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Abstract: The chemical preparation, crystal structure, Hirshfeld surface analysis and spectroscopic
characterization of the novel cadmium (II) 2,5-dichloro-p-phenylendiaminium decachlorotricad-
mate(II) hexahydrate complex, (C6H8Cl2N2)2[Cd3Cl10]·6H2O, has been reported. The atomic ar-
rangement can be described as built up by an anionic framework, formed by edge-sharing [CdCl6]2−

octahedra in linear polymeric chains spreading along the a-axis, while the organic cations surround
these latters. The inspection of the Hirshfeld surface analysis helps to discuss the strength of
hydrogen bonds and to quantify the inter-contacts, which reveal that H . . . Cl/Cl . . . H (38.9%),
H . . . H (13.9%), and Cd . . . Cl/Cl . . . Cd (12.4%) are the main interactions that govern the crystal
packing of the studied structure. SEM/EDXwas carried out and the powder XRD confirmed the
good crystallinity of the material. FT-IR and the DFT calculation reveal the good correlation between
the experimental and the theoretical wavenumbers. The HOMO-LUMO energy gap was used to
predict the electric conductivity of the compound. Finally, the thermal TGA/DTA analysis shows
stability until 380 K.

Keywords: cadmium hybrid material; X-ray diffraction; DFT; Hirshfeld surface; enrichment ratio;
SEM/EDX; IR absorption; thermal analysis

1. Introduction

In recent years, great efforts have been developed for hybrid materials. In fact, the
idea behind these types of materials is to optimize both organic and inorganic components
on the molecular scale and the expected material takes advantage of organic (such as
polymerizable and mesomorphism) and inorganic moieties (such as conductivity), where
their properties are strongly dependent on their structures [1–7].

The approach is based on the identification of the hydrogen bond acceptor sites,
as their sites with the hydrogen bond donors have the potential to afford organized
crystalline arrays in different dimensions [8–10]. In fact, amines are commonly selected as
potential hydrogen bonding donors and metal halides are particularly considered as strong
hydrogen bond acceptors. Particularly, 2,5-dichloro-p-phenylendiamine is an organic
molecule which contains two amino groups on the aromatic ring. It is a good template
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presenting both rigidity and flexibility and is also rarely studied. The non-planarity and
the stabilization of the amine is the result of a balance between two opposing forces: the
conjugation of the nitrogen lone pair with the aromatic ring [11]. This latter is a very useful
in several fields such as microelectronics and electromagnetic sensors, due to the high
environmental stability, and controllable electrical conductivity [12–14]. However, it should
be emphasized that solid-state structures arise from a balance of intermolecular forces.
Although stronger forces may dominate, weaker forces (donor-acceptor interactions, and
dispersion forces) are also important and may lead together to the development of the
three-dimensional network [9].The association of protonated organic cations and metallic-
based moieties, either anions or polyatomic clusters, led to a remarkable diversity of
assemblies. As metal halides, halocadmates(II) have received considerable attention thanks
to their polymorphic behavior, electronic configuration, and lattice location. Moreover,
their structural diversity is the key issue in semiconductor physics, supramolecular studies,
and bioinorganic studies [15–18].

The principal goal of this work is to give detailed information about the anionic
polymeric part of the considered compound with respect to its physicochemical properties.
Thus, in order to examine the interactions inside the supramolecular arrangement, it is
important to study their quantitative measurements.

2. Experimental
2.1. Elaboration of (C6H8Cl2N2)2[Cd3Cl10]·6H2O

The studied compound (C6H8Cl2N2)2[Cd3Cl10]·6H2O was prepared by an acid-base
reaction between HCl, cadmium chloride and 2,5-dichloro-p-phenylenediaminein in a
stoichiometric amount 3:2.

A 5.5 g of CdCl2 (3 × 10−2 mol) was mixed with HCl (purity 37%) and neutralized by
2 × 10−2 mol of 2,5-dichloro-p-phenylenediamine (3.5 g, purity 97%) dissolved in ethanol.

After three weeks, colorless plate crystals adequate for XRD study were obtained with
dimensions of 0.4 × 0.15 × 0.15 mm3.

