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Abstract: The energy levels of Dy3+ ions have been determined in lithium yttrium borate (Li6Y(BO3)3)
single crystals in a wide spectral range between 3000 and 40,000 cm−1 using optical absorption and
luminescence spectroscopy, which also allow for an analysis of the ground state. The crystal field
splittings of the 6H15/2 ground state and all excited states up to the 4F7/2 manifold were obtained at a
low temperature, based on luminescence (T = 4.2–78 K) and absorption (T = 8–100 K) measurements,
respectively. The numbers of experimentally observed Stark sublevels are in agreement with those
expected theoretically for Dy3+ ions occupying a single low symmetry (C1) site.

Keywords: FTIR absorption spectra; luminescence spectra; single crystals; dysprosium; lithium
yttrium borate

1. Introduction

Borate crystals often demonstrate advantageous properties such as high optical quality,
transparency in a wide spectral range including vacuum ultraviolet (VUV), and optical non-
linearity. For this reason, they are recognized as good matrices for laser applications [1–3].
Some of these, e.g., lithium borates, are attractive materials for neutron detectors due
to the presence of naturally abundant 6Li and 10B isotopes [4–9]. Lithium yttrium bo-
rate (Li6Y(BO3)3, LYB) has been suggested as a phosphor, laser, or scintillator material
depending on the host morphology and rare-earth (RE) ion doping [10–13]. This com-
pound with monoclinic crystal structure of the P21/c space group (Z = 4) [14] and the unit
cell parameters a = 7.157(5) Å, b = 16.378(4) Å, c = 6.623(4) Å, β = 105.32(5)◦ [15] is an
excellent host for RE doping, since it contains yttrium sites of only one type which can
incorporate any RE dopant without concentration restrictions, as all Li6RE(BO3)3 crystals
are isostructural with Li6Y(BO3)3 [16]. The Y3+ sites form a zigzag chain along the crys-
tallographic <001> direction with a distance of 3.85 Å between the closest neighbors and
~7 Å between the chains. This anisotropy of the Li6RE(BO3)3 crystal structure causes a
dominant one-dimensional energy transfer and prevents concentration quenching of RE
luminescence [17]. In Li6Y(BO3)3:Yb crystals, the absence of emission quenching has been
proven for concentrations up to 20 mol% of Yb, whereas unlike powders, crystals demon-
strate a remarkable lengthening of the decay time of the RE emission with concentration,
which is related to the reabsorption and repeated emission process taking place within the
impurity complex [18]. The trivalent Dy3+ is a promising RE dopant because of its relatively
strong white-light emission which is important for laser, display panel, and telecommu-
nication applications [19–21]. Some of the RE ions have already been extensively studied
in various host crystals in view of their potential application as a medium for coherent
quantum dynamics (e.g., praseodymium in yttrium silicate in resonant nonlinear optical
experiments [22]). Dy3+ is a perspective candidate in this field, since it has shown highly
efficient APTE (Addition de Photons par Transferts d’Energie) up-conversion luminescence

Crystals 2021, 11, 503. https://doi.org/10.3390/cryst11050503 https://www.mdpi.com/journal/crystals

https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0001-6388-0496
https://orcid.org/0000-0002-2366-1018
https://orcid.org/0000-0003-3136-9778
https://www.mdpi.com/article/10.3390/cryst11050503?type=check_update&version=1
https://doi.org/10.3390/cryst11050503
https://doi.org/10.3390/cryst11050503
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryst11050503
https://www.mdpi.com/journal/crystals


Crystals 2021, 11, 503 2 of 11

in Yb3+ doped compounds containing Dy3+ ions even at trace levels [18,23]. This sensitive
energy transfer to the Dy3+ ions through the excited Yb3+ states and a stable borate host
matrix establish the potential of using dysprosium doped LYB crystals in quantum optical
experiments. Preliminary spectroscopic studies of Dy-doped Li6Y(BO3)3 have been per-
formed for polycrystalline phosphors [10], glasses [12], and recently, single crystals [24].
These studies revealed the spectral positions and temporal characteristics of the main
electronic transitions of Dy3+ in the material, however, did not provide information on
fine structure of the transitions necessary to fully identify the crystal field splitting of Dy3+

ion states introduced in such an anisotropic matrix. In the present work, the results of
high-resolution absorption and luminescence measurements aimed at identifying the Stark
levels of Dy3+ ions in LYB crystals are presented.

