Strain Accommodations among Twin Variants in Ti and Mg
Abstract
:1. Introduction
2. Principle of DGA Criterion
3. Application of DGA Criterion
3.1. DGA between Primary Twin and Sample
3.2. DGA between Primary Twin and Neighboring Grain
3.3. DGA between Twin Pairs Across Grain Boundary
3.4. DGA between Primary Twin Variants with the Same Grain
3.5. DGA between Primary and Second Twins
4. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Transformation from Twin Frame into Sample Frame S
Appendix A.2. Transformation from Twin Frame of Primary Twin p in Parent Grain A into Crystal Frame of Neighboring Grain B
Appendix A.3. Transformation from Twin Frame of Primary Twin p inside Parent Grain A into Twin Frame of Primary Twin n in Neighboring Grain B
Appendix A.4. Transformation from Twin Frame of Primary Twin p into Twin Frame of Primary Twin v within the Same Parent Grain A
Appendix A.5. Transformation from Twin Frame of Secondary Twin s Expressed in Primary Twin p into Twin Frame of Primary Twin p
References
- Schmid, E.; Boas, W. Plasticity of Crystals with Special Reference to Metal; F.A. Hughes: London, UK, 1950. [Google Scholar]
- Wu, X.; Kalidindi, S.R.; Necker, C.; Salem, A.A. Prediction of crystallographic texture evolution and anisotropic stress-strain curves during large plastic strains in high purity a-titanium using a Taylor-type crystal plasticity model. Acta Mater. 2007, 55, 423–432. [Google Scholar] [CrossRef]
- Gong, J.; Wilkinson, A.J. Anisotropy in the plastic flow properties of single-crystal a titanium determined from micro-cantilever beams. Acta Mater. 2009, 57, 5693–5705. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, J.; Jiang, Y. Direct observation of twinning–detwinning–retwinning on magnesium single crystal subjected to strain-controlled cyclic tension–compression in [0 0 0 1] direction. Philos. Mag. Lett. 2011, 91, 757–765. [Google Scholar] [CrossRef]
- Lynch, P.A.; Kunz, M.; Tamura, N.; Barnett, M.R. Time and spatial resolution of slip and twinning in a grain embedded within a magnesium polycrystal. Acta Mater. 2014, 78, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, N.; Arul Kumar, M.; Pathak, S.; Wang, J.; McCabe, R.J.; Mara, N.A.; Tomé, C.N. Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars. Acta Mater. 2017, 135, 411–421. [Google Scholar] [CrossRef]
- Nan, X.-L.; Wang, H.-Y.; Zhang, L.; Li, J.-B.; Jiang, Q.-C. Calculation of Schmid factors in magnesium: Analysis of deformation behaviors. Scr. Mater. 2012, 67, 443–446. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, J.; Jiang, Y.; McCabe, R.J.; Li, N.; Tomé, C.N. Twin–twin interactions in magnesium. Acta Mater. 2014, 77, 28–42. [Google Scholar] [CrossRef]
- Xu, S.; Gong, M.; Schuman, C.; Lecomte, J.-S.; Xie, X.; Wang, J. Sequential {10–12} twinning stimulated by other twins in titanium. Acta Mater. 2017, 132, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Gong, M.; Xie, X.; Liu, Y.; Schuman, C.; Lecomte, J.-S.; Wang, J. Crystallographic characters of {11¯22} twin-twin junctions in titanium. Philos. Mag. Lett. 2017, 97, 429–441. [Google Scholar] [CrossRef]
- Zhou, P.; Xu, S.; Xiao, D.; Jiang, C.; Hu, Y.; Wang, J. Shock-induced {11–21}→{11–22} double twinning in titanium. Int. J. Plast. 2019, 112, 194–205. [Google Scholar] [CrossRef]
- Bao, L.; Schuman, C.; Le, Q.c.; Lecomte, J.S.; Zhang, Z.; Philippe, M.-J.; Cui, J.; Esling, C. A novel method for predicting variant selection during primary, secondary and tertiary twinning in titanium. Mater. Lett. 2014, 132, 162–166. [Google Scholar] [CrossRef]
- Shi, D.; Liu, T.; Hou, D.; Chen, H.; Pan, F.; Chen, H. The effect of twin–twin interaction in Mg3Al1Zn alloy during compression. J. Alloys Compd. 2016, 685, 428–435. [Google Scholar] [CrossRef]
- Deng, X.G.; Hui, S.X.; Ye, W.J.; Song, X.Y. Analysis of twinning behavior of pure Ti compressed at different strain rates by Schmid factor. Mater. Sci. Eng. A 2013, 575, 15–20. [Google Scholar]
- Yu, Q.; Jiang, Y.; Wang, J. Tension-compression-tension tertiary twins in coarse-grained polycrystalline pure magnesium at room temperature. Philos. Mag. Lett. 2015, 95, 194–201. [Google Scholar] [CrossRef]