The chemical reaction scheme is:

3CdCl2 + 2C6H8Cl2N2 + 4HCl + 4H2O→(C6H8Cl2N2)2[Cd3Cl10]·6H2O

The elemental analysis technique is used in order to determine the proposed formula:
C (12.43%/12.45%); H (2.41%/2.44%); N (4.83%/4.84%) (exp/theor).

2.2. Charactrisation
2.2.1. X-ray Powder Diffraction (XRPD) Analysis

PXRD pattern was recorded using a Siemens D 5000 diffractometer (λ = 1.542 Å) with
2θ in the range 5–50◦.

2.2.2. X-ray Single-Crystal Structural Analysis

The X-ray diffraction data were collected at 150 K using a Rigaku AFC system
equipped with graphitmonochromatedMoKα radiation. The absorption corrections were
made with the help of the Rigaku/MSC Crystal clear package [19]. The structure was
solved by a dual space method with the Olex 2 program and refined by successive differen-
tial Fourier syntheses and performed on F2 by a full matrix least squares procedure using
the Olex2.refine program [20,21].

The structure of (C6H8Cl2N2)2[Cd3Cl10]·6H2O was developed in the centrosymmetric
space group P1. The drawings were made with Diamond2.0 [22] and the structural graphics
of the asymmetric unit were created with Mercury 3.8 [23].

2.2.3. Morphologies and EDX Analysis

SEM micrographs were observed on JEOL-6610LV electron microscope at an accel-
eration voltage of 20 kV, with a magnification of 500× and 1500×, coupled with Oxford
X-Max microanalysis system EDX.
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2.2.4. Spectroscopic Measurements

The (FT-IR) spectrum was registeredusing a NICOLET IR 200 between 4000 and
500 cm−1.

2.2.5. Thermal Study

The TGA/DTA was performed with a PYRIS 1TG machine on 12.772 mg with a
scanning rate of 5 Kmin−1 under a dynamic argon atmosphere from 300 to 1100 K.

2.2.6. DFT Calculation

Theoretical calculations were made on the two organic ligands and on the Cd3Cl13
group as defined in the asymmetric unit. All calculationswere made using the DFT/B3LYP/
LanL2DZ basis set for all atoms. The software used is Gaussian A-09, except for the
boundary orbital calculations for which Gaussian-98was used. The results were analyzed
with Molekel (border orbitals and MEP), Gauss-Sum (IR and orbital distribution (DOS))
and Molden (preparation of files, analysis of optimizations and spectra) softwares.

3. Results and Discussion
3.1. SEM Morphologies and EDX Analysis

SEM/EDX is a technique that has been used to observe the size, morphology and to
determine the elemental composition of the crystal. Figure 1a shows the surface morphol-
ogy of (C6H8Cl2N2)2[Cd3Cl10]·6H2O. As it can be seen, the surface is uniformly made by
an assembly of fine particles with a stick form.

Additionally, in order to verify the elements present in the studied material, the EDX
profile has been recorded and is shown in Figure 1b. The spectrum confirms the presence
of Cd, Cl, N, C, and O in the target material.
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Figure 1. SEM images of (C6H8Cl2N2)2[Cd3Cl10]·6H2O for a magnification 500 times (left) and 1500 
times (right) (a). EDX spectrum in the zone of high contrast (b). 

Figure 1. SEM images of (C6H8Cl2N2)2[Cd3Cl10]·6H2O for a magnification 500 times (left) and
1500 times (right) (a). EDX spectrum in the zone of high contrast (b).

3.2. X-ray Powder Diffraction (XRPD) Analysis

Figure 2 compares the XRPD pattern of the compound (C6H8Cl2N2)2[Cd3Cl10]·6H2O
with those generated from the single-crystal data. The overlaid simulated XRDP closely
resembles the experimental pattern at the majority of the positions of the peaks.
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Figure 2. Theoretical and experimental XRPD of (C6H8Cl2N2)2[Cd3Cl10]·6H2O.

