Synthesis, Thermal and Optical Characterizations of New Lateral Organic Systems
Abstract
:1. Introduction
2. Experimental
Synthesis
General Procedure for Synthesis of 4-(4-(hexyloxyphenyl)iminomethyl)-3-Methoxyphenyl 4-Alkoxybenzoates
3. Results and Discussion
3.1. Optical and Mesophase Studies
3.2. Thermal Properties Studies
3.3. Effect of the Lateral Methoxy Group on the Mesomorphic Behaviors
3.4. Photoactive Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelker, H.; Scheurle, B. A Liquid-crystalline(Nematic) Phase with a Particularly Low Solidification Point. Angew. Chem. Int. Ed. 1969, 8, 884–885. [Google Scholar] [CrossRef]
- Kato, T.; Uchida, J.; Ichikawa, T.; Sakamoto, T. Functional Liquid Crystals towards the Next Generation of Materials. Angew. Chem. Int. Ed. 2018, 57, 4355–4371. [Google Scholar] [CrossRef]
- Sharma, V.S.; Patel, R.B. Design and investigation of calamatic liquid crystals: Schiff base (‒CH˭N), chalcone (‒CO‒CH˭CH‒), and ester (‒COO‒) linkage group contain rigid rod shape with various terminal parts. Mol. Cryst. Liq. Cryst. 2017, 643, 141–158. [Google Scholar] [CrossRef]
- Ahmed, N.H.S.; Saad, G.R.; Ahmed, H.A.; Hagar, M. New wide-stability four-ring azo/ester/Schiff base liquid crystals: Synthesis, mesomorphic, photophysical, and DFT approaches. RSC Adv. 2020, 10, 9643–9656. [Google Scholar] [CrossRef] [Green Version]
- Al-Mutabagani, L.; Alshabanah, L.A.; Ahmed, H.; Abu Al-Ola, K.; Hagar, M. New Rod-like H-bonded Assembly Systems: Mesomorphic and Geometrical Aspects. Crystals 2020, 10, 795. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Hagar, M.; Aljuhani, A. Mesophase behavior of new linear supramolecular hydrogen-bonding complexes. RSC Adv. 2018, 8, 34937–34946. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.A.; Mansour, E.; Hagar, M. Mesomorphic study and DFT simulation of calamitic Schiff base liquid crystals with electronically different terminal groups and their binary mixtures. Liq. Cryst. 2020, 47, 2292–2304. [Google Scholar] [CrossRef]
- Kelker, H.; Scheurle, B. Eine flüssig-kristalline (nematische) Phase mit besonders niedrigem Erstarrungspunkt. Angew. Chem. 1969, 81, 903–904. [Google Scholar] [CrossRef]
- Saccone, M.; Kuntze, K.; Ahmed, Z.; Siiskonen, A.; Giese, M.; Priimagi, A. ortho-Fluorination of azophenols increases the mesophase stability of photoresponsive hydrogen-bonded liquid crystals. J. Mater. Chem. C 2018, 6, 9958–9963. [Google Scholar] [CrossRef]
- Jessy, P.; Radha, S.; Patel, N. Morphological, optical and dielectric behavior of chiral nematic liquid crystal mixture: Study on effect of different amount of chirality. J. Mol. Liq. 2018, 255, 215–223. [Google Scholar] [CrossRef]
- Mishra, R.; Hazarika, J.; Hazarika, A.; Gogoi, B.; Dubey, R.; Bhattacharjee, D.; Singh, K.N.; Alapati, P.R. Dielectric properties of a strongly polar nematic liquid crystal compound doped with gold nanoparticles. Liq. Cryst. 2018, 45, 1661–1671. [Google Scholar] [CrossRef]
- Zaki, A.A. Optical measurements of phase transitions in difluorophenylazophenyl benzoate thermotropic liquid crystal with specific orientated fluorine atoms. Phase Transit. 2018, 92, 135–148. [Google Scholar] [CrossRef]
