Stability, Elastic and Electronic Properties of Ta2N by First-Principles Calculations
Abstract
:1. Introduction
2. Model and Calculation Method
2.1. First-Principles Calculations
2.2. Elastic Calculations
3. Results and Discussions
3.1. Structure Stabilities
3.2. Elastic Properties
3.3. Electronic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, J.W.; Chen, L.; Chen, J.; Du, Y. Mechanical properties, thermal stability and oxidation resistance of TiN/CrN multilayer coatings. Vacuum 2020, 179, 109468. [Google Scholar] [CrossRef]
- Navinšek, B.; Panjan, P.; Milošev, I. Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures. Surf. Coatings Technol. 1997, 97, 182–191. [Google Scholar] [CrossRef]
- Hu, C.; Xu, Y.X.; Chen, L.; Pei, F.; Du, Y. Mechanical properties, thermal stability and oxidation resistance of Ta-doped CrAlN coatings. Surf. Coatings Technol. 2019, 368, 25–32. [Google Scholar] [CrossRef]
- Hu, C.; Guo, K.; Li, Y.; Gu, Z.; Quan, J.; Zhang, S.; Zheng, W. Optical coatings of durability based on transition metal nitrides. Thin Solid Films 2019, 688, 137339. [Google Scholar] [CrossRef]
- Davis, R.F. III-V nitrides for electronic and optoelectronic applications. Proc. IEEE 1991, 79, 702–712. [Google Scholar] [CrossRef] [Green Version]
- Ou, P.; Wang, J.; Shang, S.-L.; Chen, L.; Du, Y.; Liu, Z.-K.; Zheng, F. A first-principles study of structure, elasticity and thermal decomposition of Ti1−xTMxN alloys (TM = Y, Zr, Nb, Hf, and Ta). Surf. Coatings Technol. 2015, 264, 41–48. [Google Scholar] [CrossRef]
- Stampfl, C.; Freeman, A.J. Stable and metastable structures of the multiphase tantalum nitride system. Phys. Rev. B 2005, 71, 024111. [Google Scholar] [CrossRef] [Green Version]
- Bernoulli, D.; Müller, U.; Schwarzenberger, M.; Hauert, R.; Spolenak, R. Magnetron sputter deposited tantalum and tantalum nitride thin films: An analysis of phase, hardness and composition. Thin Solid Films 2013, 548, 157–161. [Google Scholar] [CrossRef]
- Garcia-Mendoza, T.; Martinez-Garcia, A.; Becerril-Juarez, I.; Lopez-Vazquez, E.; Avalos-Borja, M.; Valera-Zaragoza, M.; Juarez-Arellano, E. Mechanosynthesis of metastable cubic δ-Ta1−xN. Ceram. Int. 2020, 46, 23049–23058. [Google Scholar] [CrossRef]
- Hahn, R.; Koutná, N.; Wójcik, T.; Davydok, A.; Kolozsvári, S.; Krywka, C.; Holec, D.; Bartosik, M.; Mayrhofer, P.H. Mechanistic study of superlattice-enabled high toughness and hardness in MoN/TaN coatings. Commun. Mater. 2020, 1, 1–11. [Google Scholar] [CrossRef]
- Xiao, Y.; Feng, C.; Fu, J.; Wang, F.; Li, C.; Kunzelmann, V.F.; Jiang, C.-M.; Nakabayashi, M.; Shibata, N.; Sharp, I.D.; et al. Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation. Nat. Catal. 2020, 3, 932–940. [Google Scholar] [CrossRef]
- Cancellieri, C.; Scott, E.A.; Braun, J.; King, S.W.; Oviedo, R.; Jezewski, C.; Richards, J.; La Mattina, F.; Jeurgens, L.P.H.; Hopkins, P.E. Interface and layer periodicity effects on the thermal conductivity of copper-based nanomultilayers with tungsten, tantalum, and tantalum nitride diffusion barriers. J. Appl. Phys. 2020, 128, 195302. [Google Scholar] [CrossRef]
- Abadias, G.; Li, C.-H.; Belliard, L.; Hu, Q.M.; Greneche, N.; Djemia, P. Large influence of vacancies on the elastic constants of cubic epitaxial tantalum nitride layers grown by reactive magnetron sputtering. Acta Mater. 2020, 184, 254–266. [Google Scholar] [CrossRef]
- Terao, N. Structure of Tantalum Nitrides. Jpn. J. Appl. Phys. 1971, 10, 248–259. [Google Scholar] [CrossRef]
- Zerr, A.; Miehe, G.; Li, J.; Dzivenko, D.A.; Bulatov, V.K.; Hofer, H.; Bolfan-Casanova, N.; Fialin, M.; Brey, G.; Watanabe, T.; et al. High-Pressure Synthesis of Tantalum Nitride Having Orthorhombic U2S3 Structure. Adv. Funct. Mater. 2009, 19, 2282–2288. [Google Scholar] [CrossRef]