3.3. Crystal Structure Description

The asymmetric unit consists of two halves of (C6H8Cl2N2)2+, three water molecules
and one half of [Cd3Cl10]4− anion, formed by cadmium atom Cd(1) located on an inversion
center at (0,0,1/2) and Cd(2)(Figure 3). It is worth noting that the water molecules O10
are disordered equally over two positions with a molar ratio of 0.5:0.5 (O10A and O10B).
The crystal data and the experimental parameters used for the intensity data collection are
reported in Table 1. Selected bonds and angles are listed in Table 2; Table 3.

Crystals 2021, 11, x FOR PEER REVIEW 4 of 18 
 

 

3.2. X-ray Powder Diffraction (XRPD) Analysis 
Figure 2 compares the XRPD pattern of the compound (C6H8Cl2N2)2[Cd3Cl10]·6H2O 

with those generated from the single-crystal data. The overlaid simulated XRDP closely 
resembles the experimental pattern at the majority of the positions of the peaks. 

 
Figure 2. Theoretical and experimental XRPD of (C6H8Cl2N2)2[Cd3Cl10]·6H2O. 

3.3. Crystal Structure Description 
The asymmetric unit consists of two halves of (C6H8Cl2N2)2+, three water molecules 

and one half of [Cd3Cl10]4− anion, formed by cadmium atom Cd(1) located on an inversion 
center at (0,0,1/2) and Cd(2)(Figure 3). It is worth noting that the water molecules O10 are 
disordered equally over two positions with a molar ratio of 0.5:0.5 (O10A and O10B). The 
crystal data and the experimental parameters used for the intensity data collection are 
reported in Table 1. Selected bonds and angles are listed in Table 2; Table 3. 

 
Figure 3. ORTEP representation of (C6H8Cl2N2)2[Cd3Cl10]·6H2O. 
Figure 3. ORTEP representation of (C6H8Cl2N2)2[Cd3Cl10]·6H2O.



Crystals 2021, 11, 553 5 of 18

Table 1. Crystallographic Details.

Crystal Data
Chemical formula Cd3Cl10·2(C6H8Cl2N2)·6(H2O)
Mr 1157.95
Crystal system, space group Triclinic, P1
Temperature (K) 150
a, b, c (Å) 6.784 (4), 9.552 (6), 13.592 (9)
α, β, γ (◦) 102.247 (9), 92.665 (11), 97.160 (7)
V (Å3) 851.6 (9)
Z 1
Radiation type Mo Kα
µ (mm−1) 2.99
Crystal size (mm) 0.4 × 0.15 × 0.15
Data Collection
Diffractometer Rigaku Mercury
Absorption correction: Multi-scan
Tmin, Tmax 0.421, 0.638
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections 9842, 3887, 3357

Rint 0.071
(sin θ/λ)max (Å−1) 0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.11
No. of reflections 3887
No. of parameters 198
No. of restraints 5
∆ρmax, ∆ρmin (e Å−3) 0.99, −1.57
CCDC No 2061865

The crystal packing is formed by a polymeric chains of [Cd3Cl10]n
4n− anions propagat-

ing parallel to the a-axis (Figure 4). These chains, located at z = 1
2 , are made by edge-sharing

CdCl6 octahedra, where the [C6H8Cl2N2]2+ and H2O are inserted between these chains.
The stability and cohesion of the atomic arrangement are made via a large number of

hydrogen bonds between the cations and the inorganic polymeric chains: N14–H13C . . . Cl6,
N13–H13B . . . Cl5, N13–H13A . . . Cl6 and N13–H13B . . . O11 hydrogen bonds (Table 4).

