Optical Parametric Oscillation with Ultra-Low Power Threshold in a Dimer of Active-Passive Cavities
Abstract
:1. Introduction
2. The Theoretical Model
3. Results and Discussion for Enhanced Opos
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giordmaine, J.A.; Miller, R.C. Tunable coherent parametric oscillation in LiNb O 3 at optical frequencies. Phys. Rev. Lett. 1965, 14, 973. [Google Scholar] [CrossRef]
- Myers, L.E.; Bosenberg, W.R. Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators. IEEE J. Quantum Electron. 1997, 33, 1663–1672. [Google Scholar] [CrossRef]
- Powers, P.; Kulp, T.J.; Bisson, S. Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design. Opt. Lett. 1998, 23, 159–161. [Google Scholar] [CrossRef]
- Vainio, M.; Siltanen, M.; Peltola, J.; Halonen, L. Continuous-wave optical parametric oscillator tuned by a diffraction grating. Opt. Express 2009, 17, 7702–7707. [Google Scholar] [CrossRef] [PubMed]
- Gross, P.; Klein, M.; Ridderbusch, H.; Lee, D.H.; Meyn, J.P.; Wallenstein, R.; Boller, K.J. Wide wavelength tuning of an optical parametric oscillator through electro-optic shaping of the gain spectrum. Opt. Lett. 2002, 27, 1433–1435. [Google Scholar] [CrossRef] [Green Version]
- Siltanen, M.; Vainio, M.; Halonen, L. Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4 μm. Opt. Express 2010, 18, 14087–14092. [Google Scholar] [CrossRef]
- Wu, L.A.; Kimble, H.J.; Hall, J.L.; Wu, H. Generation of Squeezed States by Parametric Down Conversion. Phys. Rev. Lett. 1986, 57, 2520–2523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morin, O.; d’Auria, V.; Fabre, C.; Laurat, J. High-fidelity single-photon source based on a Type II optical parametric oscillator. Opt. Lett. 2012, 37, 3738–3740. [Google Scholar] [CrossRef] [Green Version]
- Förtsch, M.; Fürst, J.U.; Wittmann, C.; Strekalov, D.; Aiello, A.; Chekhova, M.V.; Silberhorn, C.; Leuchs, G.; Marquardt, C. A versatile source of single photons for quantum information processing. Nat. Commun. 2013, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Vernon, Z.; Sipe, J. Strongly driven nonlinear quantum optics in microring resonators. Phys. Rev. A 2015, 92, 033840. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Zou, C.L.; Schuck, C.; Jung, H.; Cheng, R.; Tang, H.X. Parametric down-conversion photon-pair source on a nanophotonic chip. Light. Sci. Appl. 2017, 6, e16249. [Google Scholar] [CrossRef]
- Lu, X.; Li, Q.; Westly, D.A.; Moille, G.; Singh, A.; Anant, V.; Srinivasan, K. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat. Phys. 2019, 15, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Aihara, K.; Leleu, T.; Kawarabayashi, K.i.; Kako, S.; Fejer, M.; Inoue, K.; Takesue, H. Coherent Ising machines—Optical neural networks operating at the quantum limit. NPJ Quantum Inf. 2017, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Breunig, I. Three-wave mixing in whispering gallery resonators. Laser Photonics Rev. 2016, 10, 569–587. [Google Scholar] [CrossRef]
- Fürst, J.U.; Strekalov, D.V.; Elser, D.; Aiello, A.; Andersen, U.L.; Marquardt, C.; Leuchs, G. Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator. Phys. Rev. Lett. 2010, 105, 263904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, G.; Hofmann, D.; Grundkoetter, W.; Lee, Y.L.; Suche, H.; Quiring, V.; Ricken, R.; Sohler, W. Nonlinear integrated optical frequency converters with periodically poled Ti: LiNbO3 waveguides. In Proceedings of the Integrated Optics Devices V. International Society for Optics and Photonics, San Jose, CA, USA, 23–25 January 2001; Volume 4277, pp. 144–160. [Google Scholar]
- Oron, M.B.; Blau, P.; Pearl, S.; Katz, M. Optical parametric oscillation in orientation patterned GaAs waveguides. In Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XI; Vodopyanov, K.L., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2012; Volume 8240, pp. 54–64. [Google Scholar] [CrossRef]
