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Abstract

:

Five host−guest trimesic-acid-based hydrogen-bonds framework compounds with different guests, namely [(TMA)4·(TMB)3] (1), [(TMA)2·(DMB)1.5] (2), [(TMA)6·(MP)] (3), [(TMA)·(EP)] (4) and [(TMA)·(PP)] (5) (TMA = trimesic acid, TMB = 1,3,5-trimethoxybenzene, DMB = 1,4-dimethoxybenzene, MP = 4-methoxyphenol, EP = 4-ethoxyphenol and PP = 4-propoxyphenol), were obtained through co-crystallization, and were characterized by elemental analysis, infrared spectroscopy analysis, and thermogravimetric analysis. The trimesic acid molecules comprise a hydrogen bonding six-membered cyclic host network that is found in a two-dimensional arrangement in compounds 1 and 2, and in a nine-fold interpenetrated three-dimensional structure in compound 3. In compounds 4 and 5, the trimesic acid and EP/PP molecules form a hydrogen-bonded six-membered cyclic network, resulting in a one-dimensional chain structure through O−H…O hydrogen bonds.
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1. Introduction


The design and assembly of hydrogen-bonded organic frameworks (HOFs) or supramolecular-organic frameworks (SOFs) has attracted intense interest because of the great potential of these frameworks in many materials science and solid-state applications [1,2,3,4,5,6,7,8,9]. Among the various components use in hydrogen-bonded assemblies, multi-carboxylates have been used in numerous HOFs due to the wide variety of their spacers and angles. Trimesic acid (TMA) with the α-polymorph structure with three carboxylate groups was first reported in 1969 [10] and is still an important building block for the construction of HOFs or SOFs due to its predictable honeycomb crystal lattice structure formation [11,12,13]. The crystal structure of the α-polymorph displays the infinite hydrogen-bonded chicken-wire network formed by R22(8) dimerization of carboxylic acid groups. In the absence of a co-crystal template, TMA constructs infinite two-dimensional hydrogen-bonded networks through eight-member hydrogen bond synthons with hexagonal apertures with a diameter of approximately 14 Å (Scheme 1). Many chemists attempted to remove the concatenation and fill the cavity at the center of the hexametric rings with guest molecules such as tetradecane and pyrenes [14,15,16,17].



Recently, several new methods for structure elucidation of small molecules were reported such as the use of tetraaryladamantanes as crystallization chaperones in co-crystallization [18], and the high-throughput nanoscale crystallization of organic-soluble small molecules (encapsulated nanodroplet crystallization) [19]. However, no universal chaperones co-crystallizing with various small molecule [20] such as porphyrins, calixarenes or cyclodextrins with a proven ability to obtain the structure of a broad range of different organic molecules have been reported [21,22,23,24,25,26,27,28]. In this work, building on the above-mentioned approaches, five trimesic acid co-crystallization hydrogen bond systems were obtained by the introduction of small phenols with different derivatives, namely 1,3,5-trimethoxybenzene (TMB), 1,4-dimethoxybenzene (DMB), 4-methoxyphenol (MP), 4-ethoxyphenol (EP), and 4-propoxyphenol (PP) (Scheme 1).




2. Materials and Methods


All the chemicals (98% purity) were obtained from Shanghai Xianding Biotechnology Co., Ltd. (Shanghai, China) and were used without further purification. Elemental analyses were carried out using an Elementar Micro Cube elemental analyzer (Elementar, Hesse, Germany). Infrared spectra were recorded in the 4000−400 cm−1 region using KBr pellets and a Bruker EQUINOX 55 spectrometer (Bruker, Karlsruhe, Germany). Thermogravimetric analyses were performed using a Netzsch STA 449F3 instrument (Netzsch, Bavaria, Germany) in flowing air at a heating rate of 10 °C·min−1. X-ray powder diffraction data were recorded using a Bruker D8 ADVANCE X-ray powder diffractometer (Cu Kα radiation, λ = 1.5418 Å, Bruker, Germany).



