Experimental Evaluation of Untreated and Pretreated Crumb Rubber Used in Concrete
Abstract
:1. Introduction
2. Experimental Program
2.1. Concrete Materials and Properties
2.2. Mix Proportions
2.3. Treatment of Crumb Rubber
2.4. Specimen Preparation
2.5. Testing Methods
3. Results and Discussions
3.1. Slump and Compaction Factor
3.2. Water Absorption
3.3. Density
3.4. Ultrasonic Pulse Velocity (UPV)
3.5. Compressive Strength
3.6. Compressive Strength after Heating
3.7. Indirect Tensile Strength
3.8. Scanning Electron Microscopy (SEM)
4. Conclusions
- A 250% increase in slump and 14% increase in compaction factor were recorded with 20% replacement of sand with CR.
- Water absorption increased with the addition of CR and a maximum of 10.23% water absorption was recorded at 7 days for 20% replacement of sand and it decreased as the curing period increased and recorded 8.69% as the maximum value at 28 days.
- The density of concrete dropped to 1869 kg/m3 and 1881 kg/m3 for 7 and 28 days respectively for 20% replacement. Based on its lightweight properties CR concrete can be used in stone backing, interior construction, false facades, and nailing concrete.
- Lime treatment was found to be the best treatment of all four treatments followed by NaOH treatment and water treatment. Lime treatment recovered a compressive strength of 10.30% at 28 days and 9.16% of tensile strength at 28 days.
- Detergent treatment was found to be the worse treatment of all four treatment methods. Despite of increasing the strength it contributed to compressive strength loss of 1.70% at 7 days and 0.20% at 28 days and a loss of 1.03% for indirect tensile strength at 28 days.
- CRC is not suitable for heat applications as it dropped 95.37% and 61% of its compressive strength with 20% and 5% replacement of sand, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Yao, Z.; Yang, G.; Han, Q. Research on crumb rubber concrete: From a multi-scale review. Constr. Build. Mater. 2020, 232, 117282. [Google Scholar] [CrossRef]
- Gayana, B.C.; Chandar, K.R. Sustainable use of mine waste and tailings with suitable admixture as aggregates in concrete pavements—A review. Adv. Concr. Constr. 2018, 6, 221–243. [Google Scholar] [CrossRef]
- Djebien, R.; Belachia, M.; Hebhoub, H. Effect of marble waste fines on rheological and hardened properties of sand concrete. Struct. Eng. Mech. 2015, 53, 1241–1251. [Google Scholar] [CrossRef]
- Issa, C.A.; Salem, G. Utilization of recycled crumb rubber as fine aggregates in concrete mix design. Constr. Build. Mater. 2013, 42, 48–52. [Google Scholar] [CrossRef]
- Thomas, B.S.; Gupta, R.C. A comprehensive review on the applications of waste tire rubber in cement concrete. Renew. Sustain. Energy Rev. 2016, 54, 1323–1333. [Google Scholar] [CrossRef]
- Rezaifar, O.; Hasanzadeh, M.; Gholhaki, M. Concrete made with hybrid blends of crumb rubber and metakaolin: Optimization using Response Surface Method. Constr. Build. Mater. 2016, 123, 59–68. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, I.; Baheri, F.T.; Cavalli, M.C.; Poulikakos, L.D.; Bueno, M. Microstructure analysis and mechanical performance of crumb rubber modified asphalt concrete using the dry process. Constr. Build. Mater. 2020, 259, 119662. [Google Scholar] [CrossRef]
- Batayneh, M.K.; Marie, I.; Asi, I. Promoting the use of crumb rubber concrete in developing countries. Waste Manag. 2008, 28, 2171–2176. [Google Scholar] [CrossRef]