For the inorganic entity, two types of cadmium chloride octahedral are observed:
Cd(1)Cl6 and Cd(2)Cl6, which give rise to a polymeric chain of [Cd3Cl10]n

4n− along the
b-axis. Figure 5 shows that the Cd(1)Cl6 octahedron shares one bridging chlorine atoms
(Cl(4) and Cl(3)) with the Cd(2)Cl6 ocathedra, generated by a symmetric center, share one
bridging chlorine atoms (Cl(3) and Cl(3′)). Moreover, the bond length and angles vary
with the environment around the Cl atoms. The value of the Cd-Cl bond lengths are in the
range 2.527–2.818 Å. The average bridging Cd-Cl distances, of 2.6695 Å, are longer than
the terminal ones, equal to 2.5936 Å, and the Cl-Cd-Cl bond angles vary from 168.21 to
180◦ [24–28]. These distortionsare most likely caused by the interaction of the NH3

+ groups
with the chloride pairs that affect the distortion of the CdCl6 units via Cd2+ lone pair.
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→
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The average values of the distortion parameters of the [CdCl6]2− octahedra were
calculated using Equations (1) and (2), respectively:

ID(Cd−Cl) = ∑n1
i=1
|di− dm|

n1dm
, (1)

ID(Cl−Cd−Cl) = ∑n2
i=1
|ai− am|

n2am
, (2)

where d is the (Cd-Cl) distance, a is the (Cl-Cd-Cl) angle, m is the average value, n1 = 6
and n2 = 12. The value of the distortion indices were ID(Cd-Cl) = 0.044 and ID(Cl-Cd-
Cl) = 0.0026 for Cd(1)Cl6 and ID(Cd-Cl) = 0.063 and ID(Cl-Cd-Cl) = 0.0026 for Cd(2)Cl6.
These low values highlight the distorted octahedron geometry of the metal.

On the other hand, the organic part of (C6H8Cl2N2)2[Cd3Cl10]·6H2O is made by two
crystallographic independent [C6H8Cl2N2]2+ dictations. The cations containing C17, C18
and C19 carbon atoms (molecule A) are located at (0,0,0), while those formed by C15, C16
and C20 (molecule B) carbon atoms are located over the inversion center at (1/2,1/2,0)
and are linked to the water molecules via N-H . . . O and O-H . . . O hydrogen bonds
to form ribbons extending along the c-axis and located at y = 1

2 (Figure 6). It is worth
mentioning that all organic molecules are parallel to each other and are stacked in an offset
manner, but there is nevertheless a degree of π-π overlap between adjacent rings since the
distance between two organic cations corresponds to a unit cell, equal to 6.784(4), while the
interaction C-Cl . . . π could be considered since the shortest distance between the centroid
of the ring and chloride atom is 3.504 Å [29,30].
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The main geometrical characteristics of these entities, grouped in Table 3, agree with
that found in the literature [31–34].
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Table 2. Distances and angles of Cd3Cl10 in (C6H8Cl2N2)2[Cd3Cl10]·6H2O.

Distances (Å) in [Cd(1)Cl6]2− Distances (Å) in [Cd(2)Cl6]2−

Cd1—Cl3 2.6998 (16) Cd2—Cl3iii 2.6480 (17)
Cd1—Cl3i 2.6998 (16) Cd2—Cl3 2.8180 (16)
Cd1—Cl4ii 2.6125 (17) Cd2—Cl4 2.6471 (16)
Cd1—Cl4iii 2.6125 (17) Cd2—Cl5 2.6506 (16)
Cd1—Cl5i 2.5857 (15) Cd2—Cl6 2.5269 (15)
Cd1—Cl5 2.5857 (15) Cd2—Cl7 2.5681 (16)

Angles (◦) in [Cd3Cl10]4−

Cl3—Cd1—Cl3i 180.0 Cl4—Cd2—Cl3 91.58 (3)
Cl4ii—Cd1—Cl3 95.52 (3) Cl4—Cd2—Cl3iii 84.83 (3)

Cl4iii—Cd1—Cl3i 95.52 (3) Cl5—Cd2—Cl3 82.78 (3)
Cl4ii—Cd1—Cl3i 84.48 (3) Cl5—Cd2—Cl3iii 89.82 (3)
Cl4iii—Cd1—Cl3 84.48 (3) Cl5—Cd2—Cl4 172.55 (3)

Cl4iii—Cd1—Cl4ii 180.0 Cl6—Cd2—Cl3 84.46 (3)
Cl5—Cd1—Cl3i 93.63 (3) Cl6—Cd2—Cl3iii 168.21 (3)
Cl5—Cd1—Cl3 86.37 (3) Cl6—Cd2—Cl4 90.00 (3)

