Enhancement of Optical Activity and Properties of Barium Titanium Oxides to Be Active in Sunlight through Using Hollandite Phase Instead of Perovskite Phase
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Evidence for the Mechanism of the Primary Stage of Photosynthesis. Bull. Chem. Soc. Jpn. 1971, 44, 1148–1150. [Google Scholar] [CrossRef] [Green Version]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nat. Cell Biol. 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Hardee, K.L.; Bard, A.J. Semiconductor Electrodes: I. The Chemical Vapor Deposition and Application of Polycrystalline N-Type Titanium Dioxide Electrodes to the Photosensitized Electrolysis of Water. J. Electrochem. Soc. 1975, 122, 739–742. [Google Scholar] [CrossRef]
- Duonghong, D.; Borgarello, E.; Graetzel, M. Dynamics of light induced water cleavage in colloidal systems. J. Am. Chem. Soc. 1981, 103, 4685–4690. [Google Scholar] [CrossRef]
- Kraeutler, B.; Bard, A.J. Heterogeneous photocatalytic decomposition of saturated carboxylic acids on TiO2 powder—decarboxylative route to alkanes. J. Am. Chem. Soc. 1978, 100, 5985–5992. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Eliseev, A.A. Daylight Photocatalysis Achieved on Carbon-Doped TiO2. MRS Bull. 2004, 29, 4–5. [Google Scholar] [CrossRef] [Green Version]
- Adesina, A. Industrial exploitation of photocatalysis: Progress, perspectives and prospects. Catal. Surv. Asia 2004, 8, 265–273. [Google Scholar] [CrossRef]
- Lee, W.W.; Chung, W.-H.; Huang, W.-S.; Lin, W.-C.; Lin, W.-Y.; Jiang, Y.-R.; Chen, C.-C. Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method. J. Taiwan Inst. Chem. Eng. 2013, 44, 660–669. [Google Scholar] [CrossRef]
- Mills, A.; Le Hunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 1997, 108, 1–35. [Google Scholar] [CrossRef]
- Peña, M.A.; Fierro, J.L.G. Chemical Structures and Performance of Perovskite Oxides. Chem. Rev. 2001, 101, 1981–2018. [Google Scholar] [CrossRef] [PubMed]
- Adireddy, S.; Lin, C.; Cao, B.; Zhou, W.; Caruntu, G. Solution-Based Growth of Monodisperse Cube-Like BaTiO3 Colloidal Nanocrystals. Chem. Mater. 2010, 22, 1946–1948. [Google Scholar] [CrossRef]
- Cheary, R.W. An analysis of the structural characteristics of hollandite compounds. Acta Crystallogr. Sect. B Struct. Sci. 1986, 42, 229–236. [Google Scholar] [CrossRef]
- Uheda, K.; Horiuchi, A.; Takizawa, H.; Endo, T. Synthesis and Crystal Structure of Novel Hollandite Compounds AxMgx/2Sn8 − x/2O16 (A = K, Rb, and Cs). J. Porous Mater. 1999, 6, 161–166. [Google Scholar] [CrossRef]
- Aubin-Chevaldonnet, V.; Caurant, D.; Dannoux, A.; Gourier, D.; Charpentier, T.; Mazerolles, L.; Advocat, T. Preparation and characterization of (Ba,Cs)(M,Ti)8O16 (M = Al3+, Fe3+, Ga3+, Cr3+, Sc3+, Mg2+) hollandite ceramics developed for radioactive cesium immobilization. J. Nucl. Mater. 2007, 366, 137–160. [Google Scholar] [CrossRef]
- Whittle, K.R.; Ashbrook, S.E.; Lumpkin, G.R.; Farnan, I.; Smith, R.I.; Redfern, S.A.T. The effect of caesium on barium hollandites studied by neutron diffraction and magic-angle spinning (MAS) nuclear magnetic resonance. J. Mater. Sci. 2007, 42, 9379–9391. [Google Scholar] [CrossRef]