2. Experimental

Li6Y(BO3)3 single crystals doped with 1 and 5 mol% dysprosium were grown by the
Czochralski method detailed in [25] (Figure 1). To synthesize the starting charge, Li2CO3
(99.9%), Y2O3 (99.9%), B2O3 (Merck pro analysis) and Dy2O3 (99.9%) powders were mixed
in the ratio of constituents expected for bulk crystal and placed into a silver crucible.
The mixtures were annealed at 580 ◦C for 42 h and at 650 ◦C for 12 h. Between the reaction
steps applied, the samples were weighed and reground. The synthesized material was
finely ground and placed into a gold-coated platinum crucible. Crystals were grown from
this crucible in air, using a resistance-heated furnace fitted with a diameter-controlled
growth apparatus. The crystals were pulled along the b = <010> axis, with a rate of
0.16 mm/h and a rotation speed of 8–14 rpm. Samples oriented by X-ray diffraction were
prepared in the form of thin slices with a thickness of about 1–2 mm with their large faces
perpendicular or parallel to the growth direction. In the latter case, the plane of the slice
coincides with the

(
102

)
Miller plane which is nearly perpendicular to the dielectric z-axis,

according to [26].
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windows (Specac, Orpington, England) for measurements in different wavenumber re-
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ers (Specac, Orpington, England) were utilized to investigate the anisotropy of the Dy3+ 
electronic transitions in the monoclinic LYB lattice. 

The steady-state and time-resolved photoluminescence studies were carried out at 
the Institute of Physics, University of Tartu, using a custom-made setup using a 400 W 
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Figure 1. 1 mol% (a) and 5 mol% (b) Dy doped Li6Y(BO3)3 single crystals grown by the Czochralski
method. The cylindrical part is 30 mm long and 25 mm in diameter.

The absorption spectra were recorded by BRUKER IFS 66v and 120 FTIR Fourier
transform spectrophotometers (Bruker, Ettlingen, Germany) with resolution of 0.2 cm−1

and 0.05 cm−1, respectively. A closed cycle He cryostat equipped with KRS-5 and quartz
windows (Specac, Orpington, England) for measurements in different wavenumber regions
was used to perform the low temperature (≈8 K) studies. KRS-5 and quartz polarizers
(Specac, Orpington, England) were utilized to investigate the anisotropy of the Dy3+

electronic transitions in the monoclinic LYB lattice.
The steady-state and time-resolved photoluminescence studies were carried out at