- Zaki, A.A.; Ahmed, H.; Hagar, M. Impact of fluorine orientation on the optical properties of difluorophenylazophenyl benzoates liquid crystal. Mater. Chem. Phys. 2018, 216, 316–324. [Google Scholar] [CrossRef]
- Naoum, M.M.; Saad, G.R.; Nessim, R.I.; Abdel-Aziz, T.A.; Seliger, H. Effect of molecular structure on the phase behaviour of some liquid crystalline compounds and their binary mixtures II. 4-Hexadecyloxyphenyl arylates and aryl 4-hexadecyloxy benzoates. Liq. Cryst. 1997, 23, 789–795. [Google Scholar] [CrossRef]
- Saad, G.R.; Nessim, R.I. Effect of molecular structure on the phase behaviour of some liquid crystalline compounds and their binary mixtures VI[1]. The effect of molecular length. Liq. Cryst. 1999, 26, 629–636. [Google Scholar] [CrossRef]
- Naoum, M.; §, S.M.; Ahmed, H. Lateral protrusion and mesophase behaviour in pure and mixed states of model compounds of the type 4-(4′-substituted phenylazo)-2-(or 3-)methyl phenyl-4’-alkoxy benzoates. Liq. Cryst. 2010, 37, 1245–1257. [Google Scholar] [CrossRef]
- Luckhurst, G.; Gray, G.W. The molecular Physics of Liquid Crystals; Academic Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Ahmed, H.A.; El-Atawy, M.A. Synthesis, mesomorphic and geometrical approaches of new non-symmetrical system based on central naphthalene moiety. Liq. Cryst. 2021. [Google Scholar] [CrossRef]
- El-Atawy, M.A.; Naoum, M.M.; Al-Zahrani, S.A.; Ahmed, H.A. New Nitro-Laterally Substituted Azomethine Deriva-tives; Synthesis, Mesomorphic and Computational Characterizations. Molecules 2021, 26, 1927. [Google Scholar] [CrossRef]
- Takezoe, H.; Takanishi, Y. Bent-Core Liquid Crystals: Their Mysterious and Attractive World. Jpn. J. Appl. Phys. 2006, 45, 597–625. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Hagar, M.; El-Sayed, T.H.; Alnoman, R.B. Schiff base/ester liquid crystals with different lateral substituents: Mesophase behaviour and DFT calculations. Liq. Cryst. 2019, 46, 1–11. [Google Scholar] [CrossRef]
- Naveen, K.; Udayabhanu, A.; Mahadevan, K.M.; Nagaraju, G. Solvent free and green synthesis of efficient solvochrom-ism based coumarin moieties for quick visualization of LFPs and OLEDs applications. J. Mol. Struct. 2021, 1223, 129208. [Google Scholar]
- Ghasem, B.; Shahram, M.; Saeed, S. A novel method for the synthesis of coumarin laser dyes derived from 3-(1H-benzoimidazol-2-yl) coumarin-2-one under microwave irradiation. Arab. J. Chem. 2014, 7, 972. [Google Scholar]
- Aulsebrook, M.L.; Graham, B.; Grace, M.R.; Tuck, K.L. Coumarin-based fluorescent sensors for zinc (II) and hypo-chlorite. Supramol. Chem. 2015, 27, 798. [Google Scholar] [CrossRef]
- Huang, X.; Dong, Y.; Huang, Q.; Cheng, Y. Hydrogen bond induced fluorescence recovery of coumarin-based sensor system. Tetrahedron Lett. 2013, 54, 3822–3825. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.I.; Pitchumani, K. beta-Cyclodextrin included coumarin derivatives as selective fluorescent sensors for Cu2+ ions in HeLa cells. Royal Soc. Chem. Adv. 2016, 6, 20269. [Google Scholar]
- Breul, A.M.; Hager, M.D.; Schubert, U.S. Fluorescent monomers as building blocks for dye labeled polymers: Synthesis and application in energy conversion, biolabeling and sensors. Chem. Soc. Rev. 2013, 42, 5366–5407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, H.; Yan, M.; Guo, H.; Yang, F. The novel rufigallol-based liquid crystals with cholesterol units: Synthesis, mesomorphic and photophysical properties. Liq. Cryst. 2019, 46, 787–796. [Google Scholar] [CrossRef]