- Kesson, S.E.; White, T.J. [BaxCsy][(Ti,Al)3+2x+yTi4+8−2x−y]O16 Synroc-Type Hollandites. I. Phase Chemistry. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1986, 405, 73–101. [Google Scholar]
- Kesson, S.E.; White, T.J. [BaxCsy][(Ti,Al)3+2x+yTi4+8−2x−y]O16 Synroc-Type Hollandites. II. Structural Chemistry. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1986, 408, 295–319. [Google Scholar]
- Cheary, R.W. Structural Analysis of Hollandite BaxTi3+2xTi4+8−2xO16 with x = 1.07 and 1.31 from 5 to 500 K. Acta Crystallogr. 1990, 46, 599–609. [Google Scholar] [CrossRef]
- Cheary, R.W. Caesium Substitution in the Titanate Hollandites BaxCsy(Ti3+y+2xTi4+8−2x−y)O16 from 5 to 400 K. Acta Crystallogr. 1991, 47, 325–333. [Google Scholar] [CrossRef]
- Kesson, S.; White, T. Radius ratio tolerance factors and the stability of hollandites. J. Solid State Chem. 1986, 63, 122–125. [Google Scholar] [CrossRef]
- Byström, A.M. The crystal structure of hollandite, the related manganese oxide minerals, and α-MnO2. Acta Crystallogr. 1950, 3, 146–154. [Google Scholar] [CrossRef]
- Watanabe, M.; Mori, T.; Yamauchi, S.; Yamamura, H. Catalytic property of the hollandite-type 1-D ion-conductors: Selective reduction of NOx. Solid State Ionics 1995, 79, 376–381. [Google Scholar] [CrossRef]
- Mori, T.; Yamauchi, S.; Yamamura, H.; Watanabe, M. New hollandite catalysis for the selective reduction of nitrogen monoxide with propene. Appl. Catal. A 1995, 129, L1–L7. [Google Scholar] [CrossRef]
- Mori, T.; Yamauchi, S.; Yamamura, H.; Watanabè, M. KGa-priderite and related compound for the selective reduction of nitrogen monoxide with propylene. J. Mater. Sci. 1996, 31, 1469–1473. [Google Scholar] [CrossRef]
- Mori, T.; Suzuki, J.; Fujimoto, K.; Watanabe, M. Photocatalysis decomposition of trichloro ethylene and nitrate ion in water on hollandite type catalysts. J. Mater. Synth. Process. 1998, 6, 329–333. [Google Scholar] [CrossRef]
- Mori, T.; Suzuki, J.; Fujimoto, K.; Watanabe, M.; Hasegawa, Y. Reductive decomposition of nitrate ion to nitrogen in water on a unique hollandite photocatalyst. Appl. Catal. B Environ. 1999, 23, 283–289. [Google Scholar] [CrossRef]
- Mori, T.; Suzuki, J.; Fujimoto, K.; Watanabe, M.; Hasegawa, Y. Photocatalytic Reduction of Nitrate in Water on Meso-Porous Hollandite Catalyst: A New Pathway on Removal of Nitrate in Water. J. Sol-Gel Sci. Technol. 2000, 19, 505–510. [Google Scholar] [CrossRef]
- Suzuki, J.; Fujimoto, K.; Mori, T.; Watanabe, M.; Hasegawa, Y. Photocatalytic Reduction of NO with C2H6 on a Hollandite-Type Catalyst. J. Sol-Gel Sci. Technol. 2000, 19, 775–778. [Google Scholar] [CrossRef]
- Filimonov, D.; Liu, Z.-K.; Randall, C. An oxygen nonstoichiometry study of barium polytitanates with hollandite structure. Mater. Res. Bull. 2002, 37, 2373–2382. [Google Scholar] [CrossRef]
- Gao, W.L.; Deng, H.M.; Huang, D.J.; Yang, P.X.; Chu, J.H. Microstructure and optical properties of Zn-doped BaTiO3 thin films. J. Phys. Conf. Ser. 2011, 276, 012163. [Google Scholar] [CrossRef]
- Ohsaka, T.; Fujiki, Y. Raman spectra in hollandite type compounds K1.6Mg0.8Ti16 and K1.6Al1.6Ti6.4O16. Solid State Commun. 1982, 44, 1325–1327. [Google Scholar] [CrossRef]
- Ohsaka, T.; Izumi, F.; Fujiki, Y. Raman Spectrum of anatase TiO2. J. Raman Spectrosc. 1978, 7, 321–324. [Google Scholar] [CrossRef]