Cl5i—Cd1—Cl3i 86.37 (3) Cl6—Cd2—Cl5 94.27 (3)
Cl5i—Cd1—Cl3 93.63 (3) Cl7—Cd2—Cl3 172.96 (3)
Cl5—Cd1—Cl4ii 89.73 (3) Cl7—Cd2—Cl3iii 94.57 (3)

Cl5i—Cd1—Cl4iii 89.73 (3) Cl7—Cd2—Cl4 95.40 (3)
Cl5—Cd1—Cl4iii 90.27 (3) Cl7—Cd2—Cl5 90.18 (3)
Cl5i—Cd1—Cl4ii 90.27 (3) Cl7—Cd2—Cl6 96.47 (3)
Cl5i—Cd1—Cl5 180.0 Cd2—Cl3—Cd1i 91.97 (3)

Cd2—Cl4—Cd1vi 96.39 (3) Cd2iii—Cl3—Cd1i 94.30 (3)
Cd2—Cl5—Cd1i 98.57 (3)

Symmetrycodes: (i) −x+2, −y, −z+1; (ii) x+1, y, z; (iii) −x+1, −y, −z+1; (vi) x−1, y, z.

Table 3. Geometric feature of (C6H8Cl2N2)2+ in (C6H8Cl2N2)2[Cd3Cl10]·6H2O.

Distances (Å) in (C6H8Cl2N2)2+

Cl8—C18 1.727 (4) Cl9—C20 1.731 (4)
N13—C17 1.477 (5) N14—C15 1.452 (5)
C17—C18 1.388 (5) C15—C16 1.393 (5)
C17—C19 1.376 (5) C15—C20 1.395 (6)
C18—C19 1.388 (5) C16—C20 1.385 (6)

Angles (◦) in (C6H8Cl2N2)2+

C18—C17—N13 120.7 (3) C16—C15—N14 120.0 (4)
C19—C17—N13 118.0 (3) C20—C15—N14 120.6 (3)
C19—C17—C18 121.1 (4) C20—C15—C16 119.4 (4)
C17—C18—Cl8 120.4 (3) C20—C16—C15 119.4 (4)
C19—C18—Cl8 120.1 (3) C15—C20—Cl9 118.8 (3)
C19—C18—C17 119.4 (4) C16—C20—Cl9 120.0 (3)
C18—C19—C17 119.5 (3) C16—C20—C15 121.2 (4)
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Table 4. H-bond characteristic (Å, º).

D-H . . . A D-H H . . . A D . . . A D-H . . . A

N14—H14a . . . O11vii 0.88 (3) 1.88 (3) 2.768 (5) 178 (3)
N14—H14c . . . O12viii 0.88 (3) 1.99 (3) 2.851 (5) 164 (2)
N13—H13b . . . O11vi 0.97 (4) 2.01 (4) 2.946 (6) 162 (4)
N14—H14b . . . Cl6ix 0.99 (2) 2.19 (4) 3.118 (5) 156 (6)
N13—H13a . . . Cl5i 0.98 (6) 2.66 (5) 3.200 (5) 115 (3)
N13—H13a . . . Cl6v 0.98 (6) 2.35 (5) 3.139 (4) 138 (4)
O11—H11b . . . O12ii 0.93 (5) 1.80 (5) 2.728 (4) 174 (5)
O12—H12b . . . O10A 0.90 (6) 1.93 (6) 2.817 (15) 174 (6)

O12—H12b . . . O10Biii 0.90 (6) 2.03 (6) 2.878 (14) 157 (6)
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+1; (v) x+1, y, z; (vi) −x+1, −y, −z+1,
(vii) x, y, z+1; (viii) x−1, y, z+1; (ix) −x, −y+1, −z+2.

3.4. Hirshfeld Surface

(HS) analysis was carried out for decoding and quantifying the intermolecular contri-
butions in the solid material using Crystal Explorer 17.5 [35]. The 2D fingerprint plots are
used to highlight a particular atom pain in close contact [36].

The calculation of enrichment ratio for a pair of elements (X, Y) EXY is given in the
reference [37], as shown in Table 5.