the Institute of Physics, University of Tartu, using a custom-made setup using a 400 W
deuterium discharge lamp DDS-400 (Vladikavkaz electric lamp plant, Vladikavkaz, Russia)
or a Xe flash-lamp PerkinElmer 150 W (Perkin Elmer Optoelectronics, Wiesbaden, Germany)
for sample excitation, respectively. The excitation wavelength was selected with a double-
quartz prism-monochromator DMR-4 (Kazan Optical-Mechanical Plant, Kazan, Russia).
The samples were mounted in a Janis VPF-800 liquid nitrogen cryostat (78–800 K) (Janis
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Research Company, Woburn, England) or in a liquid helium cryostat (1.8–400 K) (Low
Temperature Laboratory, Tartu, Estonia) by means of a specially designed spring-equipped
copper finger or with conductive silver glue, respectively. Luminescence spectra were
studied using an ARC Spectra Pro 308i (Acton Research Corporation, Acton, England)
Czerny-Turner type grating monochromator equipped with a Princeton Instruments CCD
camera (Teledyne Princeton Instruments, Krailing, Germany) or a Hamamatsu H6240-02
(Hamamatsu Photonics Norden AB, Solna, Sweden) photon counting head for the steady-
state and time-resolved measurements, respectively. The spectral resolution was kept
1.08 nm for review luminescence spectra and 0.27 nm for detailed spectra. The luminescence
detection technique is described in more detail in [27]. Photostimulated luminescence
emission and excitation spectra were measured in the temperature interval 4.2–300 K, which
was controlled by a LakeShore 335 device (Lake Shore Cryotonics, Inc., Westerville, OH,
USA). Various SCHOTT (Edmund Optics, Mainz, Germany) or UQG Optics (UQG Optics,
Cambridge, England) colour glass filters were used to additionally suppress possible effects
of stray light or second orders of excitation and emission light. The excitation spectra were
normalized to the reference signal of sodium salicylate to equalize the quantum intensities
of incident light at different photon energies. The emission spectra were corrected for the
monochromator spectral efficiency and spectral sensitivity of the detector.

3. Results and Discussion
3.1. Absorption Spectra

To characterize the incorporation of dysprosium impurity into the host, the ab-
sorbances of LYB crystals doped with Dy3+ ions in concentrations of 1 and 5 mol% were
compared using samples of identical thickness and orientation. The absorption bands in the
7000–10,000 cm−1 wavenumber range corresponding to the electronic transitions from the
6H15/2 ground state to the 6H9/2, 6F11/2, 6H7/2, and 6F9/2 terms of the excited state can be
seen in Figure 2. The amplitude of the absorption bands measured in the LYB:Dy(5 mol%)
crystal was by a factor of five higher than that in LYB:Dy(1 mol%). This confirms that the
distribution coefficient of Dy3+ ions is the same in both cases and does not depend on the
Dy concentration in the melt (see also [15]).
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Figure 2. The absorbance of 1 and 5 mol% Dy3+ doped LYB crystals in the 7000–10,000 cm−1 spectral
range measured at room temperature. The absorption coefficient of the 5 mol% Dy3+ doped crystal is
about five times higher compared to that of the 1 mol% doped LYB.

To determine the fine structure of Dy3+ electronic transitions, detailed high-resolution
measurements were performed at a low temperature. The absorption spectra of LYB:Dy
(5 mol%) crystal in the 3000–40,000 cm−1 wavenumber range present a sequence of narrow
bands with a minimum halfwidth of about 1 cm−1 at T = 8 K. The absorption bands
correspond to the transitions from the lowest sublevel of the 6H15/2 ground state to the
excited energy levels of the Dy3+ ions, which can be easily assigned using the Dieke
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diagram [28] up to the 4F7/2 multiplet at about 25,000 cm−1. Because of the monoclinic
crystal structure of LYB, all energy levels of Dy3+ split into the maximum possible number
of Stark components separated by about 100–600 cm−1. As a consequence, the Stark
components of various nearby levels are mixed and cannot be unambiguously assigned,
especially at high energies above 29,000 cm−1 (see, e.g., Figure 3g,h). Some doubtful
assignments based on the excitation spectrum of a LYB:Dy crystal can be found in the paper
by Saha et al. [24]. Difficulties in the determination of the proper energy terms have also
been encountered for other monoclinic crystals, such as KY(WO4)2 and Lu2SiO5, doped
with Dy3+ ions [29,30]. Most of the spectral lines experimentally observed in LYB:Dy in the
present work are shown in Figure 3 and the most probable assignments are listed in Table 1.
Beside the electronic transitions of Dy3+ ions some additional weak absorption bands
attributed to the stretching vibration of hydroxyl ion (OH−) impurities can be observed
between 3450–3560 cm−1 as shown in Figure 3a. According to our measurements, these
bands are present in undoped and other RE ion doped LYB crystals as well. The uneven
baseline in this wavenumber range is related to the absorption of higher harmonics of the
B-O vibrations in the host crystal.
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ground state to various multiplets are indicated.