- Strähle, J. Die Kristallstruktur des Tantal(V)-nitrids Ta3N5. Z. Anorg. Allg. Chem. 1973, 402, 47–57. [Google Scholar] [CrossRef]
- Jiang, C.; Lin, Z.; Zhao, Y. Thermodynamic and Mechanical Stabilities of Tantalum Nitride. Phys. Rev. Lett. 2009, 103, 185501. [Google Scholar] [CrossRef] [PubMed]
- Christensen, A.N.; Lebech, B. A reinvestigation of the structure of ε-tantalum nitride. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1978, 34, 261–263. [Google Scholar] [CrossRef] [Green Version]
- Conroy, L.; Christensen, A. Preparation and crystal structure of β-Ta2N. J. Solid State Chem. 1977, 20, 205–207. [Google Scholar] [CrossRef]
- Friedrich, A.; Winkler, B.; Bayarjargal, L.; Arellano, E.A.J.; Morgenroth, W.; Biehler, J.; Schröder, F.; Yan, J.; Clark, S.M. In situ observation of the reaction of tantalum with nitrogen in a laser heated diamond anvil cell. J. Alloy. Compd. 2010, 502, 5–12. [Google Scholar] [CrossRef]
- Lee, T.-H.; Kim, S.-J.; Shin, E.; Takaki, S. On the crystal structure of Cr2N precipitates in high-nitrogen austenitic stainless steel. III. Neutron diffraction study on the ordered Cr2N superstructure. Acta Crystallogr. Sect. B Struct. Sci. 2006, 62, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Christensen, A.N.; Lebech, B. The structure of β-vanadium nitride. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1979, 35, 2677–2678. [Google Scholar] [CrossRef]
- Sahnoun, M.; Parlebas, J.; Driz, M.; Daul, C. Structural and electronic properties of isostructural transition metal nitrides. Phys. B Condens. Matter. 2010, 405, 3822–3825. [Google Scholar] [CrossRef]
- Wang, J.; Ma, A.; Li, M.; Jiang, J.; Chen, J.; Jiang, Y. Chemical bonding and Cu diffusion at the Cu/Ta2N interface: A DFT study. Phys. Chem. Chem. Phys. 2018, 20, 13566–13573. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Jiang, Y.; Zhou, R. First-principle studies of the stability, electronic and elastic properties of trigonal-type M2N (M = Cr, V, Nb and Ta). Solid State Commun. 2014, 186, 32–37. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initiomolecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blöchl, P.E.; Jepsen, O.; Andersen, O.K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223–16233. [Google Scholar] [CrossRef]
- Birch, F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 1947, 71, 809–824. [Google Scholar] [CrossRef]
- Birch, F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. J. Geophys. Res. Space Phys. 1978, 83, 1257–1268. [Google Scholar] [CrossRef]
- Zhang, R.F.; Veprek, S.; Argon, A.S. Anisotropic ideal strengths and chemical bonding of wurtzite BN in comparison to zincblende BN. Phys. Rev. B 2008, 77, 172103. [Google Scholar] [CrossRef]
- Shang, S.; Saengdeejing, A.; Mei, Z.; Kim, D.; Zhang, H.; Ganeshan, S.; Wang, Y.; Liu, Z. First-principles calculations of pure elements: Equations of state and elastic stiffness constants. Comput. Mater. Sci. 2010, 48, 813–826. [Google Scholar] [CrossRef]
- Wang, J.; Shang, S.-L.; Wang, Y.; Mei, Z.-G.; Liang, Y.-F.; Du, Y.; Liu, Z.-K. First-principles calculations of binary Al compounds: Enthalpies of formation and elastic properties. Calphad 2011, 35, 562–573. [Google Scholar] [CrossRef]
- Wang, J.; Du, Y.; Tao, X.; Ouyang, Y.; Zhang, L.; Chen, Q.; Engström, A. First-principles generated mechanical property database for multi-component Al alloys: Focusing on Al-rich corner. J. Min. Met. Sect. B Met. 2017, 53, 1–7. [Google Scholar] [CrossRef]
- Born, M.; Huang, K.; Lax, M. Dynamical Theory of Crystal Lattices. Am. J. Phys. 1955, 23, 474. [Google Scholar] [CrossRef]
