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Abstract: The utilization of titanium-containing blast furnace slag has been an unsolved problem for
a long time. Failure to make effective use of the slag, which is caused by a high TiO2 content within
it, not only results in a waste of resources, especially titanium, but also increases environmental
risk. The key to address the problem is the enrichment and extraction of TiO2 from the slag first.
Therefore, in order to study the enrichment of titanium, the crystallization behavior of TiO2-CaO-SiO2-
Al2O3-MgO pentabasic slag, the main compositions of titanium-containing blast furnace slag, within
the basicity range of 1.1–1.4 was investigated theoretically and experimentally. Thermodynamic
calculation shows that perovskite is the main titanium-containing phase and titanium can be enriched
in perovskite. By decreasing the temperature, perovskite precipitates at first. Additionally, with the
increase of basicity, perovskite precipitation temperature increases continuously, and its amount of
precipitation almost does not change, while the amounts of other phases change obviously. The
experimental results demonstrate similar results except for the amount of perovskite (with the
increase of basicity, perovskite precipitation amount increases slightly), caused by kinetic reason.
In addition, the morphology of the slag at different scales was observed. The surface of the cooled
slag is granular, vein-like, and irregular, multilaterally shaped from outside to inside. The crystal is
dendritic with a spine-like trunk, and the edge is blade-like. In terms of the structure of the crystal,
the inner part of it is perovskite, and the outer part is covered with a layer of other phases with spinel
inlaying it. Finally, the precipitated mechanism is proposed as well.

Keywords: blast furnace slag; basicity; crystallization; TiO2

1. Introduction

The majority of titanium resource exists in the form of ilmenite, and China has the
most vanadium titanomagnetite resource in the world, which can then be beneficiated
to ilmenite and titanium-containing magnetite [1,2]. In the existing production process,
titanium-containing magnetite is mainly used to smelt iron while producing large quantities
of titanium-bearing blast furnace (BF) slag. Additionally, the BF slag is accumulated at
a rate of around 5 million tons per year in China. Until now, the titanium-bearing blast
furnace slag is accumulated up to 100 million tons, which contains more than 20 million
tons of titanium dioxide, resulting in great waste of the titanium resource [3]. Basically,
the common blast furnace slag is employed as a building material. However, for titanium-
containing blast furnace slag, the high content of TiO2 (more than 20 mass %) makes the
slag not suitable for being a building material (a typical composition of Panzhihua Iron
and Steel Group titanium-containing BF slag is listed in Table 1 [4]). To address these
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issues, many methods have been put forward, including the traditional utilization methods
such as acid leaching, alkali leaching, alloy preparation, and so on [5–8]. Additionally, the
new methods of preparation of glass-ceramics, rutile, and porous ceramic photocatalysts
have been proposed in recent years [9–14]. However, the application of those methods
in industry still has many problems. Considering the prospect of industrialization, it is
ideal to enrich titanium first and then to prepare titanium metal or its compounds by using
electrochemical, carbonitriding, and other ways [15–18].

Table 1. The typical compositions of titanium-bearing blast furnace slag in Panzhihua Iron and Steel
Group (wt.%).

CaO SiO2 MgO Al2O3 TiO2 Other Total R *

27.53 24.04 7.97 13.7 22.57 4.19 100 1.15

* R = CaO(wt.%)
SiO2(wt.%)

.

The binary basicity ( CaO(wt.%)
SiO2(wt.%)

) of the initial blast furnace slag is around 1.1, and the
main titanium-containing phases are perovskite, titanium-containing spinel, and a small
amount of TiO2. The complex distribution of titanium in slag and the fine and uneven
titanium-containing phase particles affect the utilization of titanium. Basicity is a very
essential factor, which can determine the initial precipitation temperature and the type of
phase [19]. Therefore, the study of the effect of basicity on the enrichment of titanium in slag
is very important for the subsequent separation of titanium-containing phases. However,
to the best of our knowledge, the study on the influence of basicity on the distribution of
titanium in the crystallization process is still insufficient. Therefore, in the current study,
the influence of basicity varying from 1.1 to 1.4 on the crystallization behavior of TiO2-CaO-
SiO2-Al2O3-MgO (the main composition of titanium-bearing BF slag) system was studied
theoretically and experimentally, and the mechanism of its crystallization was proposed.

2. Materials and Methods

TiO2-CaO-SiO2-MgO-Al2O3 slags were prepared by using reagent-grade oxide pow-
ders of CaO (99.99 wt. pct Tianjing Bodi), SiO2 (99.99 wt. pct Chengdu Kelong), MgO
(99.99 wt. pct Chengdu Kelong), Al2O3 (99.99 wt. pct Chengdu Kelong), and TiO2
(99.99 wt. pct Chengdu Kelong). The mass ratios of different basicity are shown in Table 2.
Raw materials were calcined first for 24 h at 1273 K, and subsequently, around 40 g sample
was weighed and placed into the molybdenum crucible with 45 mm in inner diameter and
50 mm in height. In the experiment, nitrogen was first injected into the furnace to discharge
air, with the crucible being placed in the heating area of the furnace tube. When the heating
officially began, the sample was melted in a segmenting manner by heating at 4 K/min to
1473 K (1200 ◦C) and then at 2 K/min to 1873 K (1600 ◦C). The mixture was then held in a
nitrogen atmosphere for three hours to homogenize. Finally, the sample was cooled at a
rate of 3 K/min [20]. The detailed schematic diagram of the experimental apparatus was
present in our previous study [18].

Table 2. The compositions of the TiO2-CaO-SiO2-Al2O3-MgO slag (wt.%).

