperature 610 ◦C, 640 ◦C, 670 ◦C;
heating rate 1.5 ◦C/s, cooling rate 1 ◦C/s). (a) The maximum temperature difference is 2.3 ◦C;
(b) The maximum temperature difference is 1.0 ◦C; (c) The maximum temperature difference is 0.6 ◦C.

Figure 10. Residual stress results (molding temperature 610 ◦C, 640 ◦C, 670 ◦C; heating rate 1.5 ◦C/s,
cooling rate 1 ◦C/s). (a) The maximum residual stress is 15.5 MPa; (b) The maximum residual stress
is 19.9 MPa; (c) The maximum residual stress is 26.9 MPa.

In GMP, the shape deviation of glass components at the end of the cooling stage is also
an important factor to measure the final forming quality of glass. In this study, the average
bonding gap between the mold and glass (9 positions, as showed in Figure 11) is taken
to represent the shape deviation of the final glass fingerprint contact plate. Figure 12
compares the shape deviation of the glass fingerprint contact plate under different bending
temperatures. It can be seen from the figure that the shape deviation of the final glass
component in Experiment 1 is 0.2860 mm, and the maximum fitting error of the glass plate
and the lower die appears in the middle, which is because in the cooling stage, the edge
of the die contacts with nitrogen first and then cools down first. Because of the change of
mold material with temperature, the cooling shrinkage of the middle position is slower
than that of the edge, so the edge fitting degree of the glass plate is higher than that of the
middle position. Similarly, the shape deviations of the glass plates in Experiment 2 and
Experiment 3 were 0.2839 mm and 0.2776 mm, respectively (as shown in Figure 12b–c).
From the above three groups of experiments, it can be seen that in a certain range, when the
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temperature increases, the residual stress of the glass plate gradually increases, and the
shape deviation gradually decreases.

Figure 11. Shape deviation of a final glass device.

Figure 12. Shape deviation of final glass device; (a) the bending temperature is 610 ◦C and the
average gap is 0.2860 mm; (b) the bending temperature is 640 ◦C and the average gap is 0.2839 mm;
(c) the bending temperature is 670 ◦C and the average gap is 0.2776 mm.
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5.2. Effect of Heating Rate on Forming Quality

The surface quality and dimensional accuracy of molded products is an important
index for the final evaluation of fingerprint lock glass fingerprint touch plate. Due to
the different processing conditions and process parameters, there is a certain degree of
micro-geometric dimension deviation, residual stress and surface defects on the surface
or inside of the parts after molding. Excessive residual stress may lead to a cracking
phenomenon in the annealing process of molding glass devices. The uneven distribution of
residual stress and large shape deviation will affect the optical quality of glass devices [38].
The experimental results show that the heating rate and cooling rate have significant effects
on the residual stress and shape deviation of glass devices. Therefore, it is of profound sig-
nificance to predict the quality of glass in the molding process by establishing a simulation
model. In order to study the influence of heating rate on the closing forming quality of
products, three groups of process experiments were carried out, and the parameter settings
are shown in Table 3.

Table 3. Parameter setting of heating rate.

Number Heating
Rate A (s)

Holding
Time B (◦C)

Bending
Temperature

C (◦C)

Bending Pressure
D (MPa)

Cooling Rate
E (◦C/s)

1 1 120 640 50 1.0
2 1.5 120 640 50 1.0
3 2.0 120 640 50 1.0

As shown in Figure 13a, with the increase of heating rate, the residual stress in the
glass panel decreases significantly. When the molding temperature is 640 ◦C and the
heating rate is 1 ◦C/s, the maximum residual stress is 21.91 MPa. When the heating rate
rose to 2 ◦C/s the maximum residual stress decreased to 10.41 MPa.

Figure 13. Cont.
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Figure 13. Effect of heating rate on residual stress. (a) Effect of heating rate on residual stress;
(b) Effect of heating rate on shape deviation.

It can be seen from Figure 13b that the maximum residual stress of the glass is
12.56 MPa when the cooling rate is 0.5 ◦C/s. When the cooling rate increases to 1 ◦C/s,
the maximum residual stress inside the glass plate increases to 20.21 MPa, showing an
obvious linear relationship. This is because with the increase of cooling rate, the tempera-
ture difference of glass plate increases correspondingly, and the increase of temperature
difference leads to larger residual stress. In addition, the increase of cooling rate leads
to the decrease of annealing time, and the internal stress of glass plate is not completely
eliminated.

5.3. Effect of Cooling Rate on Forming Quality

In the GMP experiment, it is divided into the heating soaking stage, molding stage and
annealing cooling stage. To reduce the internal residual stress of the glass fingerprint touch
plate at the end of pressing, annealing and cooling experiments are needed. This paper
uses MSC. Marc finite element simulation software was used to simulate the annealing
cooling experiment. In the annealing cooling experiment, the cooling rate has a significant
influence on the experimental results. In order to study the influence of the cooling rate
on the forming quality in the glass molding process, three groups of process experiments
were carried out, and the parameter settings are shown in Table 4.

Table 4. Parameter setting of cooling rate.

Number Cooling Rate
A (◦C/s)

Heating
Rate B (s)

Holding Time
C (◦C)

Bending
Temperature

D (◦C)

Bending Pressure
E (MPa)

1 0.5 1.5 120 640 50
2 0.75 1.5 120 640 50
3 1.0 1.5 120 640 50
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It can be seen from Figure 14a that the maximum residual stress of the glass is
12.56 MPa when the cooling rate is 0.5 ◦C/s. When the cooling rate increases to 1 ◦C/s,
the maximum residual stress increases to 20.21 MPa. Within a certain temperature range,
the residual stress increases with the increase of the cooling rate. On the one hand, the in-
crease of cooling rate will lead to the corresponding increase of temperature change in the
glass plate, and the change of temperature difference will also lead to the corresponding
increase of residual stress. In addition, with the increase of cooling rate, the annealing time
decreases and the internal stress of glass plate is less eliminated.

