Improving the Ionic Conductivity of the LLZO–LZO Thin Film through Indium Doping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the In-Doped LLZO Thin Film
2.2. Characterization
3. Results and Discussion
3.1. Synthesis of the Indium Doped LLZO–LZO Thin Film
3.2. The Effect of Indium Doping on the Formation of Cubic-Phase LLZO
3.3. The Microstructure and Preferred Crystal Phases under Various Annealing Temperatures
3.4. Electrochemical Impedance Spectroscopy Analysis of In-Doped LLZO–LZO Thin Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Richards, W.D.; Ong, S.P.; Miara, L.J.; Kim, J.C.; Mo, Y.; Ceder, G. Design principles for solid-state lithium superionic conductors. Nat. Mater. 2015, 14, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781. [Google Scholar] [CrossRef] [PubMed]
- Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2017, 3, 16–21. [Google Scholar] [CrossRef]
- Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y. Promises, challenges, and recent progress of inorganic solid-state electrolytes for allsolid-state lithium batteries. Adv. Mater. 2018, 30, e1705702. [Google Scholar] [CrossRef]
- Larraz, G.; Orera, A.; Sanz, J.; Sobrados, I.; Diez-Gomez, V.; Sanjuan, M.L. NMR study of Li distribution in Li7-xHxLa3Zr2O12 garnets. J. Mater. Chem. A 2015, 3, 5683–5691. [Google Scholar] [CrossRef] [Green Version]
- Orera, A.; Larraz, G.; Alberto, R.J.; Campo, J.; Sanjuán, M.L. Influence of Li+ and H+ Distribution on the Crystal Structure of Li7-xHxLa3Zr2O12 (0 ≤ x ≤ 5) Garnets. Inorg. Chem. 2016, 55, 1324–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, T.; Wolfenstine, J.; Allen, J.L.; Johannes, M.; Huq, A.; David, I.N.; Sakamoto, J. Tetragonal vs. cubic phase stability in Al-free Ta doped Li7La3Zr2O12 (LLZO). J. Mater. Chem. A 2014, 2, 13431–13436. [Google Scholar] [CrossRef]
- Ahn, J.H.; Park, S.Y.; Lee, J.M.; Park, Y.; Lee, J. Local impedance spectroscopic and microstructural analyses of Al-in-diffused Li7La3Zr2O12. J. Power Sources 2014, 254, 287–292. [Google Scholar] [CrossRef]
- Rettenwander, D.; Redhammer, G.; Preishuberpflugl, F.; Cheng, L.; Amthauer, G. Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes. Chem. Mater. 2016, 28, 2384–2392. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.T.; Wang, C.A.; Xie, H.; Cheng, J.; Goodenough, J.B. High lithium ion conduction in garnet-type Li6La3ZrTaO12. Electrochem. Commun. 2011, 13, 1289–1292. [Google Scholar] [CrossRef]
- Song, S.F.; Yan, B.G.; Zheng, F.; Duong, H.M.; Lu, L. Crystal structure, migration mechanism and electrochemical performance of Crstabilized garnet. Solid State Ion. 2014, 268, 135–139. [Google Scholar] [CrossRef]
- Wagner, R.; Redhammer, G.J.; Rettenwander, D.; Tippelt, G.; Welzl, A.; Taibl, S.; Fleig, J.; Franz, A.; Lottermoser, W.; Amthauer, G. Fast Li-Ion-Conducting Garnet-Related Li7-3xFexLa3Zr2O12 with Uncommon I43d Structure. Chem. Mater. 2016, 28, 5943–5951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.F.; Chen, E.Y.; Yu, Y.; Liu, L.; Wu, Y.; Pang, W.K.; Peterson, V.K.; Guo, X. Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity. ACS Appl. Mater. Interfaces 2017, 9, 1542–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.A.; Shoji, M.; Shen, Y.; Nan, C.; Munakata, H.; Kanamura, K. Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2-xMx)O12 (M = Ta, Nb) solid electrolytes. J. Power Sources 2014, 261, 206–211. [Google Scholar] [CrossRef]
- Miara, L.J.; Richards, W.D.; Wang, Y.E.; Ceder, G. First Principles Studies on Cation Dopants and Electrolyte/Cathode Interphases for Lithium Garnets. Chem. Mater. 2015, 27, 4040–4047. [Google Scholar] [CrossRef]
- Huang, M.; Dumon, A.; Nan, C.-W. Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12. Electrochem. Commun. 2012, 21, 62–64. [Google Scholar] [CrossRef]
- Kotobuki, M.; Munakata, H.; Kanamura, K.; Sato, Y.; Yoshida, T. Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode. J. Electrochem. Soc. 2010, 157, A1076–A1079. [Google Scholar] [CrossRef]
- Ohta, S.; Kobayashi, T.; Asaoka, T. High lithium ionic conductivity in the garnet-type oxide Li7−xLa3(Zr2−x, Nbx)O12 (x = 0–2). J. Power Sources 2011, 196, 3342–3345. [Google Scholar] [CrossRef]
- Van den Broek, J.; Afyon, S.; Rupp, J.L.M. Interface-Engineered All-Solid-State Li-Ion Batteries Based on Garnet-Type Fast Li+ Conductors. Adv. Energy Mater. 2016, 6, 1600736. [Google Scholar] [CrossRef] [Green Version]