- Lin, L.; Qin, W.; Cheng, B.; Guo, H.; Yang, F. The influence of multiple alkyl chains on mesomorphic and photophysical properties of diphenylacrylonitrile liquid crystals. Liq. Cryst. 2019, 47, 967–976. [Google Scholar] [CrossRef]
- Young-Ki, K.; Bohdan, S.; Oleg, D. Lavrentovich. Molecular reorientation of a nematic liquid crystal by thermal ex-pansion. Nat. Commun. 2012, 3, 1113. [Google Scholar]
- Sayed, R.; Abd El-lateef, H.M.; Gomha, S.M. L-Proline catalyzed green synthesis and anticancer evaluation of novel bi-oactive benzil bis-hydrazones under grinding technique. Green Chem. Lett. Rev. 2021, 14, 179–188. [Google Scholar] [CrossRef]
- Gomha, S.M.; A Abdelhady, H.; Hassain, D.Z.; Abdelmonsef, A.H.; El-Naggar, M.; Elaasser, M.M.; Mahmoud, H.K. Thiazole-Based Thiosemicarbazones: Synthesis, Cytotoxicity Evaluation and Molecular Docking Study. Drug Des. Dev. Ther. 2021, ume 15, 659–677. [Google Scholar] [CrossRef]
- Gomha, S.M.; Muhammad, Z.A.; Abdel-Aziz, H.M.; Matar, I.K.; El-Sayed, A.A. Green synthesis, molecular docking and anticancer activity of novel 1,4-dihydropyridine-3,5-Dicarbohydrazones under grind-stone chemistry. Green Chem. Lett. Rev. 2020, 13, 6–17. [Google Scholar] [CrossRef]
- Gomha, S.M.; Edrees, M.M.; Muhammad, Z.A.; Kheder, N.A.; Melha, S.A.-; Saad, A.M. Synthesis, Characterization, and Antimicrobial Evaluation of Some New 1,4-Dihydropyridines-1,2,4-Triazole Hybrid Compounds. Polycycl. Aromat. Compd. 2020, 1–13. [Google Scholar] [CrossRef]
- Gomha, S.M.; Riyadh, S.M. Synthesis under Microwave Irradiation of [1,2,4]Triazolo[3,4-b] [1,3,4]thiadiazoles and Other Diazoles Bearing Indole Moieties and Their Antimicrobial Evaluation. Molecules 2011, 16, 8244–8256. [Google Scholar] [CrossRef] [PubMed]
- Abu-Melha, S.; Edrees, M.M.; Riyadh, S.M.; Abdelaziz, M.R.; Elfiky, A.A.; Gomha, S.M. Clean grinding technique: A facile synthesis and in silico antiviral activity of hydrazones, pyrazoles, and pyrazines bearing thiazole moiety against SARS-CoV-2 main protease (Mpro). Molecules 2020, 25, 4565. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.R.; Gomha, S.M.; A Taher, E.; A Muhammad, Z.; El-Seedi, H.R.; Gaber, H.M.; Ahmed, M.M. One-Pot Synthesis of Novel Thiazoles as Potential Anti-Cancer Agents. Drug Des. Dev. Ther. 2020, ume 14, 1363–1375. [Google Scholar] [CrossRef] [Green Version]
- Ouf, S.A.; Gomha, S.M.; Ewies, M.M.; Ouf, A.S.; Sharawy, I.A.A. Antidermatophytic activity of some newly synthe-sized arylhydrazonothiazoles conjugated with monoclonal antibody. Sci. Rep. 2020, 10, 20863. [Google Scholar] [CrossRef]
- Rashdan, H.R.M.; Abdelmonsef, A.H.; Shehadi, I.A.; Gomha, S.M.; Soliman, A.M.M.; Mahmoud, H.K. Synthesis, mo-lecular docking screening and anti-proliferative potency evaluation of some new imidazo[2,1-b]thiazole linked thiadi-azole conjugates. Molecules 2020, 25, 4997. [Google Scholar] [CrossRef] [PubMed]
- Imrie, C.T.; Taylor, L. The preparation and properties of low molar mass liquid crystals possessing lateral alkyl chains. Liq. Cryst. 1989, 6, 1–10. [Google Scholar] [CrossRef]
