Effect of Precipitated Precursor on the Catalytic Performance of Mesoporous Carbon Supported CuO-ZnO Catalysts
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Experimental Method
2.2.1. Preparation of Stage A Phenolic Resin Pre-Polymers
2.2.2. Synthesis of Mesoporous Carbon (MC)
2.2.3. MC Supported Catalyst Prepared by Precipitation Method
2.3. Catalyst Characterization and Performance Testing
3. Results and Discussion
3.1. N2 Physisorption
3.2. X-ray Diffraction
3.3. TG-DTG Analysis
3.4. SEM and EDX
3.4.1. SEM
3.4.2. EDX Analysis
3.5. TEM Analysis
3.6. Catalytic Performance Test
3.6.1. Calculation of Methanol Formation Rate
3.6.2. Calculation of Cu Surface Area
3.6.3. Turnover Frequency (TOF)
3.7. Analysis of Catalytic Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Arán-Ais, R.M.; Dunfeng, G.; Cuenya, R.B. Structure- and Electrolyte-Sensitivity in CO2 Electroreduction. Acc. Chem. Res. 2018, 51, 2906–2917. [Google Scholar] [CrossRef]
- Schneider, S.H. The Greenhouse Effect: Science and Policy. Science 1989, 243, 771–781. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Diercks, C.S.; Zhang, Y.B.; Kornienko, N.; Nickolos, E.M.; Zhao, Y.; Paris, A.R.; Kim, D.; Yang, P.; Yaghi, O.M.; et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, S. Global CO2 Emissions Level Off in 2019, with a Drop Predicted in 2020. Engineering 2020, 6, 958–959. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Lin, Y.; Jiao, X.; Sun, Y.; Luo, Q.; Zhang, W.; Li, D.; Yang, J.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nat. Cell Biol. 2016, 529, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Adv. Sci. 2018, 5, 1700275. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, W.; Li, K.; Zheng, Y.; Xie, Z.; Na, W.; Jingguang, G.C.; Wang, H. Strong Evidence of the Role of H2O in Affecting Methanol Selectivity from CO2 Hydrogenation over Cu-ZnO-ZrO2. Chem 2019, 6, 419–430. [Google Scholar] [CrossRef]
- Din, I.U.; Shaharun, M.S.; Alotaibi, M.A.; Alharthi, A.I.; Naeem, A. Recent developments on heterogeneous catalytic CO2 reduction to methanol. J. CO2 Util. 2019, 34, 20–33. [Google Scholar] [CrossRef]
- Wu, J. Controllable Preparation of Photo-/Electro-Catalytic Materials and Their Catalytic Performance for Carbon Dioxide Reduction. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2020. [Google Scholar]
- Kattel, S.; Ramírez, P.J.; Chen, J.G.; Rodriguez, J.A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355, 1296–1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Yuan, X.; Fujimoto, K. Development of highly stable catalyst for methanol synthesis from carbon dioxide. Appl. Catal. A Gen. 2014, 469, 306–311. [Google Scholar] [CrossRef]
- Ren, S.; Fan, X.; Shang, Z.; Shoemaker, W.R.; Ma, L.; Wu, T.; Li, S.; Klinghoffer, N.B.; Yu, M.; Liang, X. Enhanced catalytic performance of Zr modified CuO/ZnO/Al2O3 catalyst for methanol and DME synthesis via CO2 hydrogenation. J. CO2 Util. 2020, 36, 82–95. [Google Scholar] [CrossRef]
- Ren, S.; Shoemaker, W.R.; Wang, X.; Shang, Z.; Klinghoffer, N.; Li, S.; Yu, M.; He, X.; White, T.A.; Ling, X. Highly active and selective Cu-ZnO based catalyst for methanol and dimethyl ether synthesis via CO2 hydrogenation). Fuel 2019, 239, 1125–1133. [Google Scholar] [CrossRef]
- Nitta, Y.; Fujimatsu, T.; Okamoto, Y.; Imanaka, T. Effect of starting salt on catalytic behaviour of Cu-ZrO2 catalysts in methanol synthesis from carbon dioxide. Catal. Lett. 1993, 17, 157–165. [Google Scholar] [CrossRef]