Figure 3a–c,e–i shows the high-resolution absorption spectra of LYB:Dy(5 mol%)
crystal recorded for light propagating along the <010> axis of the crystal. The spectra for
light propagating along the n

(
102

)
direction with polarization parallel and perpendicular

to the <010> direction are shown in Figure 3d. All lines related to the fully split Stark
components are clearly visible for both polarizations, only their relative intensities vary
slightly. The number of experimental bands is in full agreement with theoretical predictions;
the exact positions of the lines obtained from experiment are given in Table 1. Since no
additional absorption lines appear in the low-temperature spectra, only one type of site can
be assumed for Dy3+ ions in the LYB lattice, as expected due to the isostructural property
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of Li6RE(BO3)3 crystals [16]. The same conclusion was drawn also from the optical and
electron paramagnetic resonance (EPR) spectroscopy of Er3+ doped LYB crystals [31].

Table 1. Energy levels of Dy3+ ions in monoclinic Li6Y(BO3)3 crystals (in cm−1).

1 2 3 4 5 6 7 8 9 10 Ntheory ∆E
6H15/2 0 42 79 134 244 389 503 598 8 598
6H13/2 3564.7 3590.5 3631.8 3692.9 3745.8 3794.0 3861.7 7 297
6H11/2 5901.2 5941.9 5989.8 6022.8 6068.0 6115.0 6 214

6H9/2 + 6F11/2
7613.4 7698.9 7713.5 7766.0 7798.5 7870.0 7896.5 7947.2 7980.9 8151.1

11 619
8232.1

6H7/2 + 6F9/2 8980.3 9045.2 9085.5 9237.6 9270.9 9299.0 9350.0 9382.0 9602.0 9 622
6H5/2 10,233.0 10,312.0 10,460.0 3 223
6F7/2 11,038.6 11,173.1 11,223.9 11,276.9 4 238
6F5/2 12,470.0 12,528.4 12,615.5 3 135
6F3/2 13,327.2 13,340.7 2 13.5
6F1/2 13,873.6 1 0
4F9/2 20,897 20,997 21,108 21,136 21,473 5 576
4I15/2 21,928.7 21,995 22,061 22,130 22,313 22,359 22,375 22,418 8 489

4G11/2 23,378 23,434 23,458 23,507 23,539 23,596 6 218
4F7/2 24,769 24,834 24,916 24,935 4 166

4I13/2–4M19/2
about

20 lines
6P5/2 + 6P3/2 27,342 27,384 27,415 27,435 27,504 5 162

4I11/2 27,831 27,880 27,906 27,962 28,036 28,074 6 243
4M15/2 28,382 28,394 28,442 28,467 28,480 28,512 28,541 28,565 8 183

6P7/2–2F7/2
about

40 lines
4H13/2 33,061 33,084 33,097 33,110 33,130 33,146 33,156 7 95

4K13/2 + 4F3/2 33,384 33,398 33,415 33,442 33,456 33,484 33,533 33,560 33,576 9 192
4D7/2 33,854 33,881 33,916 33,950 4 96