2.1. Preparation of the Compounds


[(TMA)4·(TMB)3] (1): A solution of trimesic acid (TMA, 210 mg, 1 mmol) in methanol (5 mL) was added to a methanol solution of 1,3,5-trimethoxybenzene (TMB, 168 mg, 1 mmol). The resulting solution was evaporated slowly at room temperature. After a few days, suitable single crystals were obtained. Elemental Analysis Found: C, 56.45%; H, 4.68%. Calculated for C126H121O66: C, 56.23%; H, 4.53%. IR (KBr): 3556 (m), 3455 (m), 3093 (w), 1717 (s), 1432 (m), 1282 (m), 1112 (s), 913 (s), 820 (s), 742 (s), 673 (s), 520 (s) cm−1.



[(TMA)2·(DMB)1.5] (2): Similar to the synthesis of compound (1), the use of 1,4-dimethoxybenzene (DMB, 138 mg, 1 mmol) instead of TMB gave crystals of (2). Elemental Analysis Found: C, 57.75%; H, 4.23%. Calculated for C30H27O15: C, 57.42%; H, 4.34%. IR (KBr): 3086 (w), 3002 (w), 2872 (w), 1721 (s), 1607 (m), 1508 (m), 1455 (m), 1403 (s), 1276(m), 1107 (s), 1049 (m), 914 (s), 743 (s), 691 (s), 612 (m) cm−1.



[(TMA)6·(MP)] (3): Similar to the synthesis of compound (1), the use of 4-methoxyphenol (MP, 124 mg, 1 mmol) instead of TMB gave crystals of (3). Elemental Analysis Found: C, 51.38%; H, 3.26%. Calculated for C121H104O80 (3·6CH3OH): C, 51.20%; H, 3.69%. IR (KBr): 3090 (w), 1720 (s), 1606 (m), 1510 (m), 1455 (m), 1404 (s), 1275 (s), 1107 (m), 915 (s), 742 (s), 690 (s), 536 (s) cm−1.



[(TMA)·(EP)] (4): Similar to the synthesis of compound (1), the use of 4-methoxyphenol (EP, 138 mg, 1 mmol) instead of TMB gave crystals of (4). Elemental Analysis Found: C, 58.92%; H, 4.36%. Calculated for C17H16O8: C, 58.62%; H, 4.63%. IR (KBr): 3083 (w), 2934 (w), 1725 (s), 1511 (s), 1451 (m), 1282 (s), 1202 (m), 1110 (m), 975 (m), 829 (s), 741 (s), 686 (s), 518 (s) cm−1.



[(TMA)·(PP)] (5): Similar to the synthesis of compound (1), the use of 4-methoxyphenol (PP, 152 mg, 1 mmol) instead of TMB gave crystals of (5). Elemental Analysis Found: C, 59.91%; H, 5.36%. Calcd for C18H18O8: C, 59.67%; H, 5.00%. IR (KBr): 3075 (w), 2929 (w), 1721 (s), 1606 (m), 1510 (m), 1402 (m), 1278 (m), 1108 (m), 936 (m), 830 (m), 742 (s), 686 (s), 519 (s) cm−1.




2.2. Crystal Structure Determination


Single-crystal data for (1)–(5) were collected using a Bruker Smart Apex II diffractometer (Bruker, Germany) with Mo-Kα radiation (λ = 0.71073 Å). All empirical absorption corrections were applied using the SADABS program [29]. The structures were solved using direct methods that yielded the positions of all non-hydrogen atoms. These positions were refined first isotropically and then anisotropically. All calculations were performed using the SHELXTL software package [30]. The crystallographic data of (1)–(5) are summarized in Table 1. The parameters of the hydrogen bonds in the crystal structures of (1)–(5) are listed in Table 2.