- Langer, F.; Glenneberg, J.; Bardenhagen, I.; Kun, R. Synthesis of Single Phase Cubic Al-Substituted Li7La3Zr2O12 by Solid State Lithiation of Mixed Hydroxides. J. Alloy. Compd. 2015, 645, 64–69. [Google Scholar] [CrossRef]
- Chen, R.-J.; Huang, M.; Huang, W.-Z.; Shen, Y.; Lin, Y.-H.; Nan, C.-W. Effect of Calcining and Al Doping on Structure and Conductivity of Li7La3Zr2O12. Solid State Ion. 2014, 265, 7–12. [Google Scholar] [CrossRef]
- Rawlence, M.; Filippin, A.N.; Wackerlin, A.; Lin, T.; Cuervo-Reyes, E.; Remhof, A.; Battaglia, C.; Rupp, J.L.M.; Buecheler, S. Effect of Gallium substitution on Lithium-ion conductivity and phase evolution in sputtered Li7–3xGaxLa3Zr2O12 thin films. ACS Appl. Mater. Interfaces 2018, 10, 13720–13728. [Google Scholar] [CrossRef]
- Pfenninger, R.; Struzik, M.; Garbayo, I.; Stilp, E.; Rupp, J. A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. Nat. Energy 2019, 4, 475–483. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, S.; Pan, Y.; Zhang, X.; Yan, Z.; Xiang, Y. Reduced Energy Barrier for Li+ Transport Across Grain Boundaries with Amorphous Domains in LLZO Thin Films. Nanoscale Res. Lett. 2020, 15, 153. [Google Scholar] [CrossRef]
- Fister, L.; Johnson, D. Controlling solid-state reaction mechanisms using diffusion length in ultrathin-film superlattice composites. J. Am. Chem. Soc. 1992, 114, 4639–4644. [Google Scholar] [CrossRef]
- Yan, Z.; Wu, S.; Song, Y.; Xiang, Y.; Zhu, J. A novel gradient composition spreading and nanolayer stacking process for combinatorial thin-film materials library fabrication. Rev. Sci. Instrum. 2020, 91, 065107. [Google Scholar] [CrossRef]
- Lobe, S.; Dellen, C.; Finsterbusch, M.; Gehrke, H.-G.; Sebold, D.; Tsai, C.-L.; Uhlenbruck, S.; Guillon, O. Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries. J. Power Sources 2016, 307, 684–689. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Cheng, L.; Zorba, V.; Mehta, A.; Cabana, J.; Chen, G.; Doeff, M.M.; Richardson, T.J.; Park, J.H.; Son, J.; et al. Effects of crystallinity and impurities on the electrical conductivity of Li-La-Zr-O thin films. Thin Solid Films 2015, 576, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Nong, J.; Xu, H.; Yu, Z.; Zhu, G.; Yu, A. Properties and preparation of Li-La-Ti-Zr-O thin film electrolyte. Mater. Lett. 2015, 154, 167–169. [Google Scholar] [CrossRef]
- Sastre, J.; Lin, T.; Filippin, A.N.; Priebe, A.; Avancini, E.; Michler, J.; Tiwari, A.N.; Romanyuk, Y.E.; Buecheler, S. Aluminum-assisted densification of cosputtered lithium garnet electrolyte films for solid-state batteries. ACS Appl. Energy Mater. 2019, 2, 8511–8524. [Google Scholar] [CrossRef] [Green Version]
Samples | Precursor Structure | Annealing Temperature (°C) | In Doping | Extra Lithium |
---|---|---|---|---|
#800-IL | LLZO–Li2CO3–In2O3 | 800 | Y | Y |
#800-L | LLZO–Li2CO3 | 800 | N | Y |
#700-IL | LLZO–Li2CO3–In2O3 | 700 | Y | Y |
#700-I | LLZO–In2O3 | 700 | Y | N |
#600-IL | LLZO–Li2CO3–In2O3 | 600 | Y | Y |
Samples | σb (S·cm–1) | σg.b. (S·cm–1) | σtotal (S·cm–1) |
---|---|---|---|
#800-IL | 4.20 × 10−3 | 9.62 × 10−6 | 9.60 × 10−6 |
#700-IL | 2.56 × 10−3 | 7.68 × 10−7 | 7.68 × 10−7 |
#600-IL | 3.83 × 10−3 | 5.36 × 10−6 | 5.35 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Song, Y.; Wu, S.; Wu, Y.; Song, S.; Wang, X.; Zhu, Y.; Chen, J.; Guo, R.; Xiang, Y. Improving the Ionic Conductivity of the LLZO–LZO Thin Film through Indium Doping. Crystals 2021, 11, 426. https://doi.org/10.3390/cryst11040426
Yan Z, Song Y, Wu S, Wu Y, Song S, Wang X, Zhu Y, Chen J, Guo R, Xiang Y. Improving the Ionic Conductivity of the LLZO–LZO Thin Film through Indium Doping. Crystals. 2021; 11(4):426. https://doi.org/10.3390/cryst11040426
Chicago/Turabian StyleYan, Zongkai, Yu Song, Shuai Wu, Yongmin Wu, Shipai Song, Xinyu Wang, Yanlin Zhu, Junsong Chen, Rui Guo, and Yong Xiang. 2021. "Improving the Ionic Conductivity of the LLZO–LZO Thin Film through Indium Doping" Crystals 11, no. 4: 426. https://doi.org/10.3390/cryst11040426
APA StyleYan, Z., Song, Y., Wu, S., Wu, Y., Song, S., Wang, X., Zhu, Y., Chen, J., Guo, R., & Xiang, Y. (2021). Improving the Ionic Conductivity of the LLZO–LZO Thin Film through Indium Doping. Crystals, 11(4), 426. https://doi.org/10.3390/cryst11040426