4F5/2–4F3/2
about

25–30 lines
4P5/2 + 4P3/2 38,705 38,875 39,019 39,050 39,074 5 369

It is remarkable that upon gradually increasing the temperature from 8 to 100 K,
additional lines appear in the absorption spectrum, which can be related to the transitions
from thermally populated higher states of the 6H15/2 ground state of Dy3+ to various terms
of the excited state. Figure 4 demonstrates this on the example of the 6H15/2 → 6F5/2
transition. At the lowest temperatures nearly exclusively the lines at 12,470, 12,528.4, and
12,605.5 cm−1, corresponding to transitions from the lowermost Stark level of the 6H15/2
ground state, are seen. As the higher sublevels of the ground state become populated at
elevated temperatures, additional repetitions for these transitions appear at wavenumbers
less by the same amounts (42, 79, and 134 cm−1) corresponding to transitions from some of
the higher Stark levels of the ground state to unchanged excited states. The positions of
these hot replicas are helpful for identifying the lowest energy Stark levels of the ground
state to be situated at 42, 79, and 134 cm−1. The higher energy crystal field components of
the ground state were determined from luminescence measurements (see below).
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Figure 4. Temperature dependence of the 6H15/2→ 6F5/2 transition of Dy3+ ions in the LYB:Dy(1 mol%)
crystal. The hot bands show that the lowest energy crystal field components of the ground state are
found at 42, 79 and 134 cm−1.

3.2. Luminescence

Additional information on the position of high-energy excited Dy3+ states was ob-
tained from the studies of low-temperature luminescence and excitation spectra for the
LYB:Dy(1 mol%) crystal. To record the luminescence spectra, the excitation wavelength
was chosen at 356 nm (28,068 cm−1), which populated the 4I11/2 multiplet and provided
the highest emission intensity. Upon the excitation of this term, electrons relax to the
4F9/2 multiplet via nonradiative transitions, therefore, the transitions originating from the
latter were further investigated in detail (see Figure 5b). The excitation spectrum was
recorded for the most intense line at λem = 577 nm (17,331 cm−1) of the 4F9/2 → 6H13/2
transition. The emission and excitation spectra measured at temperatures 4.2 K or 78 K
are presented in Figures 5–8, respectively. Figure 5a shows the overview of the emission
spectrum in the region of 11,000–22,000 cm−1. Two major bands centered at about 20,620
and 17,240 cm−1 related to the 4F9/2→ 6H15/2 and 4F9/2→ 6H13/2 transitions, respectively,
dominate the spectrum. Three weaker groups of bands observed approximately at 15,040,
13,160, and 11,770 cm−1 in the near-infrared region are assigned to the 4F9/2 → 6H11/2,
4F9/2 → 6H9/2,6F11/2 and 4F9/2 → 6H7/2,6F9/2 transitions, respectively (Figure 5a,b). The
positions of the main emission bands are in good agreement with those reported earlier for
Li6Y(BO3)3:Dy [10,12,24] and various other systems, such as phosphate glasses, molybdates
and vanadates [32–34].
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Figure 5. (a) Overview of the luminescence spectrum measured for Li6Y(BO3)3:Dy(1 mol%) single
crystal under excitation at 28,068 cm−1 at 4.2 K. (b) Energy level diagram of Dy3+ ions in LYB crystal
showing the excitation from the ground state and various emission lines.



Crystals 2021, 11, 503 7 of 11
Crystals 2021, 11, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 6. A detailed part of the luminescence spectrum at T = 78 K corresponding to the 4F9/2 → 
6H15/2 transition. The numbered scale (1) on the top proves the correspondence of the luminescence 
transitions to the Stark components of the ground 6H15/2 state partly found from absorption. Scale 
(2) corresponds to a hot state of the 4F9/2 multiplet. 