3. Results and Discussion


3.1. Description of Structures


3.1.1. Quaternary Compound [(TMA)4·(TMB)3] (1)


Co-crystallization of TMA and TMB from a methanol solution gave high-quality crystals that were then characterized by single-crystal X-ray diffraction. It was found that compound (1) crystallizes in a monoclinic cell in the C2/c space group, and contains three TMA and two TMB crystallographically independent molecules per asymmetric unit (Figure S1). Differences between the three TMA molecules are marginal. The C-O and C=O bond distances of carboxy group are equalized in two TMA molecules. The monomers of compound (1) are interconnected through double hydrogen bonds to form a hexagonal honeycomb motif with hcb topology. The six TMA molecules define a macrocyclic cavity with a diameter of 14 Å. Two types of infinite two-dimensional sheets alternating with one-dimensional channels are formed by three crystallographically independent TMA molecules through O−H···O hydrogen bonding. The first type of sheet is comprised by the first kind of crystallographically independent TMA molecules and the second type of sheet is comprised by the other two kinds of crystallographically independent TMA molecules (Figure 1). The channels are filled with two types of crystallographically independent guest TMB molecules in a disordered arrangement (Figure 1). Compound (1) was stabilized by π-π stacking and O-H···O hydrogen bonding interactions.




3.1.2. Quaternary Compound [(TMA)2·(DMB)1.5] (2)


Co-crystallization of TMA and DMB from a methanol solution in a 2:1.5 ratio in an asymmetric unit cell produces compound (2) (Figure S2). Single-crystal X-ray diffraction indicates that compound (2) crystallizes in a triclinic cell with the P–1 space group. Similar to compound (1), the monomers of compound (2) are interconnected through double hydrogen bonds to form a hexagonal honeycomb geometry (Figure 2). The six TMA molecules interact with each other to form a void space with the dimensions of 14 Å × 14 Å through pairwise hydrogen bonding patterns. The crystal contains two types of infinite two-dimensional sheets arranged by two crystallographically independent TMA molecules. The channels are occupied by two types of crystallographically independent guest DMB molecules (Figure 2 and Figure 3).




3.1.3. Quaternary Compound [(TMA)6·(MP)] (3)


Co-crystallization of TMA and MP from a methanol solution in a 6:1 ratio in an asymmetric unit cell produced compound (3) (Figure S3). Single-crystal X-ray diffraction reveals that the compound (3) crystallizes in a monoclinic cell with the C2/c space group. Similar to a previous report [7], the monomers of compound (3) are interconnected to give a hexagonal honeycomb with a void space dimensions of 14 Å × 14 Å through double hydrogen bonds. The hexagonal honeycombs interact with each other to form waveform two-dimensional sheets, and the infinite waveform two-dimensional sheets concatenated each other to form a three-dimensional structure with cavities occupied by MP molecules (Figure 4). The three-dimensional structure is described as 9-fold interpenetration as shown in Figure 5I in which four identical waveform two-dimensional sheets are chosen randomly and viewed along the b axis.




3.1.4. Quaternary Compounds [(TMA)·(EP)] (4) and [(TMA)·(PP)] (5)


Compounds (4) and (5) crystallized from a methanol solution in a 1:1 ratio in an asymmetric unit cell (Figures S4 and S5). Single-crystal X-ray diffraction reveals that both compounds (4) and (5) crystallize in a monoclinic cell with the C2/c space group. Unlike compounds (1)–(3), EP/PP replaced two TMA molecules and interconnected to form a tetragonal hole through O−H···O hydrogen bonding as shown in Figure 5II. The tetragonal holes further interact with each other to form one-dimensional chains (Figure 6).