- Shibata, Y.; Suemoto, T.; Ishigame, M. Raman scattering studies of mobile ions in superionic conductor hollandites. Phys. Status solidi 1986, 134, 71–79. [Google Scholar] [CrossRef]
- Porto, S.P.S.; Fleury, P.A.; Damen, T.C. Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Phys. Rev. 1967, 154, 522–526. [Google Scholar] [CrossRef]
- Tian, F.; Zhang, Y.; Zhang, J.; Pan, C. Raman Spectroscopy: A New Approach to Measure the Percentage of Anatase TiO2 Exposed (001) Facets. J. Phys. Chem. C 2012, 116, 7515–7519. [Google Scholar] [CrossRef]
- Roy, N.; Park, Y.; Sohn, Y.; Leung, K.T.; Pradhan, D. Green Synthesis of Anatase TiO2 Nanocrystals with Diverse Shapes and their Exposed Facets-Dependent Photoredox Activity. ACS Appl. Mater. Interfaces 2014, 6, 16498–16507. [Google Scholar] [CrossRef]
- Ishii, M.; Fujiki, Y.; Ohsaka, T. Raman scattering in one-dimensional ionic conductors Rb-priderites. Solid State Commun. 1985, 55, 1123–1126. [Google Scholar] [CrossRef]
- Poyraz, A.S.; Huang, J.; Pelliccione, C.J.; Tong, X.; Cheng, S.; Wu, L.; Zhu, A.C.; Marschilok, K.J.; Takeuchi, E.S. Takeuchi. Synthesis of cryptomelane type a-MnO2 (KxMn8O16) cathode materials with tunable K? Content: The role of tunnel cation concentration on electrochemistry. J Mater Chem A 2017, 5, 16914–16928. [Google Scholar] [CrossRef]
- Knyazev, A.V.; Mączka, M.; Ladenkov, I.V.; Bulanov, E.N.; Ptak, M. Crystal structure, spectroscopy, and thermal expansion of compounds in MI2O–Al2O3–TiO2 system. J Solid State Chem. 2012, 196, 110–118. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [Green Version]
- Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie, D.P., III. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Stat. Sol. B 2015, 252, 1700–1710. [Google Scholar] [CrossRef]
- Johannes, A.Z.; Pingak, R.K.; Bukit, M. Tauc Plot Software: Calculating energy gap values of organic materials based on Ultraviolet-Visible absorbance spectrum. IOP Conf. Series Mater. Sci. Eng. 2020, 823, 012030. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B 1966, 15, 627–637. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshoaibi, A.; Saber, O.; Ahmed, F. Enhancement of Optical Activity and Properties of Barium Titanium Oxides to Be Active in Sunlight through Using Hollandite Phase Instead of Perovskite Phase. Crystals 2021, 11, 550. https://doi.org/10.3390/cryst11050550
Alshoaibi A, Saber O, Ahmed F. Enhancement of Optical Activity and Properties of Barium Titanium Oxides to Be Active in Sunlight through Using Hollandite Phase Instead of Perovskite Phase. Crystals. 2021; 11(5):550. https://doi.org/10.3390/cryst11050550
Chicago/Turabian StyleAlshoaibi, Adil, Osama Saber, and Faheem Ahmed. 2021. "Enhancement of Optical Activity and Properties of Barium Titanium Oxides to Be Active in Sunlight through Using Hollandite Phase Instead of Perovskite Phase" Crystals 11, no. 5: 550. https://doi.org/10.3390/cryst11050550
APA StyleAlshoaibi, A., Saber, O., & Ahmed, F. (2021). Enhancement of Optical Activity and Properties of Barium Titanium Oxides to Be Active in Sunlight through Using Hollandite Phase Instead of Perovskite Phase. Crystals, 11(5), 550. https://doi.org/10.3390/cryst11050550