- An, H.; Zhang, L.; Zhao, X.; Wang, Y. Effect of preparation conditions on the catalytic performance of Cu–Fe/ZrO2 for the synthesis of DPU from aniline and CO2. Chem. Eng. J. 2014, 255, 266–273. [Google Scholar] [CrossRef]
- Costantino, U.; Marmottini, F.; Sisani, M.; Montanari, T.; Ramis, G.; Busca, G.; Turco, M.; Bagnasco, G. Cu–Zn–Al hydrotalcites as precursors of catalysts for the production of hydrogen from methanol. Solid State Ion. 2005, 176, 2917–2922. [Google Scholar] [CrossRef]
- Li, J.-L.; Inui, T. Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures. Appl. Catal. A Gen. 1996, 137, 105–117. [Google Scholar] [CrossRef]
- Himelfarb, P.; Simmons, G.; Klier, K.; Herman, R. Precursors of the copper-zinc oxide methanol synthesis catalysts. J. Catal. 1985, 93, 442–450. [Google Scholar] [CrossRef]
- Pollard, A.M.; Spencer, S.M.; Thomas, R.G.; Williams, P.A.; HolT, J.; Jennings, J.R. Georgeite and azurite as precursors in the preparation of co-precipitated copper/zinc oxide catalysts. Appl. Catal. A Gen 1992, 85, 1–11. [Google Scholar] [CrossRef]
- Spencer, M. Precursors of copper/zinc oxide catalysts. Catal. Lett. 2000, 66, 255–257. [Google Scholar] [CrossRef]
- Shi, L.; Yang, G.; Tao, K.; Yoneyama, Y.; Tan, Y.; Tsubaki, N. An Introduction of CO2Conversion by Dry Reforming with Methane and New Route of Low-Temperature Methanol Synthesis. Acc. Chem. Res. 2013, 46, 1838–1847. [Google Scholar] [CrossRef]
- Van De Berg, M.W.E.; Polarz, S.; Tkachenko, O.P.; Kähler, K.; Muhler, M.; Grünert, W. Dynamical Changes in the Cu–ZnOx Interaction Observed in a Model Methanol Synthesis Catalyst. Catal. Lett. 2009, 128, 49–56. [Google Scholar] [CrossRef]
- Van De Berg, M.W.E.; Polarz, S.; Tkachenko, O.P.; Klementiev, K.V.; Bandyopadhyay, M.; Khodeir, L.; Gies, H.; Muhler, M.; Grunert, W. Cu/ZnO aggregates in siliceous mesoporous matrices: Development of a new model methanol synthesis catalyst. J. Catal. 2006, 241, 446–455. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Yang, Y.; Singh, R.; Chiang, K.; Wang, S.; Xiao, P.; Patel, J.; Danaci, D.; Burke, N.; Zhai, Y.; et al. Mesoporous Carbon-supported Cu/ZnO for Methanol Synthesis from Carbon Dioxide. Aust. J. Chem. 2014, 67, 907–914. [Google Scholar] [CrossRef]
- Duan, H.; Yang, Y.; Patel, J.; Dumbre, D.; Bhargava, S.K.; Burke, N.; Zhai, Y.; Webley, P.A. A facile method to synthesis a mesoporous carbon supported methanol catalyst containing well dispersed Cu/ZnO. Mater. Res. Bull. 2014, 60, 232–237. [Google Scholar] [CrossRef]
- Ouyang, C.; Wei, H.; Li, Q.; Li, Y.; Duan, H.; Liu, J. Synthesis and Characterization of Catalysts Cu-ZnO Supported on Mesoporous Carbon FDU-15. J. Chin. Chem. Soc. 2018, 65, 793–800. [Google Scholar] [CrossRef]
- Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Yang, H.; Li, Z.; Yu, C.; Tu, B.; Zhao, D. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 2005, 44, 7053–7059. [Google Scholar] [CrossRef]
- Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B. Surface area and pore texture of catalysts. Catal. Today 1998, 41, 207–219. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, J.; Chen, Y. Studies of surface NiO species in NiO/SiO2 catalysts using temperature-programmed reduction and X-ray diffraction. J. Chem. Soc. Faraday Trans. 1992, 88, 2075–2078. [Google Scholar] [CrossRef]
- Behrens, M.; Girgsdies, F.; Trunschke, A.; Schlogl, R. Minerals as Model Compounds for Cu/ZnO Catalyst Precursors: Structural and Thermal Properties and IR Spectra of Mineral and Synthetic (Zincian) Malachite, Rosasite and Aurichalcite and a Catalyst Precursor Mixture. Eur. J. Inorg. Chem. 2009, 2009, 1347–1357. [Google Scholar] [CrossRef]