- Pham, D.C. Asymptotic estimates on uncertainty of the elastic moduli of completely random trigonal polycrystals. Int. J. Solids Struct. 2003, 40, 4911–4924. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A 1952, 65, 349–354. [Google Scholar] [CrossRef]
- Ranganathan, S.I.; Ostoja-Starzewski, M. Universal Elastic Anisotropy Index. Phys. Rev. Lett. 2008, 101, 055504. [Google Scholar] [CrossRef] [Green Version]
- Rogers, D. An introduction to applied anisotropic elasticityby R. F. S. Hearmon. Acta Crystallogr. 1962, 15, 625–626. [Google Scholar] [CrossRef] [Green Version]
- Brauer, G.; Zapp, K.H. Die Nitride des Tantals. Zeitschrift für Anorganische und Allgemeine Chemie 1954, 277, 129–139. [Google Scholar] [CrossRef]
- Lei, W.; Liu, D.; Zhang, J.; Shen, L.; Li, X.; Cui, Q.; Zou, G. Direct synthesis and characterization of single-phase tantalum nitride (Ta2N) nanocrystallites by dc arc discharge. J. Alloy. Compd. 2008, 459, 298–301. [Google Scholar] [CrossRef]
- Pugh, S. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Pettifor, D.G. Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 1992, 8, 345–349. [Google Scholar] [CrossRef]
- Jhi, S.-H.; Ihm, J.; Louie, S.G.; Cohen, M.L. Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nat. Cell Biol. 1999, 399, 132–134. [Google Scholar] [CrossRef]
Structure | Space Group | Atom | Wyckoff Notation | x | y | z |
---|---|---|---|---|---|---|
Ta2N-I | Ta | 2d | 1/3 | 2/3 | z | |
Ta | 2d | 2/3 | 1/3 | z | ||
N | 1a | 0 | 0 | 0 | ||
Ta2N-II | Ta | 6k | 1/3 | 0 | z | |
Ta | 6k | 2/3 | 0 | z | ||
Ta | 6k | 0 | 1/3 | z | ||
Ta | 6k | 0 | 2/3 | z | ||
Ta | 6k | 1/3 | 1/3 | z | ||
Ta | 6k | 2/3 | 2/3 | z | ||
N | 2d | 1/3 | 2/3 | 1/2 | ||
N | 2d | 2/3 | 1/3 | 1/2 | ||
N | 1a | 0 | 0 | 0 |
Method | Structure | Space Group | a = b (Å) | c (Å) | Enthalpy of Formation (kJ/mol) |
---|---|---|---|---|---|
this work | Ta2N-I | 3.110 | 4.896 | −78.61 | |
Exp. [14] | 3.05 | 4.92 | - | ||
Exp. [42] | 3.047 | 4.918 | −84.81 | ||
Exp. [43] | 3.054 | 4.996 | - | ||
USPP-GGA [25] | 3.1756 | 4.9433 | - | ||
PBE-GGA [24] | 3.11 | 4.88 | - | ||
this work | Ta2N-II | 5.325 | 4.962 | −89.43 | |
Exp. [14] | 5.28 | 4.92 | - | ||
Exp. [19] | 5.285 | 4.919 | - | ||
GGA [23] | 5.38 | 4.98 | −95.62 |
Method | Structure | C11 | C12 | C13 | C14 | C33 | C44 |
---|---|---|---|---|---|---|---|
this work | Ta2N-I - | 440 | 136 | 214 | −51 | 432 | 125 |
USPP-GGA [25] | 403 | 125 | 215 | −52 | 385 | 123 | |
this work | Ta2N-II | 476 | 168 | 195 | 0 | 473 | 167 |
Structure | BV | BR | B | GV | GR | G | E | v | B/G | AU | Mechanical Stability |
---|---|---|---|---|---|---|---|---|---|---|---|
Ta2N-I | 271 | 269 | 270 | 145 | 113 | 129 | 334 | 0.29 | 2.09 | 1.42 | stable |
Ta2N-II | 282 | 282 | 282 | 171 | 154 | 163 | 410 | 0.26 | 1.73 | 0.55 | stable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Wang, J.; Dong, C.; Du, Y.; Shang, S.-L.; Liu, Z.-K. Stability, Elastic and Electronic Properties of Ta2N by First-Principles Calculations. Crystals 2021, 11, 445. https://doi.org/10.3390/cryst11040445
Zhu L, Wang J, Dong C, Du Y, Shang S-L, Liu Z-K. Stability, Elastic and Electronic Properties of Ta2N by First-Principles Calculations. Crystals. 2021; 11(4):445. https://doi.org/10.3390/cryst11040445
Chicago/Turabian StyleZhu, Longpeng, Jiong Wang, Chenchen Dong, Yong Du, Shun-Li Shang, and Zi-Kui Liu. 2021. "Stability, Elastic and Electronic Properties of Ta2N by First-Principles Calculations" Crystals 11, no. 4: 445. https://doi.org/10.3390/cryst11040445
APA StyleZhu, L., Wang, J., Dong, C., Du, Y., Shang, S. -L., & Liu, Z. -K. (2021). Stability, Elastic and Electronic Properties of Ta2N by First-Principles Calculations. Crystals, 11(4), 445. https://doi.org/10.3390/cryst11040445