- Youssf, O.; Mills, J.E.; Benn, T.; Zhuge, Y.; Ma, X.; Roychand, R.; Gravina, R. Development of Crumb Rubber Concrete for Practical Application in the Residential Construction Sector–Design and Processing. Constr. Build. Mater. 2020, 260, 119813. [Google Scholar] [CrossRef]
- Youssf, O.; Mills, J.E.; Hassanli, R. Assessment of the mechanical performance of crumb rubber concrete. Constr. Build. Mater. 2016, 125, 175–183. [Google Scholar] [CrossRef]
- Atahan, A.O.; Yücel, A. Crumb rubber in concrete: Static and dynamic evaluation. Constr. Build. Mater. 2012, 36, 617–622. [Google Scholar] [CrossRef]
- Li, D.; Zhuge, Y.; Gravina, R.; Benn, T.; Mills, J.E. Creep and drying shrinkage behaviour of crumb rubber concrete (CRC). Aust. J. Civ. Eng. 2020, 18, 187–204. [Google Scholar] [CrossRef]
- Bravo, M.; de Brito, J. Concrete made with used tyre aggregate: Durability-related performance. J. Clean. Prod. 2012, 25, 42–50. [Google Scholar] [CrossRef]
- Saberian, M.; Shi, L.; Sidiq, A.; Li, J.; Setunge, S.; Li, C.-Q. Recycled concrete aggregate mixed with crumb rubber under elevated temperature. Constr. Build. Mater. 2019, 222, 119–129. [Google Scholar] [CrossRef]
- Bilondi, M.P.; Marandi, S.; Ghasemi, F. Effect of recycled glass powder on asphalt concrete modification. Struct. Eng. Mech. 2016, 59, 373–385. [Google Scholar] [CrossRef]
- Mohammadi, I.; Khabbaz, H. Shrinkage performance of Crumb Rubber Concrete (CRC) prepared by water-soaking treatment method for rigid pavements. Cem. Concr. Compos. 2015, 62, 106–116. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Panesar, D.K. Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume. J. Clean. Prod. 2014, 82, 125–131. [Google Scholar] [CrossRef]
- Atahan, A.O.; Sevim, U.K. Testing and comparison of concrete barriers containing shredded waste tire chips. Mater. Lett. 2008, 62, 3754–3757. [Google Scholar] [CrossRef]
- Li, G.; Garrick, G.; Eggers, J.; Abadie, C.; Stubblefield, M.A.; Pang, S.-S. Waste tire fiber modified concrete. Compos. Part B Eng. 2004, 35, 305–312. [Google Scholar] [CrossRef]
- Son, K.S.; Hajirasouliha, I.; Pilakoutas, K. Strength and deformability of waste tyre rubber-filled reinforced concrete columns. Constr. Build. Mater. 2011, 25, 218–226. [Google Scholar] [CrossRef]
- Vakhshouri, B.; Nejadi, S. Self-compacting light-weight concrete; mix design and proportions. Struct. Eng. Mech. 2016, 58, 143–161. [Google Scholar] [CrossRef]
- Guneyisi, E.; Gesoglu, M.; Mermerdas, K.; Ipek, S. Experimental investigation on durability performance of rubberized concrete. Adv. Concr. Constr. 2014, 2, 193–207. [Google Scholar] [CrossRef]
- Youssf, O.; ElGawady, M.A.; Mills, J.E.; Ma, X. An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes. Constr. Build. Mater. 2014, 53, 522–532. [Google Scholar] [CrossRef]
- Hofstetter, K.; Eberhardsteiner, J.; Mang, H. Efficient treatment of rubber friction problems in industrial applications. Struct. Eng. Mech. 2006, 22, 517–539. [Google Scholar] [CrossRef]
- Pelisser, F.; Zavarise, N.; Longo, T.A.; Bernardin, A.M. Concrete made with recycled tire rubber: Effect of alkaline activation and silica fume addition. J. Clean. Prod. 2011, 19, 757–763. [Google Scholar] [CrossRef]
- Williams, K.C.; Partheeban, P. An experimental and numerical approach in strength prediction of reclaimed rubber concrete. Adv. Concr. Constr. 2018, 6, 87–102. [Google Scholar] [CrossRef]
- Nas, M.; Kurbetci, Ş. Durability properties of concrete containing metakaolin. Adv. Concr. Constr. 2018, 6, 159–175. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, J.-X.; Dai, X.-B.; Zhang, T.-H.; Wang, J. Fracture behavior of fly ash concrete containing silica fume. Struct. Eng. Mech. 2016, 59, 261–275. [Google Scholar] [CrossRef]