Figure 7a shows the dnorm surface for 2,5-dichloro-p-phenylendiaminium decachlorotri-
cadmate (II) hexahydrate. Herein, the red spots are attributed to the N-H . . . O and O-H
. . . O hydrogen bonds. However, the small flat regions delineated by the blue outline in
the surface mapped with curvedness indicate the absence of π . . . π stacking interactions
in the structure. In addition, there is no evidence of the adjacent red and blue triangles on
the shape index surface (Figure 7b,c).

Table 5. Hirshfeld contact surfaces and enrichment ratios for (C6H8Cl2N2)2[Cd3Cl10]·6H2O.

Atoms H Cl C Cd O

Surface% 35.65 39.4 13.45 6.3 1.5
O 2.8 0 0 0 0

Cd 0.04 2.49 0 0 0
C 0.14 0.72 4.9 0 0
Cl 1.38 0.63 0.72 2.49 0
H 1.09 1.38 0.14 0.04 2.8

Figure 8 contains the percentages of the different interactions. The 2D fingerprint plot
reveals that H . . . Cl/Cl . . . H contacts are the most encountered interactions and their
relative contribution reaches 38.9%, as shown in Figure 9a, due to the abundance of chloride
and hydrogen on the molecular surface (%SCl = 39.4% and % SH = 35.65%) with an enrichment
ratio EHCl = 1.38. Indeed, the structure cohesion is ensured by three N-H . . . Cl hydrogen
bonds (Table 4). The H . . . H contact represent 13.9% (Figure 9b). The Cd . . . Cl/Cl . . .
Cdis around 12.4% (Figure 9c) with an enrichment ratio ECdCl = 2.49, followed by Cl . . . Cl
9.9% (Figure 9d) and C . . . C 8.9% (Figure 9e). The Cl . . . Cl intermolecular interactions are
marked by a low amount of enrichment ratio EClCl = 0.63 due to the electrostatic repulsion
between two charges of the same sign. The C . . . C contacts have the most enrichment
value, ECC = 4.9, due to the accumulation of aromatic nuclei in the crystalline packing
SC = 13.45%. Other interconnects, such as C . . . Cl/Cl . . . C 7.7% (Figure 9f), H . . . C/C . . . H
1.4% (Figure 9h) and Cd . . . H/H . . . Cd 0.2% (Figure 9i) contributes less to the surface. The
C . . . Cl, H . . . C and Cd . . . H interactions are; ECCl = 0.72, EHC = 0.14 and ECdH = 0.04. The
low enrichment ratio value reveals that pairs tend to avoid contact with each other. Finally,
the percentage of H . . . O/H . . . O intermolecular interactions is around 3% (Figure 9g)
and they are over-represented (EHO = 2.8). Indeed, there are three N-H . . . O and three
O-H . . . O hydrogen bonds in the structure (Table 4).
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3.5. Infrared Spectral Studies

The FT-IR was used to verify the functional groups in the synthesized material and their
vibrational behavior. Figure 10 display the FT-IR spectrum of (C6H8Cl2N2)2[Cd3Cl10]·6H2O.
Since all bands originating from the vibration of the anions are observed below 400 cm−1,
the vibrational spectrum is only due to the cation [38].

The bands at high-frequency domain can be attributed to the N-H, O-H and C-H
stretching vibrations. The assignment and the deduction of these bands are based on
similar reported results [39,40].

Indeed, the bands observed at 3572 cm−1, 3528 cm−1, and 3496 cm−1 are attributed to
υ(O-H) of water molecules confirmed by DFT computations with the frequency at 3498 cm−1