The Stark components of the 6H13/2 multiplet can be determined from both the absorp-
tion and luminescence measurements. It is remarkable, that the detailed structure of the 
4F9/2 → 6H13/2 emission corresponds almost perfectly to the reversed absorption spectrum 
shown for the 6H15/2 → 6H13/2 transition at 8 K in Figure 3a. The reversion point was defined 
by the overlay of the emission line at 17,331 cm−1 with the absorption line at 3564.7 cm−1. 
This comparison demonstrates the consistency of the results obtained by the two spectro-
scopic methods. 
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sition and the 4F9/2 → 6H13/2 transition belongs to a forced electric dipole transition being 
allowed only in the case when the Dy3+ ion is located at a lattice site missing inversion 
center symmetry. Therefore, the fact that the group of yellow emission bands around 577 
nm (17,331 cm−1) is the most intense one in the spectrum confirms that Dy3+ ions occupy 
Y3+ sites in Li6Y(BO3)3 single crystals, resulting in the hypersensitive (4F9/2 → 6H13/2) transi-
tion. This is in accordance with the results reported earlier for the Li6Y(BO3)3:Dy3+ phos-
phor [10]. Indicatively, the ratio of the intensities of the 4F9/2 → 6H13/2 and 4F9/2 → 6H15/2 
emissions is much lower in glass samples [12] than in crystals. This difference originates 

Figure 7. (a) The 4F9/2 → 6H13/2 luminescence transitions at T = 78 K (red line) and the absorption
spectrum presented in Figure 3a but reversed as described in the text (blue line). (b) Part of the
energy levels showing the absorption and luminescence transitions.
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The shape of the bands responsible for the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transi-
tions varies in the above-cited works, and for that reason, zoomed spectrum parts mea-
sured with higher spectral resolution are shown for these transitions in more detail in
Figures 6 and 7. The fine structure of these transitions is represented by 8 lines in the
regions of 20,200–20,950 cm−1 (Figure 6) and 7 lines in the region of 17,000–17,350 cm−1

(Figure 7), respectively, in agreement with the number of crystal field components of the
given multiplets 6H15/2 and 6H13/2. Weaker lines at higher wavenumber values in both
Figures 6 and 7 are due to transitions from a hot state of the 4F9/2 multiplet. The Stark
components of the 6H15/2 ground state can be determined from the 4F9/2 → 6H15/2 lumi-
nescence spectrum (see black scale (1) on top of Figure 6). The three lowest energy levels
are in good agreement with those obtained from the hot bands in the absorption spectra
measured at about T = 100 K (see, e.g., Figure 4). A few lines at wavenumber values higher
than 20,900 cm−1 may be related to the hot transitions originating from the second Stark
component of the 4F9/2 multiplet populated at 78 K (see red scale (2) on top of Figure 6).

The Stark components of the 6H13/2 multiplet can be determined from both the
absorption and luminescence measurements. It is remarkable, that the detailed structure
of the 4F9/2 → 6H13/2 emission corresponds almost perfectly to the reversed absorption
spectrum shown for the 6H15/2→ 6H13/2 transition at 8 K in Figure 3a. The reversion point
was defined by the overlay of the emission line at 17,331 cm−1 with the absorption line at
3564.7 cm−1. This comparison demonstrates the consistency of the results obtained by the
two spectroscopic methods.

The position of higher energy multiplets of the Dy3+ ion in Li6Y(BO3)3 may be ob-
tained from the excitation spectra of the LYB:Dy(1 mol%) single crystal measured for the
17,331 cm−1 emission line, one of the most intense ones in the series of the 4F9/2 → 6H13/2
transitions (Figure 8). The general features of the recorded excitation spectrum are in
good agreement with the excitation spectra reported earlier for glass [12] and crystalline
material [24], however, by using a better spectral resolution it was possible to ascribe the ob-
served bands to specific levels of the higher-energy multiplets situated above 22,000 cm−1.

According to [10,35,36] the 4F9/2 → 6H15/2 transition is an allowed magnetic dipole
transition and the 4F9/2 → 6H13/2 transition belongs to a forced electric dipole transition
being allowed only in the case when the Dy3+ ion is located at a lattice site missing inver-
sion center symmetry. Therefore, the fact that the group of yellow emission bands around
577 nm (17,331 cm−1) is the most intense one in the spectrum confirms that Dy3+ ions oc-
cupy Y3+ sites in Li6Y(BO3)3 single crystals, resulting in the hypersensitive (4F9/2→ 6H13/2)
transition. This is in accordance with the results reported earlier for the Li6Y(BO3)3:Dy3+