- Karthikeyan, B.; Dhinakaran, G. Strength and durability studies on high strength concrete using ceramic waste powder. Struct. Eng. Mech. 2017, 61, 171–181. [Google Scholar] [CrossRef]
- Golewski, G.L. Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading. Struct. Eng. Mech. 2017, 62, 1–9. [Google Scholar] [CrossRef]
- Mohammadi, I.; Khabbaz, H.; Vessalas, K. Enhancing mechanical performance of rubberised concrete pavements with sodium hydroxide treatment. Mater. Struct. 2015, 49, 813–827. [Google Scholar] [CrossRef]
- Eldin, N.N.; Senouci, A.B. Rubber-tire particles as concrete aggregate. J. Mater. Civ. Eng. 1993, 5, 478–496. [Google Scholar] [CrossRef]
- Thomas, B.S.; Gupta, R.C.; Kalla, P.; Cseteneyi, L. Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates. Constr. Build. Mater. 2014, 59, 204–212. [Google Scholar] [CrossRef]
- Ganjian, E.; Khorami, M.; Maghsoudi, A.A. Scrap-tyre-rubber replacement for aggregate and filler in concrete. Constr. Build. Mater. 2009, 23, 1828–1836. [Google Scholar] [CrossRef]
- Eldin, N.N.; Senouci, A.B. Measurement and prediction of the strength of rubberized concrete. Cem. Concr. Compos. 1994, 16, 287–298. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Özturan, T. Properties of rubberized concretes containing silica fume. Cem. Concr. Res. 2004, 34, 2309–2317. [Google Scholar] [CrossRef]
- Chou, L.-H.; Lin, C.-N.; Lu, C.-K.; Lee, C.-H.; Lee, M.-T. Improving rubber concrete by waste organic sulfur compounds. Waste Manag. Res. 2010, 28, 29–35. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, T.; Li, Y. Research on modifier and modified process for rubber-particle used in rubberized concrete for road. Adv. Mater. Res. 2011, 243, 4125–4130. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Jiao, Y.; Sha, T. Experimental investigation of the mechanical and durability properties of crumb rubber concrete. Materials 2016, 9, 172. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, M.; Li, Z. Physical and mechanical properties of Crumb Rubber Mortar (CRM) with interfacial modifiers. J. Wuhan Univ. Technol. Sci. Ed. 2010, 25, 845–848. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Ding, Y.; Jalali, S. Properties and durability of concrete containing polymeric wastes (tyre rubber and polyethylene terephthalate bottles): An overview. Constr. Build. Mater. 2012, 30, 714–724. [Google Scholar] [CrossRef] [Green Version]
- Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory; ASTM C192/C192M-19; ASTM International: West Conshohocken, PA, USA, 2019.
- Standard Test Method for Slump of Hydraulic-Cement Concrete; ASTM C143/C143M-15a; ASTM International: West Conshohocken, PA, USA, 2015.
- Indian Standard Methods of Sampling and Analysis of Concrete; IS: 1199–1959; Bureau of Indian Standards: Old Delhi, India, 1959.
- Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens); ASTM C109/C109M-20b; ASTM International: West Conshohocken, PA, USA, 2016.
- Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; ASTM C39/C39M-17a; ASTM Standard: West Conshohocken, PA, USA, 2017.
- Methods of Testing Concrete-Determination of Indirect Tensile Strength of Concrete Cylinders, Standards Australia; AS 1012.10; Australian Standard: Sydney, Australia, 2000.
- Standard Test Method for Pulse Velocity through Concrete; ASTM C597-16; ASTM International: West Conshohocken, PA, USA, 2016.
- Standard Test Method for Density, Absorption, and Voids in Hardened Concrete; ASTM C642-13; ASTM International: West Conshohocken, PA, USA, 2013.