- Savanier, M.; Ozanam, C.; Lanco, L.; Lafosse, X.; Andronico, A.; Favero, I.; Ducci, S.; Leo, G. Near-infrared optical parametric oscillator in a III-V semiconductor waveguide. Appl. Phys. Lett. 2013, 103, 261105. [Google Scholar] [CrossRef]
- Yang, D.; Wang, A.; Chen, J.-H.; Yu, X.-C.; Lan, C.; Ji, Y.; Xiao, Y.-F. Real-time monitoring of hydrogel phase transition in an ultrahigh Q microbubble resonator. Photonics Res. 2020, 8, 497–502. [Google Scholar] [CrossRef]
- Yang, D.; Liu, X.; Li, X.; Duan, B.; Wang, A.; Xiao, Y. Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics. J. Semicond. 2021, 42, 023103. [Google Scholar] [CrossRef]
- Armani, D.; Kippenberg, T.; Spillane, S.; Vahala, K. Ultra-high-Q toroid microcavity on a chip. Nature 2003, 421, 925–928. [Google Scholar] [CrossRef]
- Dayan, B.; Parkins, A.; Aoki, T.; Ostby, E.; Vahala, K.; Kimble, H. A photon turnstile dynamically regulated by one atom. Science 2008, 319, 1062–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmon, T.; Yang, L.; Vahala, K.J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 2004, 12, 4742–4750. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Zou, C.L.; Tang, H.X. Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency. Optica 2016, 3, 1126–1131. [Google Scholar] [CrossRef]
- Xiong, C.; Pernice, W.; Ryu, K.K.; Schuck, C.; Fong, K.Y.; Palacios, T.; Tang, H.X. Integrated GaN photonic circuits on silicon (100) for second harmonic generation. Opt. Express 2011, 19, 10462–10470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pernice, W.; Xiong, C.; Schuck, C.; Tang, H. Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators. Appl. Phys. Lett. 2012, 100, 223501. [Google Scholar] [CrossRef] [Green Version]
- Bruch, A.W.; Liu, X.; Surya, J.B.; Zou, C.L.; Tang, H.X. On-chip χ (2) microring optical parametric oscillator. Optica 2019, 6, 1361–1366. [Google Scholar] [CrossRef]
- Miranowicz, A.; Paprzycka, M.; Liu, Y.x.; Bajer, J.; Nori, F. Two-photon and three-photon blockades in driven nonlinear systems. Phys. Rev. A 2013, 87, 023809. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Shen, H.; Yi, X. Unconventional photon blockade with second-order nonlinearity. Phys. Rev. A 2015, 92, 023838. [Google Scholar] [CrossRef]
- Roberts, D.; Clerk, A.A. Driven-dissipative quantum Kerr resonators: New exact solutions, photon blockade and quantum bistability. Phys. Rev. X 2020, 10, 021022. [Google Scholar]
- Kippenberg, T.J.; Holzwarth, R.; Diddams, S.A. Microresonator-Based Optical Frequency Combs. Science 2011, 332, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.J.; Ji, Q.X.; Wang, H.; Yang, Q.F.; Cao, Q.T.; Gong, Q.; Yi, X.; Xiao, Y.F. Chaos-assisted two-octave-spanning microcombs. Nat. Commun. 2020, 11, 1–6. [Google Scholar] [CrossRef]
- Gao, Y.P.; Sun, Y.; Liu, X.F.; Wang, T.J.; Wang, C. Parity-Time-Anyonic Coupled Resonators System With Tunable Exceptional Points. IEEE Access 2019, 7, 107874–107878. [Google Scholar] [CrossRef]
- Peng, B.; Özdemir, Ş.K.; Lei, F.; Monifi, F.; Gianfreda, M.; Long, G.L.; Fan, S.; Nori, F.; Bender, C.M.; Yang, L. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 2014, 10, 394–398. [Google Scholar] [CrossRef] [Green Version]
- Konotop, V.V.; Yang, J.; Zezyulin, D.A. Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 2016, 88, 035002. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Wong, Z.J.; Ma, R.M.; Wang, Y.; Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 2014, 346, 972–975. [Google Scholar] [CrossRef]
- Hodaei, H.; Miri, M.A.; Heinrich, M.; Christodoulides, D.N.; Khajavikhan, M. Parity-time–symmetric microring lasers. Science 2014, 346, 975–978. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Jiang, X.; Hua, S.; Yang, C.; Wen, J.; Jiang, L.; Li, G.; Wang, G.; Xiao, M. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photonics 2014, 8, 524–529. [Google Scholar] [CrossRef]