and 3420 cm−1. However, the two bands at 3347 and 3401 cm−1 are assigned to the
stretching vibrations of the N-H group. The DFT calculation predicted these modes in the
range 3159 and 3134 cm−1. As matter of fact, hydrogen bonding interactions influence
the frequency as well as the intensity and the width of these vibrations. As for the C-
H stretching bands, they are assigned generally between 3000 and 2800 cm−1 and are
visible by DFT computation at 2970 and 3185 cm−1. Moreover, the band between 1590 and
1480 cm−1 corresponds to δ(N-H) and δ(O-H) deformation vibrations. This vibration is well
observed by DFT calculations by a large band at 1485 cm−1.
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Furthermore, the vibration band located 1406 cm−1 is assigned to the υ(C=C) aromatic
ring stretching vibrations, this vibration is well-observed by the DFT calculation and was
found at 1421 cm−1. The vibration at 1103 cm−1 corresponds to aromatic C-H in plan
bending mode and it is confirmed by DFT calculations at 1080 cm−1. Moreover, the band
at 817 cm−1 corresponds to the out of plan bending of the benzene ring, which is consistent
with the proposed tetra-substituted benzene ring. The vibration bands between 1292 cm−1

and 1172 cm−1 are attributed to valence vibrations of υ(C-N), DFT calculations predicted
this mode at 1350 cm−1 and at 1250 cm−1. Additionally, the C-Cl stretching frequencies
are seen at 875 cm−1. However, the ρ(C-H) and ω(N-H) vibrations bands appear at 650 cm−1

and 500 cm−1 as weak bands, and this was calculated to be found in the region 1000 to
500 cm−1 and they are weakly visible.
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The DFT-IR spectrum and the experimental spectrum, given in Figure 10, are very
similar. In Figure 11 a nice straight-line correlation was observed. It is worth considering
that when comparing both experimental and theoretical results, the theoretically predicted
parameters were calculated in a simulated water phase, and this latter is so far from the
experimental environment. Subsequently, small deviations should not be surprising. Even
so, the results demonstrate a good agreement, which is well-confirmed by the correlation
(R2 = 0.987) that is mostly achieved in the fingerprint region.
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3.6. Quantum Mechanical Study of (C6H8Cl2N2)2[Cd3Cl10]·6H2O

The HOMO and LUMO molecular orbitals were determined (Figure 12). As it can be
seen, the HOMO-LUMO energy difference is very small, around 0.2 eV, which seems to
indicate a weak stability. The HOMO is localizedon the inorganic part of the system, while
the LUMO islocated on the organic and the inorganic parts, which will lead to electronic
transfers from one to the other. The (DOS)energy is represented in Figure 13.
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3.7. Molecular Electrosatatic Ootential (MEP) Analysis

The MEP map is used to identify the active sites of a given molecule. For this reason,
MEP mapped surface of this compound is shown in Figure 14. As it can be seen, the
electrostatic potential maps are colour-coded and are subdivided into many regions. The
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blue and red colours indicate the positive and negative potentials, respectively. The
inorganic part is negative, while the organic entity is positive. These results agree with
Mulliken charges (Table 6).
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3.8. Mulliken Population Analysis of (C6H8Cl2N2)2[Cd3Cl10]·6H2O

The Mulliken charge distribution of all atoms is shown in Table 6. The underlined
atoms are those that are interacting in the Cd3Cl13 + Ligand 2 system. The transfer occurs
to the para atoms of those where the interaction takes place (carbon 2 and other nitrogen).
The atoms of the organic molecule are numbered as depicted in Figure 15.

Crystals 2021, 11, x FOR PEER REVIEW 15 of 18 
 

 

1
6

2

5

3

4

N
+

8

N
+

10

Cl
7

Cl
9

H
10a

H
10b

H
10c

H
8a

H
8b

H
8c

H
6a

H
3a

 
Figure 15. The atoms numbering of the organic molecule. 

For the Cd3Cl13anion, the cadmium ions have positive charges, while all chlorine atoms 
have negative charges. For the organic cations, Cl7 has a negative charge of −0.075, while 
Cl9 has a positive charge of 0.262. The nitrogen atoms N8 have a positive charge of 1.487, 
while the N10 has a negative charge of −1.070. The carbon atoms C1, C5 and C6 have 
positive charges, while C2, C3 and C4 have negative charges. It is worth noting that hy-
drogen atoms in the range 0.206–0.523 carry a positive charge. 

Table 6.Mulliken charge distribution in(C6H8Cl2N2)2[Cd3Cl10]·6H2O. 