- Albano, C.; Camacho, N.; Reyes, J.; Feliu, J.; Hernández, M. Influence of scrap rubber addition to Portland I concrete composites: Destructive and non-destructive testing. Compos. Struct. 2005, 71, 439–446. [Google Scholar] [CrossRef]
- Bignozzi, M.; Sandrolini, F. Tyre rubber waste recycling in self-compacting concrete. Cem. Concr. Res. 2006, 36, 735–739. [Google Scholar] [CrossRef]
- Sadek, D.M.; El-Attar, M.M. Structural behavior of rubberized masonry walls. J. Clean. Prod. 2015, 89, 174–186. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Mazzoli, A.; Moriconi, G. Mechanical behaviour and thermal conductivity of mortars containing waste rubber particles. Mater. Des. 2011, 32, 1646–1650. [Google Scholar] [CrossRef]
- Turgut, P.; Yesilata, B. Physico-mechanical and thermal performances of newly developed rubber-added bricks. Energy Build. 2008, 40, 679–688. [Google Scholar] [CrossRef]
- Salhi, M.; Ghrici, M.; Li, A.; Bilir, T. Effect of curing treatments on the material properties of hardened self-compacting concrete. Adv. Concr. Constr. 2017, 5, 359–375. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Z.; Yuan, Q.; Zhang, P.; Fang, H. Effects of ages on the ITZ microstructure of crumb rubber concrete. Constr. Build. Mater. 2020, 254, 119329. [Google Scholar] [CrossRef]
- Padhi, S.; Panda, K. Fresh and hardened properties of rubberized concrete using fine rubber and silpozz. Adv. Concr. Constr. 2016, 4, 49–69. [Google Scholar] [CrossRef]
- Solanki, P.; Dash, B. Mechanical properties of concrete containing recycled materials. Adv. Concr. Constr. 2016, 4, 207–220. [Google Scholar] [CrossRef]
- Liang, J.F.; Wang, E.; He, C.F.; Hu, P. Mechanical behavior of recycled fine aggregate concrete after high temperature. Struct. Eng. Mech. 2018, 65, 343–348. [Google Scholar] [CrossRef]
- Sofi, A. Effect of waste tyre rubber on mechanical and durability properties of concrete—A review. Ain Shams Eng. J. 2018, 9, 2691–2700. [Google Scholar] [CrossRef]
- Barrentine, L.B. An Introduction to Design of Experiments: A Simplified Approach; ASQ Quality Press: Milwaukee, WI, USA, 1999. [Google Scholar]
Mix Type | Treatment | CR % | w/c Ratio | Net Water (kg/m3) | Cement (kg/m3) | Fine Aggregate | Coarse Aggregate | |
---|---|---|---|---|---|---|---|---|
Sand (kg/m3) | Crumb Rubber (kg/m3) | Gravel (kg/m3) | ||||||
C0 (CM) | - | 0 | 0.50 | 203.97 | 400 | 661.82 | 0 | 1074.18 |
CU5 | - | 5 | 0.50 | 203.96 | 400 | 628.73 | 20.35 | 1074.18 |
CU10 | - | 10 | 0.50 | 203.95 | 400 | 595.64 | 40.70 | 1074.18 |
CU15 | - | 15 | 0.50 | 203.94 | 400 | 562.55 | 61.05 | 1074.18 |
CU20 | - | 20 | 0.50 | 203.93 | 400 | 529.46 | 81.40 | 1074.18 |
CN5 | NaOH | 5 | 0.50 | 203.96 | 400 | 628.73 | 20.35 | 1074.18 |
CN10 | NaOH | 10 | 0.50 | 203.95 | 400 | 595.64 | 40.70 | 1074.18 |
CN15 | NaOH | 15 | 0.50 | 203.94 | 400 | 562.55 | 61.05 | 1074.18 |
CN20 | NaOH | 20 | 0.50 | 203.93 | 400 | 529.46 | 81.40 | 1074.18 |
CL5 | Lime | 5 | 0.50 | 203.96 | 400 | 628.73 | 20.35 | 1074.18 |
CL10 | Lime | 10 | 0.50 | 203.95 | 400 | 595.64 | 40.70 | 1074.18 |
CL15 | Lime | 15 | 0.50 | 203.94 | 400 | 562.55 | 61.05 | 1074.18 |
CL20 | Lime | 20 | 0.50 | 203.93 | 400 | 529.46 | 81.40 | 1074.18 |
CW5 | Water | 5 | 0.50 | 203.96 | 400 | 628.73 | 20.35 | 1074.18 |
CW10 | Water | 10 | 0.50 | 203.95 | 400 | 595.64 | 40.70 | 1074.18 |
CW15 | Water | 15 | 0.50 | 203.94 | 400 | 562.55 | 61.05 | 1074.18 |
CW20 | Water | 20 | 0.50 | 203.93 | 400 | 529.46 | 81.40 | 1074.18 |
CD5 | Detergent | 5 | 0.50 | 203.96 | 400 | 628.73 | 20.35 | 1074.18 |