- Małecka, B.; Gajerski, R.; Małecki, A.; Olszewski, P.; Wierzbicka, M. Mass spectral studies on the mechanism of thermal decomposition of Zn(NO3)2·nH2O. Thermochim. Acta 2003, 404, 125–132. [Google Scholar] [CrossRef]
- Xia, S.; Yuan, Z.; Wang, L.; Chen, P.; Hou, Z. Hydrogenolysis of glycerol on bimetallic Pd-Cu/solid-base catalysts prepared via layered double hydroxides precursors. Appl. Catal. A Gen. 2011, 403, 173–182. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, L.; Wang, J.; Xia, S.; Chen, P.; Hou, Z.; Zheng, X. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Appl. Catal. B Environ. 2011, 101, 431–440. [Google Scholar] [CrossRef]
- Duan, H.; Yang, Y.; Patel, J.; Burke, N.; Zhai, Y.; Webley, P.A.; Chen, D.; Long, M. The effect of the modification methods on the catalytic performance of activated carbon supported CuO-ZnO catalysts. Carbon Lett. 2018, 25, 33–42. [Google Scholar]
- Scholten, J.J.F.; Konvalinka, J.A. Reaction of nitrous oxide with copper surfaces. Application to the determination of free-copper surface areas. Trans. Faraday Soc. 1969, 65, 2465–2473. [Google Scholar] [CrossRef]
- Zwiener, L.; Girgsdies, F.; Brennecke, D.; Teschner, D.; Machoke, A.G.; Schlögl, R.; Frei, E. Evolution of zincian malachite synthesis by low temperature co-precipitation and its catalytic impact on the methanol synthesis. Appl. Catal. B Environ. 2019, 249, 218–226. [Google Scholar] [CrossRef]
- Ding, W.; Liu, Y.; Wang, F.; Zhou, S.; Chen, A.; Yang, Y.; Fang, W. Promoting effect of a Cu–Zn binary precursor on a ternary Cu–Zn–Al catalyst for methanol synthesis from synthesis gas. RSC Adv. 2014, 4, 30677–30682. [Google Scholar] [CrossRef]
- Kühl, S.; Friedrich, M.; Armbrüster, M.; Behrens, M. Cu, Zn, Al layered double hydroxides as precursors for copper catalysts in methanol steam reforming–pH-controlled synthesis by microemulsion technique. J. Mater. Chem. 2012, 22, 9632–9638. [Google Scholar] [CrossRef] [Green Version]
Catalyst Name | BET Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Vmicro (cm3·g−1) | Vmeso + Vmacro (cm3·g−1) |
---|---|---|---|---|
CZ-post | 416 | 0.28 | 0.18 | 0.09 |
C-post | 166 | 0.11 | 0.05 | 0.06 |
Z-post | 329 | 0.45 | 0.09 | 0.36 |
CZ-in situ | 596 | 0.37 | 0.26 | 0.11 |
Catalyst Name | Metal Loading Amount a (wt.%) | Cu-A b (m2·g−1) | CO2 Conversion (%) | MTY c (mmol·g−1·h−1) | TOF d × 103 (s−1) |
---|---|---|---|---|---|
CZ-post | 15 | 2.9 | 5.3 | 0.4 | 1.5 |
C-post | 35 | 1.5 | 3.5 | 0.05 | 0.4 |
Z-post | 41 | 0.5 | 2.5 | 0.04 | 0.9 |
CZ-in situ | 10 | 3.3 | 7.3 | 0.8 | 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liang, G.; Wang, C.; Fang, Y.; Duan, H. Effect of Precipitated Precursor on the Catalytic Performance of Mesoporous Carbon Supported CuO-ZnO Catalysts. Crystals 2021, 11, 582. https://doi.org/10.3390/cryst11060582
Li Y, Liang G, Wang C, Fang Y, Duan H. Effect of Precipitated Precursor on the Catalytic Performance of Mesoporous Carbon Supported CuO-ZnO Catalysts. Crystals. 2021; 11(6):582. https://doi.org/10.3390/cryst11060582
Chicago/Turabian StyleLi, Yandong, Guangfen Liang, Chengrui Wang, Yanhong Fang, and Huamei Duan. 2021. "Effect of Precipitated Precursor on the Catalytic Performance of Mesoporous Carbon Supported CuO-ZnO Catalysts" Crystals 11, no. 6: 582. https://doi.org/10.3390/cryst11060582
APA StyleLi, Y., Liang, G., Wang, C., Fang, Y., & Duan, H. (2021). Effect of Precipitated Precursor on the Catalytic Performance of Mesoporous Carbon Supported CuO-ZnO Catalysts. Crystals, 11(6), 582. https://doi.org/10.3390/cryst11060582