3.2. Thermogravimetric Analysis


Thermogravimetric analysis (TGA) curves were obtained in flowing air at a heating rate of 10 °C·min−1 in the temperature range from room temperature to 600 °C. Compounds (1)–(5) are air stable and retain their structural integrity at room temperature. The TG curve of compound (1) first shows two consecutive weight losses of 12.2% each from 90 to 180 °C, corresponding to the release of two guest 1,3,5-trimethoxybenzene molecules (calculated, 12.5%), and then another weight loss of 37.8% occurs in the 270–350 °C region, corresponding to the release of four guest 1,3,5-trimethoxybenzene molecules (calculated, 37.5%). The remaining host hydrogen bonding framework began to decompose upon further heating (Figure 7). Compound (2) reveals the first weight loss from 300 to 362 °C, with the observed weight loss of 33.4% (calculated, 33.0%) corresponding to the release of the guest 1,4-dimethoxybenzene molecules. For compound (3), similar to compound (2), the first weight loss of 48.6% was observed from 300 to 360 °C, corresponding to the release of the trimesic acid, 4-methoxyphenol and solvent molecule. For compound (4), the two consecutive weight losses of 39.6% in the temperature range of 120–339 °C are close to the theoretical value of 39.7% for the loss of 4-ethoxyphenol. For compound (5), similar to compound (4), the two consecutive weight losses with a total of 41.9% in the temperature range of 120–355 °C are close to the theoretical value of 42.0% for the loss of 4-propoxyphenol.





4. Conclusions


In conclusion, we have demonstrated that host trimesic acid and guest phenol derivatives form different quaternary co-crystallization compounds that were stabilized by multiple π-π stacking and O-H···O hydrogen bonding interactions. The compounds presented here provide an opportunity to further design and construct host-guest organic molecular frameworks with specific structures by co-crystallization. Additionally, it was shown that trimesic acid is a promising chaperone candidate.
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Scheme 1. (I) Infinite two-dimensional hydrogen-bonded networks in trimesic acid, (II) structures of trimesic acid and phenol derivatives. 
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Figure 1. (I) TMB molecules located in the channels formed hydrogen-bonded 6-rings in compound (1); (II) two hydrogen-bonded 6-membered rings in compound (1). 
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Figure 2. (I) DMB molecules located in the channels formed hydrogen-bonded 6-membered rings in compound (2); (II) two hydrogen-bonded 6-member rings in compound (2). 
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Figure 3. (I) Two-dimensional hydrogen-bonded sheets along the b axis in compound (1); (II) Two-dimensional hydrogen-bonded sheets along the c axis in compound (2). 
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Figure 4. (I) MP molecules located in the cavities formed cross hydrogen-bonded 6-rings in compound (3); (II) nine-fold interpenetration of three-dimensional structure along the b axis in compound (3). 
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Figure 5. (I) Waveform two-dimensional hydrogen-bonded sheets are chosen randomly along the b axis in compound (3); (II) the structure of hydrogen-bonded networks in compounds (4) and (5). 
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Figure 6. One-dimensional hydrogen-bonded chain along the a axis in compounds (4) and (5). 
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Figure 7. TG curves of compounds (1)–(5). 
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Table 1. Crystallographic data.
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	Compound
	(1)
	(2)
	(3)
	(4)
	(5)





	Empirical formula
	C126H121O66
	C30H27O15
	C115H80O74
	C17H16O8
	C18H18O8



	Formula weight
	2691.22
	627.51
	2645.79
	348.30
	362.32



	Temperature (K)
	296(2)
	173(2)
	173(2)
	296(2)
	296(2)



	Crystal size (mm)
	0.20 × 0.20 × 0.20
	0.46 × 0.32 × 0.28
	0.20 × 0.20 × 0.20
	0.42 × 0.36 × 0.28
	0.48 × 0.36 × 0.28



	Crystal system
	Monoclinic
	Triclinic
	Monoclinic
	Monoclinic
	Monoclinic



	Space group
	C2/c
	P−1
	C2/c
	C2/c
	C2/c



	a (Å)
	16.715(5)
	7.706(2)
	26.2843(4)
	12.577(9)
	12.860(3)



	b (Å)
	28.504(8)
	13.570(3)
	16.4064(2)
	9.631(7)
	9.681(2)



	c (Å)
	14.879(7)
	15.392(3)
	26.3167(3)
	27.072(20)
	27.377(5)



	α (°)
	90
	110.579(2)
	90
	90
	90



	β (°)
	112.843(3)
	96.250(3)
	90.104(1)
	97.067(9)
	96.884(2)