CD10 | Detergent | 10 | 0.50 | 203.95 | 400 | 595.64 | 40.70 | 1074.18 |
CD15 | Detergent | 15 | 0.50 | 203.94 | 400 | 562.55 | 61.05 | 1074.18 |
CD20 | Detergent | 20 | 0.50 | 203.93 | 400 | 529.46 | 81.40 | 1074.18 |
Sieve Size (mm) | 0.075 | 0.15 | 0.3 | 0.6 | 1.18 | 2.36 | 4.75 | 9.5 | 12.5 | 19 |
---|---|---|---|---|---|---|---|---|---|---|
Sand Passed (%) | 0 | 3.8 | 11.9 | 36 | 77 | 94.8 | 99.4 | 100 | 100 | 100 |
Crumb Rubber (%) | - | 0 | 3.6 | 23 | 43.6 | 68 | 99.7 | 100 | 100 | 100 |
Gravel Passed (%) | - | - | - | - | - | - | - | 28.62 | 67.12 | 92.02 |
Mix Code | Treatment | CR % | Slump (mm) | Compressive Strength (MPa) | Indirect Tensile Strength (MPa) | Water Absorption (%) | Unit Weight (kg/m3) | UPV (km/s) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
7 days | 28 days | 7 days | 28 days | 7 days | 28 days | ||||||
CM | - | 0 | 50 | 11.88 | 23.00 | 7.30 | 2.3 | 6.6 | 2331 | 2464 | 4.45 |
CU5 | Untreated | 5 | 50 | 11.00 | 20.63 | 7.04 | 1.8 | 6.2 | 2344 | 2364 | 4.41 |
CU10 | Untreated | 10 | 75 | 9.56 | 15.37 | 5.33 | 2.8 | 6.8 | 2121 | 2128 | 4.41 |
CU15 | Untreated | 15 | 150 | 6.62 | 11.45 | 3.60 | 3.6 | 7.4 | 1999 | 2021 | 4.40 |
CU20 | Untreated | 20 | 180 | 4.21 | 8.71 | 1.15 | 4.7 | 8.7 | 1882 | 1892 | 4.38 |
CN5 | NaOH | 5 | 65 | 11.82 | 21.40 | 7.19 | 4.7 | 3.7 | 2370 | 2382 | 4.41 |
CN10 | NaOH | 10 | 90 | 10.10 | 16.52 | 5.68 | 5.8 | 4.1 | 2117 | 2132 | 4.40 |
CN15 | NaOH | 15 | 150 | 7.25 | 12.25 | 3.95 | 8.0 | 4.9 | 1989 | 2014 | 4.39 |
CN20 | NaOH | 20 | 165 | 5.63 | 9.31 | 1.76 | 8.6 | 5.3 | 1869 | 1881 | 4.37 |
CL5 | Lime | 5 | 50 | 12.01 | 21.56 | 7.33 | 1.1 | 3.1 | 2341 | 2375 | 4.42 |
CL10 | Lime | 10 | 75 | 10.37 | 16.67 | 5.91 | 2.3 | 3.9 | 2101 | 2110 | 4.41 |
CL15 | Lime | 15 | 165 | 7.43 | 12.48 | 4.05 | 3.3 | 3.9 | 1903 | 2021 | 4.40 |
CL20 | Lime | 20 | 180 | 5.87 | 9.78 | 1.82 | 4.5 | 4.1 | 1875 | 1882 | 4.39 |
CW5 | Water | 5 | 50 | 11.23 | 21.05 | 7.08 | 4.9 | 4.6 | 2353 | 2363 | 4.40 |
CW10 | Water | 10 | 75 | 9.91 | 16.43 | 5.41 | 6.2 | 5.5 | 2111 | 2124 | 4.40 |
CW15 | Water | 15 | 150 | 7.10 | 12.01 | 3.66 | 8.2 | 6.7 | 1993 | 2015 | 4.39 |
CW20 | Water | 20 | 180 | 4.52 | 9.25 | 1.17 | 10.2 | 7.3 | 1874 | 1890 | 4.37 |
CD5 | Detergent | 5 | 50 | 10.95 | 20.57 | 7.00 | 4.6 | 4.0 | 2352 | 2360 | 4.39 |
CD10 | Detergent | 10 | 90 | 9.40 | 15.32 | 5.29 | 5.6 | 4.3 | 2109 | 2121 | 4.38 |
CD15 | Detergent | 15 | 165 | 6.40 | 11.43 | 3.53 | 6.5 | 5.3 | 1992 | 2015 | 4.38 |
CD20 | Detergent | 20 | 180 | 4.15 | 8.71 | 1.14 | 7.9 | 6.5 | 1881 | 1892 | 4.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awan, H.H.; Javed, M.F.; Yousaf, A.; Aslam, F.; Alabduljabbar, H.; Mosavi, A. Experimental Evaluation of Untreated and Pretreated Crumb Rubber Used in Concrete. Crystals 2021, 11, 558. https://doi.org/10.3390/cryst11050558
Awan HH, Javed MF, Yousaf A, Aslam F, Alabduljabbar H, Mosavi A. Experimental Evaluation of Untreated and Pretreated Crumb Rubber Used in Concrete. Crystals. 2021; 11(5):558. https://doi.org/10.3390/cryst11050558
Chicago/Turabian StyleAwan, Hamad Hassan, Muhammad Faisal Javed, Adnan Yousaf, Fahid Aslam, Hisham Alabduljabbar, and Amir Mosavi. 2021. "Experimental Evaluation of Untreated and Pretreated Crumb Rubber Used in Concrete" Crystals 11, no. 5: 558. https://doi.org/10.3390/cryst11050558
APA StyleAwan, H. H., Javed, M. F., Yousaf, A., Aslam, F., Alabduljabbar, H., & Mosavi, A. (2021). Experimental Evaluation of Untreated and Pretreated Crumb Rubber Used in Concrete. Crystals, 11(5), 558. https://doi.org/10.3390/cryst11050558