Figure 14. Effect of cooling rate on residual stress. (a) Effect of cooling rate on residual stress;
(b) Effect of cooling rate on shape deviation.

Figure 14b shows the effect of cooling rate on the ultimate shape deviation of the
product during annealing. With the increase of the cooling rate from 0.5 ◦C/s to 1 ◦C/s,
the shape deviation of the glass element first decreases and then increases. The turning
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point is at 0.75 ◦C/s, which is due to the decrease of annealing time with the increase of the
cooling rate. According to the structural relaxation characteristics of the glass, the internal
structure of the glass is not balanced, the deformation of the glass is reduced, and the shape
deviation is correspondingly less. When the cooling rate is already too high, the mold will
deform and the shape deviation of glass element will increase.

Figures 13 and 14 show the effect of heating rate and cooling rate on the final molding
quality of the glass fingerprint touch plate. The overall influence relationship can be
showed in Figure 15. It can be seen from the figure that when the heating rate is 2.0 ◦C/s
and the cooling rate is 0.75 ◦C/s, the forming quality of the glass fingerprint touch plate
reaches the best.

Figure 15. Relationship between process parameters and forming quality; (a) Effect of heating rate
on residual stress; (b) Effect of heating rate on shape deviation; (c) Effect of heating rate on residual
stress; (d) Effect of heating rate on shape deviation.

5.4. Verification Experiment

In order to further verify that there is a certain degree of micro -geometric dimension
deviation on the surface or inside of the formed product, this experiment uses a 3D high-
precision tracking measurement scanner to carry out laser scanning measurement on the
finished glass fingerprint touch plate. Because the measuring instrument is scanned by
the principle of laser reflection, it is necessary to spray a thin layer of water paint on the
surface of the glass fingerprint touch plate before measurement. First of all, the experiment
is designed. The glass touch plate is divided into three areas; A, B and C, and each area is
divided into three positions, which are represented by numbers 1–9 (as shown in Figure 16).
A series of coordinates are obtained by scanning the glass fingerprint touch plate with a
scanner, and the flatness of position 1–3 is recorded as A1–3. The flatness of position 4–6 is
recorded as A4–6, and that of position 7–9 is recorded as A7–9. Area B and C are just like area
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A. The flatness is measured by the maximum height difference of this position. It should
be pointed out that three glass fingerprint touch plates are selected for measurement in
this experiment to ensure accurate analysis of product indexes in the forming process.
The results are showed in Table 5.

Figure 16. Flatness measurement of glass fingerprint touch plate.

Table 5. Flatness of glass fingerprint touch plate.

Region Planeness(mm) Region Planeness(mm) Region Planeness(mm)

A1–3 0.02 B1–3 0.03 C1–3 0.035
A4–6 0.033 B4–6 0.034 C4–6 0.045
A7–9 0.01 B7–9 0.023 C7–9 0.015

A small B medium C large

It can be seen from the data in the above table that in the multi station molding
process, the maximum error of the surface of the fingerprint lock glass fingerprint touch
plate appears in the middle part. This is because the edge of the product is close to both
sides of the mold during the annealing cooling process, and the shrinkage of the middle
part is greater than that of the edge, which leads to the large surface error of the middle
part of the product, but the maximum error is less than 0.05 mm. On the whole, the surface
error of position C is slightly higher than that of positions A and B, which is caused by the
shrinkage of fingerprint holes in the molding process.

6. Conclusions

In this paper, the whole process of GMP of fingerprint lock glass fingerprint touch
plate is studied by combining numerical simulation and experiment. Through the analysis
of molding temperature, heating rate, cooling rate and other process parameters, combined
with finite element simulation and verification experiment, the following main conclusions
are obtained.

(1) Molding temperature, heating rate and cooling rate have an extremely important
impact on the residual stress and shape deviation of products. Setting heating rate 1.5 ◦C/s
and cooling rate 1.0 ◦C/s, three groups of experiments were carried out with molding
temperatures of 610 ◦C, 640 ◦C and 670 ◦C. The results show that the residual stress is small
when the molding temperature is 610 ◦C, and the maximum temperature difference is small
when the molding temperature is 670 ◦C. Considering the results of residual stress and
temperature difference distribution, when the molding temperature is 640 ◦C, the heating
rate is 2.0 ◦C/s and the cooling rate is 0.5 ◦C/s, the residual stress is small. When the
heating rate is 2.0 ◦C/s and the cooling rate is 0.75 ◦C/s, the shape deviation is small.

(2) In this study, the stress relaxation and structural relaxation models of glass materials
are used in the simulation numerical model. The heat transfer characteristics of the molding
system are simulated, and the residual stress and shape deviation of the glass components
are accurately predicted. The results demonstrate that the high stress (more than 10 MPa)
is mainly distributed in the holes and bending regions of the glass components, and the
maximum shape deviation occurs in the middle of the glass components.
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(3) The temperature distribution, shape change and residual stress of the glass panel
in the forming process are predicted through the simulation of multi position molding
process parameters. As the verification experiment is designed, the glass plate is divided
into three regions A, B and C, and each region has nine target points. The laser scanning
of the glass plate is carried out by using the scanner. The experimental results show that
the closer the fingerprint hole is, the higher the surface error is, and the error is 0.317 mm,
which is consistent with the simulation results.
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