	γ (°)
	90
	97.720(3)
	90
	90
	90



	Volume (Å3)
	6533(4)
	1472.0(6)
	11348.6(3)
	3254.0(4)
	3383.8(12)



	Z
	2
	2
	4
	8
	8



	Dc (g·cm−3)
	1.368
	1.416
	1.549
	1.422
	1.422



	μ (mm−1)
	0.112
	0.115
	1.159
	0.114
	0.113



	F(000)
	2810
	654
	5448
	1456
	1520



	Reflections collected
	32175
	16547
	62726
	17875
	18282



	Unique reflections (Rint)
	6062 (0.0310)
	6531 (0.0239)
	9093 (0.0335)
	3730 (0.0342)
	3480 (0.0204)



	Data/constraint/parameters
	6062/1062/720
	6531/6/427
	9093/79/900
	3730/1/233
	3480/1/242



	Goodness-of-fit on F2
	1.033
	1.061
	1.057
	1.045
	1.053



	Final R indices [I > 2σ(I)]
	R1 = 0.0762

wR2 = 0.2074
	R1 = 0.0488

wR2 = 0.1396
	R1 = 0.0480

wR2 = 0.1429
	R1 = 0.0499

wR2 = 0.1347
	R1 = 0.0663

wR2 = 0.1891



	R indices (all data)
	R1 = 0.1140

wR2 = 0.2339
	R1 = 0.0662

wR2 = 0.1561
	R1 = 0.0513

wR2 = 0.1460
	R1 = 0.0762

wR2 = 0.1519
	R1 = 0.0824

wR2 = 0.2052



	Largest diff. peak and hole

(e·Å−3)
	0.568 and −0.404
	0.355 and −0.389
	0.417 and −0.571
	0.275 and −0.202
	0.678 and −0.322
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Table 2. Hydrogen bond parameters (Å, °) for the crystal structures of (1)–(5).






Table 2. Hydrogen bond parameters (Å, °) for the crystal structures of (1)–(5).





	
(1)




	
D–H···A

	
d(D–H)

	
d(H···A)

	
d(D···A)

	
<(DHA)




	
O1_1–H1_1···O3_2#1

	
0.82

	
1.83

	
2.63

	
168.3




	
O3_1–H3A_1···O1_2#5

	
0.82

	
1.83

	
2.64

	
170.6




	
O2_2–H2A_2···O2_1#4

	
1.03

	
1.62

	
2.64

	
169.0




	
O3_2–H3A_2···O1_1#1

	
0.82

	
1.83

	
2.63

	
168.0




	
O2_3–H2_3···O1_3#3

	
0.96

	
1.68

	
2.64

	
176.5




	
O3_3–H3A_3···O4_3#1

	
0.82

	
1.84

	
2.65

	
168.1




	
O6_3–H6A_3···O5_3#2

	
0.96

	
1.68

	
2.64

	
176.3




	
Symmetry codes: #1 −x + 1, −y + 1, −z + 1; #2 −x + 1/2, −y + 1/2, −z + 1; #3 −x + 3/2, −y + 1/2, −z + 1; #4 x−1/2, −y + 1/2, z − 1/2; #5 x + 1/2, −y + 1/2, z + 1/2.




	
(2)




	
D–H…A

	
d(D–H)

	
d(H···A)

	
d(D···A)

	
<(DHA)




	
O1–H1D···O12#1

	
0.88

	
1.73

	
2.62

	
176.0




	
O7–H7D···O4

	
0.87

	
1.73

	
2.59

	
173.0




	
O6–H6D···O9#2

	
0.88

	
1.73

	
2.59

	
167.0




	
O3–H3D···O8

	
0.86

	
1.75

	
2.60

	
176.0




	
O10–H10D···O5#3

	
0.89

	
1.72

	
2.60

	
170.0




	
O11–H11D···O2#4

	
0.88

	
1.74

	
2.61

	
173.0




	
Symmetry codes: #1 x + 1, y, z + 1; #2 x + 1, y − 1, z; #3 x − 1, y + 1, z; #4 x−1, y, z−1.