- Yu, Q.; Jiang, Y.; Wang, J. Cyclic deformation and fatigue damage in single-crystal magnesium under fully reversed strain-controlled tension-compression in the [1010] direction. Scr. Mater. 2015, 96, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Qiao, H.; Barnett, M.R.; Wu, P.D. Modeling of twin formation, propagation and growth in a Mg single crystal based on crystal plasticity finite element method. Int. J. Plast. 2016, 86. [Google Scholar] [CrossRef]
- Chen, H.; Liu, T.; Hou, D.; Shi, D. Study on the paired twinning behavior in a hot rolled AZ31 magnesium alloy via interrupted in situ compression. Mater. Sci. Eng. A 2016, 667, 402–408. [Google Scholar] [CrossRef]
- Godet, S.; Jiang, L.; Luo, A.A.; Jonas, J.J. Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubes. Scr. Mater. 2006, 55, 1055–1058. [Google Scholar] [CrossRef]
- Lainé, S.J.; Knowles, K.M. {11–24} deformation twinning in commercial purity titanium at room temperature. Philos. Mag. 2015, 95, 2153–2166. [Google Scholar] [CrossRef]
- Xu, S.; Gong, M.; Jiang, Y.; Schuman, C.; Lecomte, J.-S.; Wang, J. Secondary twin variant selection in four types of double twins in titanium. Acta Mater. 2018, 152, 58–76. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, J.; Zhou, B.; Yu, M.; Sui, M. Interaction of {11–22} twin variants in hexagonal close-packed titanium. J. Mater. Sci. Technol. 2019, 35, 660–666. [Google Scholar] [CrossRef]
- Barnett, M.R.; Keshavarz, Z.; Beer, A.G.; Ma, X. Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy. Acta Mater. 2008, 56, 5–15. [Google Scholar] [CrossRef]
- Barrett, C.D.; El Kadiri, H.; Tschopp, M.A. Breakdown of the Schmid law in homogeneous and heterogeneous nucleation events of slip and twinning in magnesium. J. Mech. Phys. Solids 2012, 60, 2084–2099. [Google Scholar] [CrossRef]
- Shi, Z.-Z.; Zhang, Y.; Wagner, F.; Richeton, T.; Juan, P.-A.; Lecomte, J.-S.; Capolungo, L.; Berbenni, S. Sequential double extension twinning in a magnesium alloy: Combined statistical and micromechanical analyses. Acta Mater. 2015, 96, 333–343. [Google Scholar] [CrossRef]
- Shi, Z.-Z.; Zhang, Y.; Wagner, F.; Juan, P.-A.; Berbenni, S.; Capolungo, L.; Lecomte, J.-S.; Richeton, T. On the selection of extension twin variants with low Schmid factors in a deformed Mg alloy. Acta Mater. 2015, 83, 17–28. [Google Scholar] [CrossRef]
- Mu, S.; Jonas, J.J.; Gottstein, G. Variant selection of primary, secondary and tertiary twins in a deformed Mg alloy. Acta Mater. 2012, 60, 2043–2053. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, X.; Xie, C.; Wu, Y.; Zhang, J. {10–12} extension twin variant selection under a high strain rate in AZ31 magnesium alloy during the plane strain compression. Vacuum 2019, 160, 279–285. [Google Scholar] [CrossRef]
- Mahajan, S.; Chin, G.Y. Twin-slip, twin-twin and slip-twin interactions in Co-8 wt.% Fe alloy single crystals. Acta Metall. 1973, 21, 173–179. [Google Scholar] [CrossRef]
- Ando, D.; Koike, J.; Sutou, Y. Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys. Acta Mater. 2010, 58, 4316–4324. [Google Scholar] [CrossRef]
- Martin, E.; Capolungo, L.; Jiang, L.; Jonas, J.J. Variant selection during secondary twinning in Mg-3%Al. Acta Mater. 2010, 58, 3970–3983. [Google Scholar] [CrossRef]
- Jonas, J.J.; Mu, S.; Al-Samman, T.; Gottstein, G.; Jiang, L.; Martin, Ė. The role of strain accommodation during the variant selection of primary twins in magnesium. Acta Mater. 2011, 59, 2046–2056. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Eisenlohr, P.; Bieler, T.R.; Crimp, M.A.; Mason, D.E. Twin Nucleation by Slip Transfer across Grain Boundaries in Commercial Purity Titanium. Metall. Mater. Trans. A 2010, 41, 421–430. [Google Scholar] [CrossRef]
- Capolungo, L.; Beyerlein, I.J.; Tome, C.N. Slip-assisted twin growth in hexagonal close-packed metals. Scr. Mater. 2009, 60, 32–35. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Schuman, C.; Lecomte, J.-S. Study of twinning/detwinning behaviors of Ti by interrupted in situ tensile tests. Acta Mater. 2015, 82, 424–436. [Google Scholar] [CrossRef]
- Xu, S.; Schuman, C.; Lecomte, J.-S. Accommodative 10 twins at high angle grain boundaries in rolled pure titanium. Scr. Mater. 2016, 116, 152–156. [Google Scholar] [CrossRef]