- Hodaei, H.; Miri, M.A.; Hassan, A.U.; Hayenga, W.; Heinrich, M.; Christodoulides, D.; Khajavikhan, M. Parity-time-symmetric coupled microring lasers operating around an exceptional point. Opt. Lett. 2015, 40, 4955–4958. [Google Scholar] [CrossRef]
- Hodaei, H.; Miri, M.A.; Hassan, A.U.; Hayenga, W.E.; Heinrich, M.; Christodoulides, D.N.; Khajavikhan, M. Single mode lasing in transversely multi-moded PT-symmetric microring resonators. Laser Photonics Rev. 2016, 10, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Lü, H.; Qian, J.; Li, Y.; Jing, H. Nonlinear optomechanics with gain and loss: Amplifying higher-order sideband and group delay. New J. Phys. 2016, 18, 083034. [Google Scholar] [CrossRef]
- Li, J.; Yu, R.; Qu, Y.; Ding, C.; Zhang, D.; Wu, Y. Second-harmonic generation with ultralow-power pump thresholds in a dimer of two active-passive cavities. Phys. Rev. A 2017, 96, 013815. [Google Scholar] [CrossRef]
- Özdemir, Ş.K.; Zhu, J.; Yang, X.; Peng, B.; Yilmaz, H.; He, L.; Monifi, F.; Huang, S.H.; Long, G.L.; Yang, L. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl. Acad. Sci. USA 2014, 111, E3836–E3844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhi, Y.; Yu, X.C.; Gong, Q.; Yang, L.; Xiao, Y.F. Single nanoparticle detection using optical microcavities. Adv. Mater. 2017, 29, 1604920. [Google Scholar] [CrossRef]
- Zhu, J.; Ozdemir, S.K.; Xiao, Y.F.; Li, L.; He, L.; Chen, D.R.; Yang, L. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics 2010, 4, 46. [Google Scholar] [CrossRef]
- Jin, X.-X.; Gao, Y.-P.; Zheng, S.-H.; Wang, T.-J.; Wang, C. The Particle Induced Mode Splitting and Exceptional Points in Whispering-Gallery Mode Microcavity. IEEE Photonics J. 2020, 12, 1–14. [Google Scholar] [CrossRef]
- Mehrabani, S.; Armani, A.M. Blue upconversion laser based on thulium-doped silica microcavity. Opt. Lett. 2013, 38, 4346–4349. [Google Scholar] [CrossRef]
- Choi, H.; Armani, A.M. High efficiency Raman lasers based on Zr-doped silica hybrid microcavities. ACS Photonics 2016, 3, 2383–2388. [Google Scholar] [CrossRef]
- Lim, W.; Zohrabi, M.; Zhu, J.; Gopinath, J.T.; Bright, V.M. Electrowetting-Based Tunable Liquid Droplet Microresonator. In Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Online, 25–29 January 2021; pp. 957–960. [Google Scholar] [CrossRef]
- Boucher, Y.; Georges, P.; Brun, A.; Pocholle, J.P.; Papuchon, M. Seeding of a Ti:Al2O3 laser by a vertical- cavity surface-emitting-laser in the nanosecond range. In Proceedings of the Conference on Lasers and Electro-Optics, Anaheim, CA, USA, 8–13 May 1994; p. CTuK67. [Google Scholar]
- Liu, H.; Yang, Y.; Zhang, G.; Kuo, Y.K.; Huang, M.F.; Birnbaum, M. Novel Folded-Cavity Design for a Ti:Al2O3 Laser. In Advanced Solid State Lasers. Optical Society of America; Optical Society of America: Washington, DC, USA, 1994; p. TL8. [Google Scholar] [CrossRef]
- Peng, B.; Özdemir, Ş.K.; Zhu, J.; Yang, L. Photonic molecules formed by coupled hybrid resonators. Opt. Lett. 2012, 37, 3435–3437. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, B.; Fan, C.-R.; Song, J.-Y.; Wang, C. Optical Parametric Oscillation with Ultra-Low Power Threshold in a Dimer of Active-Passive Cavities. Crystals 2021, 11, 566. https://doi.org/10.3390/cryst11050566
Lu B, Fan C-R, Song J-Y, Wang C. Optical Parametric Oscillation with Ultra-Low Power Threshold in a Dimer of Active-Passive Cavities. Crystals. 2021; 11(5):566. https://doi.org/10.3390/cryst11050566
Chicago/Turabian StyleLu, Bo, Chen-Rui Fan, Jun-Yang Song, and Chuan Wang. 2021. "Optical Parametric Oscillation with Ultra-Low Power Threshold in a Dimer of Active-Passive Cavities" Crystals 11, no. 5: 566. https://doi.org/10.3390/cryst11050566
APA StyleLu, B., Fan, C. -R., Song, J. -Y., & Wang, C. (2021). Optical Parametric Oscillation with Ultra-Low Power Threshold in a Dimer of Active-Passive Cavities. Crystals, 11(5), 566. https://doi.org/10.3390/cryst11050566