	
(3)




	
D–H···A

	
d(D–H)

	
d(H···A)

	
d(D···A)

	
<(DHA)




	
O15-H15···O26#7

	
0.84

	
1.76

	
2.60

	
174.5




	
O9-H9···O18#11

	
0.84

	
1.83

	
2.65

	
168.3




	
O33-H33···O33#3

	
0.84

	
1.81

	
2.63

	
165.3




	
O12-H12···O13#10

	
0.84

	
1.82

	
2.64

	
166.3




	
O14-H14···O11#10

	
0.84

	
1.87

	
2.69

	
167.9




	
O17-H17···O10#11

	
0.84

	
1.77

	
2.60

	
175.2




	
O7-H7B···O4#9

	
0.84

	
1.80

	
2.64

	
175.0




	
O27-H27B···O36#5

	
0.84

	
1.80

	
2.63

	
170.0




	
O25-H25B···O16#7

	
0.84

	
1.81

	
2.65

	
176.3




	
O5-H5B···O22#2

	
0.84

	
1.78

	
2.61

	
168.4




	
O32-H32B···O29#5

	
0.84

	
1.80

	
2.63

	
169.4




	
O30-H30···O31#6

	
0.84

	
1.78

	
2.61

	
168.0




	
O21-H21B···O6#1

	
0.84

	
1.82

	
2.65

	
168.8




	
O35-H35B···O28#6

	
0.84

	
1.78

	
2.62

	
172.1




	
O2-H2B···O23

	
0.84

	
1.82

	
2.65

	
172.4




	
O34-H34B···O34

	
0.84

	
1.84

	
2.65

	
160.2




	
O20-H20B···O20#4

	
0.84

	
1.81

	
2.64

	
167.6




	
O3-H3B···O8#8

	
0.84

	
1.77

	
2.61

	
173.7




	
O19-H19···O19#4

	
0.84

	
1.83

	
2.65

	
164.3




	
O24-H24B···O1

	
0.84

	
1.78

	
2.62

	
172.7




	
Symmetry codes: #1 x, y − 1, z; #2 x, y + 1, z; #3 −x + 1, y, −z + 1/2; #4 −x + 1, y, −z + 3/2; #5 −x + 1/2, y + 1/2, −z + 1/2; #6 −x + 1/2, y − 1/2, −z + 1/2; #7 −x + 1, −y + 1, −z + 1; #8 x, −y + 1, z − 1/2; #9 x, −y + 1, z + 1/2; #10 −x + 1/2, −y + 1/2, −z + 1; #11 −x + 1/2, −y + 3/2, −z + 1.




	
(4)




	
D–H···A

	
d(D–H)

	
d(H···A)

	
d(D···A)

	
<(DHA)




	
O2-H2···O7#1

	
0.82

	
1.83

	
2.65

	
175.3




	
O4-H4···O1#2

	
0.82

	
1.86

	
2.63

	
156.4




	
O7-H7···O3

	
0.82

	
1.93

	
2.74

	
169.0




	
O5-H5D···O6#3

	
0.89

	
1.74

	
2.63

	
175(2)




	
Symmetry codes: #1 x, y + 1, z; #2 x, y − 1, z; #3 −x + 3/2, −y + 3/2, −z + 1.




	
(5)




	
D–H···A

	
d(D–H)

	
d(H···A)

	
d(D···A)

	
<(DHA)




	
O1-H1···O7#1

	
0.82

	
1.84

	
2.65

	
171.2




	
O7-H7···O6#2

	
0.82

	
1.94

	
2.75

	
169.7




	
O5-H5···O2#3

	
0.82

	
1.89

	
2.64

	
151.7




	
O4-H4D···O3#4

	
0.99

	
1.65

	
2.64

	
176.0




	
Symmetry codes: #1 x − 1, y − 1, z; #2 x + 1, y, z; #3 x, y + 1, z; #4 −x + 1/2, −y + 1/2, −z + 2
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