- Schuman, C.; Bao, L.; Lecomte, J.S.b.; Zhang, Y.; Raulot, J.M.; Philippe, M.J.; Esling, C. A new variant selection criterion for twin variants in titanium alloys (Part I). Adv. Eng. Mater. 2011, 13, 1114–1121. [Google Scholar] [CrossRef]
- Hutchinson, W.B.; Barnett, M.R. Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scr. Mater. 2010, 63, 737–740. [Google Scholar] [CrossRef]
- Poty, A.; Raulot, J.M.; Xu, H.; Bai, J.; Schuman, C.; Lecomte, J.S.; Philippe, M.J.; Esling, C. Classification of the critical resolved shear stress in the hexagonal-close-packed materials by atomic simulation: Application to α-zirconium and α-titanium. J. Appl. Phys. 2011, 110, 014905. [Google Scholar] [CrossRef]
- Zambaldi, C.; Yang, Y.; Bieler, T.R.; Raabe, D. Orientation informed nanoindentation of α-titanium: Indentation pileup in hexagonal metals deforming by prismatic slip. J. Mater. Res. 2011, 27, 356–367. [Google Scholar] [CrossRef]
- Qin, H.; Jonas, J.J.; Yu, H.B.; Brodusch, N.; Gauvin, R.; Zhang, X.Y. Initiation and accommodation of primary twins in high-purity titanium. Acta Mater. 2014, 71, 293–305. [Google Scholar] [CrossRef]
- Qin, H.; Jonas, J.J. Variant selection during secondary and tertiary twinning in pure titanium. Acta Mater. 2014, 75, 198–211. [Google Scholar] [CrossRef]
- Luster, J.; Morris, M.A. Compatibility of deformation in two-phase Ti-Al alloys: Dependence on microstructure and orientation relationships. Metall. Mater. Trans. A 1995, 26, 1745–1756. [Google Scholar] [CrossRef]
- Wang, L.; Eisenlohr, P.; Yang, Y.; Bieler, T.R.; Crimp, M.A. Nucleation of paired twins at grain boundaries in titanium. Scr. Mater. 2010, 63, 827–830. [Google Scholar] [CrossRef]
- Barnett, M.R.; Nave, M.D.; Ghaderi, A. Yield point elongation due to twinning in a magnesium alloy. Acta Mater. 2012, 60, 1433–1443. [Google Scholar] [CrossRef]
- Xin, R.L.; Guo, C.F.; Xu, Z.R.; Liu, G.D.; Huang, X.X.; Liu, Q. Characteristics of long {10–12} twin bands in sheet rolling of a magnesium alloy. Scr. Mater. 2014, 74, 96–99. [Google Scholar] [CrossRef]
- Guo, C.; Xin, R.; Ding, C.; Song, B.; Liu, Q. Understanding of variant selection and twin patterns in compressed Mg alloy sheets via combined analysis of Schmid factor and strain compatibility factor. Mater. Sci. Eng. A 2014, 609, 92–101. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, P.; Liu, G.; Xiao, D.; Gong, M.; Wang, J. Shock-induced two types of {10–12} sequential twinning in Titanium. Acta Mater. 2019, 165, 547–560. [Google Scholar] [CrossRef]
- Hua, K.; Zhang, Y.; Gan, W.; Kou, H.; Li, J.; Esling, C. Correlation between imposed deformation and transformation lattice strain on α variant selection in a metastable β-Ti alloy under isothermal compression. Acta Mater. 2018, 161, 150–160. [Google Scholar] [CrossRef]
- Bunge, H.J. Texture Analysis in Materials Science_Mathematical Methods; Butterworth: Boston, MA, USA, 1982. [Google Scholar]
Coordinate System Definition | Coordinate System Symbol | DGT in Varied Frames |
---|---|---|
twin p in crystal frame A | ||
crystal frame of grain A | ||
Sample reference frame | S | |
crystal frame of grain B | ||
twin n in crystal frame B | ||
twin v in crystal frame A | ||
twin frame of primary twin p | ||
crystal frame of primary twin p | ||
2nd twin s in crystal frame p |
Slip Types | Indices of Slip System | x-axis | y-axis | z-axis |
---|---|---|---|---|
basal <a> | > | > | > | [0001] |
prismatic <a> | > | > | [0001] | > |
1st-order pyramidal <a> | > | > | > | > |
1st-order pyramidal <c+a> | > | > | > | > |
2nd-order pyramidal <c+a> | > | > | > | > |
DGT | DGT in Twin Frame | DGT in Crystallographic Frame |
---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Zhu, G.-Z. Strain Accommodations among Twin Variants in Ti and Mg. Crystals 2021, 11, 453. https://doi.org/10.3390/cryst11040453
Zhou P, Zhu G-Z. Strain Accommodations among Twin Variants in Ti and Mg. Crystals. 2021; 11(4):453. https://doi.org/10.3390/cryst11040453
Chicago/Turabian StyleZhou, Ping, and Guo-Zhen Zhu. 2021. "Strain Accommodations among Twin Variants in Ti and Mg" Crystals 11, no. 4: 453. https://doi.org/10.3390/cryst11040453
APA StyleZhou, P., & Zhu, G. -Z. (2021). Strain Accommodations among Twin Variants in Ti and Mg. Crystals, 11(4), 453. https://doi.org/10.3390/cryst11040453