Atom Mulliken Charge 
C1 1.331123 
C2 −4.737247 
C3 −1.070936 

H(C3) 0.206980 
C4 −1.443429 
C5 0.547071 
C6 1.649255 

H(C6) 0.271790 
Cl7 −0.075264 
Cl9 0.262067 
N8 1.487065 

H(N8) 
0.380289 
0.392109 
0.403416 

N10 −1.070241 

H(N10) 
0.523128 
0.497461 
0.479144 

Cd 
1.202720 
1.335296 
1.175898 

Cl 

−0.680423 
−0.919000 
−0.747317 
−0.452354 
−0.606892 
−0.576617 
−0.534910 
−0.845237 

Figure 15. The atoms numbering of the organic molecule.

For the Cd3Cl13anion, the cadmium ions have positive charges, while all chlorine
atoms have negative charges. For the organic cations, Cl7 has a negative charge of −0.075,
while Cl9 has a positive charge of 0.262. The nitrogen atoms N8 have a positive charge of
1.487, while the N10 has a negative charge of −1.070. The carbon atoms C1, C5 and C6
have positive charges, while C2, C3 and C4 have negative charges. It is worth noting that
hydrogen atoms in the range 0.206–0.523 carry a positive charge.
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Table 6. Mulliken charge distribution in (C6H8Cl2N2)2[Cd3Cl10]·6H2O.

Atom Mulliken Charge

C1 1.331123

C2 −4.737247

C3 −1.070936

H(C3) 0.206980

C4 −1.443429

C5 0.547071

C6 1.649255

H(C6) 0.271790

Cl7 −0.075264

Cl9 0.262067

N8 1.487065

H(N8)
0.380289
0.392109
0.403416

N10 −1.070241

H(N10)
0.523128
0.497461
0.479144

Cd
1.202720
1.335296
1.175898

Cl

−0.680423
−0.919000
−0.747317
−0.452354
−0.606892
−0.576617
−0.534910
−0.845237
−0.556969
−0.728453
−0.787878
−0.596435
−0.715207

3.9. Thermal Analysis

Thermal analysis is one of the most useful methods of analysis in collecting both
physical and chemical information. For this reason, we chose (TG/DTA), the most used
technique of thermal analysis in providing information about the bonding of components
within the sample. The TGA and DTA measurements, in the range 200–1200 K, are depicted
in Figure 16.

The first peak in the DTA curve occurred at 380 K with ∆H = 994.99 J.g−1, correspond-
ing to the complete dehydration of the compound. It is accompanied by a weight loss
observed in the TGA curve equal to 7.78% (calculated weight loss: 7.79%). While the three
endothermic peaks observed in the DTA curve at 452, 535, and 600 K correspond to the
decomposition of the organic matrix with a total experimental weight loss equal to 30.94%
and calculated weight loss: 30.92%. Then, the DTA curve presents a sharp endothermic
peak, centered at 919 K, corresponding to the degradation of the inorganic group (exp.loss:
59.60%/thero. loss: 59.74%). At the end of the experience, the obtained solid is a black
residuethat represents1.68% of the initial mass.
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4. Conclusions

A new hybrid material of cadmium with 2,5-dichloro-p-phenylenediamine has been
synthesized in an aqueous solution at room temperature. XRD analysis shows that 2,5-
dichloro-p-phenylendiaminium decachlorotricadmate(II) hexahydrate crystallizes in the
triclinic crystal system P1, the different entities are held together by columbic attraction
and multiple hydrogen bonds to form a three-dimensional network. The Hirshfeld surface
analysis and the 2D fingerprint plots were performed and highlight that Van der Waal forces
exert an important role on the stabilization in the crystal structure. Scanning electronic
microscopy (SEM) was carried out and the EDX spectrum of the title compound revealed
the presence of all non-hydrogen atoms. The powder XRD is in agreementwith single-
crystal. Structural and spectroscopic proprieties were investigated by FT-IR spectroscopy
as well as by DFT calculation. The MEP map defines the nucleophile and the electrophile
sites. The HOMO-LUMO energy gap proposes a good electric conductivity. Finally, the
thermal stability is proved by TGA/DTA thermal analysis.
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