phosphor [10]. Indicatively, the ratio of the intensities of the 4F9/2 → 6H13/2 and 4F9/2
→ 6H15/2 emissions is much lower in glass samples [12] than in crystals. This difference
originates from the simple fact that single crystals possess an established structure charac-
terized by a well-defined low-symmetry yttrium substitution site while the glass material
allows a varying local crystal structure in the environment of Y3+ (Dy3+) ions. This conclu-
sion is supported also by our studies of the decay kinetics of the emission at 17,331 cm−1

under pulse excitation into the 4M15/2 multiplet at 28,382 cm−1 (Figure 9). We found two
exponential components with decay times around 310 and 840 µs at 69 K. The integrated
intensity of the faster component is very low, amounting only to 5% of the total emission
intensity, so the emission decay is close to a single exponential which one can see also from
Figure 9 presenting the decay curve in a semi-logarithmic scale. The decay time of the
main component slightly increases to 910 µs at room temperature, while that of the shorter
one increases approximately to 350 µs, whereas the ratio of their intensities remains the
same. The nearly single exponential decay of the Dy3+ emission confirms that the Dy3+

ions occupy only one type of lattice sites as also expected in the Li6Y(BO3)3 compound.
A small admixture of a faster component is presumably related to a small fraction of Dy3+

ions perturbed by a lattice defect, neighboring Dy3+ ion or crystal surface. These results
are similar to those obtained earlier for polycrystalline powder [10] and single crystal [24]
samples, whereas in the latter, the increase of the average decay time with temperature
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was also observed. In glass samples, on the contrary, a non-exponential decay with char-
acteristics times depending on Dy concentration was observed reflecting non-equivalent
positions of Dy3+ ions and energy transfer between them in this material [12].
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A full set of energy states determined from the absorption, emission, and excitation
spectra in the present work is listed in Table 1. An energy diagram of the energy states
observed is presented in Figures 5b and 7b accounting also for the splitting of the ground
6H15/2 state. This splitting is well observed in the structure of the blue emission between
20,300–20,900 cm−1 (Figure 5b) and in the temperature dependent absorption spectra
(Figure 4).

The data shown in Table 1 present much more details on the splitting of excited
state multiplets than reported in Refences [10,24]. The reason lies in the much higher
resolution of our absorption measurements compared to that achieved in the measurements
of excitation spectra in the cited papers. In addition to allowing for the determination of
the Stark splitting of almost every multiplet, this was also helpful to better identify the
multiplets themselves, especially in the energy regions where excited states are located
at high densities (e.g., around 21,000, 28,000, and 37,000 cm−1). Nevertheless, even the
resolution achieved in our measurements was in some cases insufficient to resolve all lines
in such energy regions. Therefore, in Table 1 we only present the estimated number of
lines for the 4I13/2–4M19/2, 6P7/2–2F7/2, and 4F5/2–4F3/2 terms. The relative positions of
the multiplets detected in the present paper are in good agreement with those predicted
for free Dy3+ ions [28,37], and those determined for Dy3+ ions in solutions [38,39].

4. Conclusions

Electronic transitions of Dy3+ ions incorporated in the Li6Y(BO3)3 crystals were success-
fully identified by absorption measurements in the wavenumber region of 3000–40,000 cm−1

and luminescence excitation spectra measurements in the energy region of 18,500–40,000 cm−1.
The effect of crystal-field splitting in this low-symmetry crystal was investigated in detail
by temperature and polarization dependent absorption and luminescence measurements.
An intensive luminescence emission related to the 4F9/2 → 6H13/2 transitions was detected
at 577 nm (17,331 cm−1), testifying about the well-defined environments of Dy3+ ions homo-
geneously substituted at Y3+ sites lacking inversion symmetry. The splitting of the 6H15/2
ground state of Dy3+ was established and the energy diagram of the excited levels derived.
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