- Imrie, C.T. Non-symmetric liquid crystal dimers: How to make molecules intercalate. Liq. Cryst. 2006, 33, 1449–1485. [Google Scholar] [CrossRef]
- Attard, G.; Imrie, C.; Karasz, F. Low molar mass liquidcrystalline glasses: Preparation and properties of the. al-pha.-(4-cyanobiphenyl-4ʹ-oxy)-. omega.-(1-pyrenimin ebenzylidene-4ʹ-oxy) alkanes. Chem. Mater. 1992, 4, 1246–1253. [Google Scholar] [CrossRef]
- Attard, G.S.; Imrie, C.T. Liquid-crystalline and glass-forming dimers derived from 1-aminopyrene. Liq. Cryst. 1992, 11, 785–789. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Hagar, M.; Saad, G.R. Impact of the proportionation of dialkoxy chain length on the mesophase be-haviour of Schiff base/ester liquid crystals; experimental and theoretical study. Liq. Cryst. 2019, 46, 1611–1620. [Google Scholar] [CrossRef]
- Avhad, K.; Jadhav, M.; Patil, D.; Chowdhury, T.H.; Islam, A.; Bedja, I.; Sekar, N. Rhodanine-3-acetic acid containing D-π-A push-pull chromophores: Effect of methoxy group on the performance of dye-sensitized solar cells. Org. Electron. 2019, 65, 386–393. [Google Scholar] [CrossRef]
- Yang, M.; Liu, Z.; Li, X.; Yuan, Y.; Zhang, H. Influence of flexible spacer length on self-organization behaviors and photophysical properties of hemiphasmidic liquid crystalline polymers containing cyanostilbene. Eur. Polym. J. 2020, 123, 109459. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Khushaim, M.S. Nematic Phase Induced from Symmetrical Supramolecular H-Bonded Systems Based on Flexible Acid Core. Cryst. 2020, 10, 801. [Google Scholar] [CrossRef]
- Ahmed, H.; Khushaim, M.S. Nematogenic Laterally Substituted Supramolecular H-Bonded Complexes Based on Flexible Core. Cryst. 2020, 10, 878. [Google Scholar] [CrossRef]
- Al-Mutabagani, L.A.; Alshabanah, L.A.; Naoum, M.M.; Hagar, M.; Ahmed, H.A. Experimental and Computational Approaches of Newly Polymorphic Supramolecular H-Bonded Liquid Crystal Complexes. Front. Chem. 2020, 8, 930. [Google Scholar] [CrossRef]
Comp. | TCr–N | ΔHCr–N | TN–I | ΔHN–I | ΔTN | ΔSN–I/R |
---|---|---|---|---|---|---|
I6 | 96.9 | 44.9 | 149.8 | 1.5 | 52.9 | 0.4 |
I8 | 96.3 | 51.5 | 138.3 | 2.8 | 42.0 | 0.8 |
I10 | 89.9 | 49.3 | 129.1 | 2.2 | 39.2 | 0.7 |
I12 | 73.8 | 44.3 | 122.1 | 1.0 | 48.3 | 0.3 |
I16 | 95.3 | 54.7 | 119.2 | 3.0 | 23.9 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mutabagani, L.A.; Alshabanah, L.A.; Gomha, S.M.; Ahmed, H.A. Synthesis, Thermal and Optical Characterizations of New Lateral Organic Systems. Crystals 2021, 11, 551. https://doi.org/10.3390/cryst11050551
Al-Mutabagani LA, Alshabanah LA, Gomha SM, Ahmed HA. Synthesis, Thermal and Optical Characterizations of New Lateral Organic Systems. Crystals. 2021; 11(5):551. https://doi.org/10.3390/cryst11050551
Chicago/Turabian StyleAl-Mutabagani, Laila Ahmed., Latifah A. Alshabanah, Sobhi M. Gomha, and Hoda A. Ahmed. 2021. "Synthesis, Thermal and Optical Characterizations of New Lateral Organic Systems" Crystals 11, no. 5: 551. https://doi.org/10.3390/cryst11050551
APA StyleAl-Mutabagani, L. A., Alshabanah, L. A., Gomha, S. M., & Ahmed, H. A. (2021). Synthesis, Thermal and Optical Characterizations of New Lateral Organic Systems. Crystals, 11(5), 551. https://doi.org/10.3390/cryst11050551