No. TiO2 CaO SiO2 MgO Al2O3 R R4

1 24 28.29 25.71 8 14 1.1 0.91
2 24 29.45 24.55 8 14 1.2 0.97
3 24 30.52 23.48 8 14 1.3 1.03
4 24 31.5 22.5 8 14 1.4 1.08

R = CaO(wt.%)
SiO2(wt.%)

; R4 = CaO(wt.%)+MgO(wt.%)
SiO2(wt.%)+Al2O3(wt.%)

; The basicity in following content represents R.

The compositions of the cooled samples were detected by X-ray diffraction (XRD)
(PANalytical, AERIS, Almero, The Netherlands), with Cu Kα radiation. The morphologies
and interior crystal distribution of these samples were observed using Scanning Electron
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Microscopy (SEM; TESCAN VEGA 3 LMH, Thermo Fisher Scientific, Brno, Czech Repub-
lic and Quattro S). At least 15 images per basicity were obtained, and then the Python
OpenCV module (Guido van Rossum, The Netherlands) was used to realize image con-
tour recognition and area calculation. Finally, the crystal area ratio for different basicity
was calculated.

3. Results and Discussion
3.1. Thermodynamic Calculation

To investigate the phase compositions of titanium-bearing BF slag in the temperature
range from 1873 K (1600 ◦C) to 1273 K (1000 ◦C) in nitrogen atmosphere, the thermodynamic
calculation was performed by using the equilibrium module in FactSage 8.0 (FToxid
databases) (GTT-Technologies and Thermfact, Herzogenrath and Montreal, Germany and
Canada), with the same compositions of TiO2-CaO-SiO2-MgO-Al2O3 used in experiments
(Table 2). However, the FToxid database in Factsage 8.0 is not fully optimized for such
a complex system as TiO2-CaO-SiO2-MgO-Al2O3; therefore, there are some errors in
thermodynamic calculations. It can be found that during the cooling process, perovskite
(CaTiO3) is the first phase to precipitate from the liquid. As the crystallization process
proceeds, titania-spinel phase, melilite phase, CaAl2Si2O8, and clinopyroxene (olivine)
phase precipitate accordingly, as shown in Figure 1a–d. Finally, at 1492 K (1219 ◦C), the
crystallization process is finished, while the liquid phase disappears, and is transformed
into perovskite, spinel, melilite (olivine), clinopyroxene, and CaAl2Si2O8.

The initial crystallization temperature of the phases is shown in Figure 1e. For the
titanium phases, as the basicity increases, the crystallization temperature of perovskite
increases from 1707 K (1434 ◦C) to 1757 K (1484 ◦C), and the crystallization temperature of
titania-spinel increases from 1598 K (1325 ◦C) to 1660 K (1387 ◦C). For other phases, the
crystallization precipitation temperature does not change significantly.

The change of phase mass ratio with basicity is shown in Figure 1f. With the increase
of basicity, the amount of CaAl2Si2O8 phase decreases, while the amount of titania-spinel
and melilite increases. When the basicity is 1.2, the amount of clinopyroxene precipitation
reaches the peak, and then decreases continuously. However, with increasing basicity, the
amount of perovskite barely changes.

Pseudo ternary phase diagram (in Figure 2) shows that the liquid phase is completely
transformed to solid phase at 1492 K, and the precipitation amounts of perovskite phase,
clinopyroxene phase, and spinel phase reach the maximum simultaneously. Taking the
basicity of 1.3 as an example, the analysis of pseudo ternary phase diagram shows that the
initial slag is at point A. With the decrease of temperature, the perovskite phase precipitates
along line AB, and the rest of the liquid phase precipitates along line ACG initially with
precipitating titanium-containing spinel and melilite. When reaching point G, ternary
eutectic reaction occurs, and CaTiO3, anorthite, and titanium-containing spinel begin to
precipitate. Then, the liquid phase precipitates along the GDE line and the eutectic reaction
occurs again at point E. When the temperature drops to the liquidus temperature (1492 K),
crystallization is completed and the liquid phase disappears.

3.2. The Experimental Results

The X-ray Diffraction (XRD) results of different basicity were shown in Figure 3. The
peaks of the five main phases were attached at the bottom of the figure. According to
the analysis, the peak intensity ratio of perovskite and clinopyroxene increases with the
increase of basicity.
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CaMgAlSiO6[−], Mg2AlSiO6[−], olivine-Mg2SiO4, anorthite-CaAl2Si2O8, titania-spinel-MgAl2O4). 
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Figure 1. Thermodynamic calculation of TiO2-CaO-SiO2-Al2O3-MgO slag precipitation: theoretical
phase compositions with basicity of (a) 1.1, (b) 1.2, (c) 1.3, (d) 1.4; (e) basicity dependence of crys-
tallization temperature; (f) basicity dependence of mass percent of crystallized phases. (Perovskite-
CaTiO3, clinopyroxene-Mg2Si2O6, MgAl2SiO6, CaAlSi2O6(+), MgAlSi2O6(+), CaMgAlSiO6[−],
Mg2AlSiO6[−], olivine-Mg2SiO4, anorthite-CaAl2Si2O8, titania-spinel-MgAl2O4).

Macroscopic and microscopic observation was made on the crystal morphology of
slags. The observation results of the crystal surface of slags are shown in Figure 3. It is
found that along the radial direction of the crucible wall, the crystal morphology changes
regularly. Taking basicity of 1.2 as an example, the outermost layer presents fine granular
shape, and the inner layer presents vein shape, and the center presents irregular multilateral
shape. The main reason is that the crucible wall has good thermal conductivity and heat
dissipation ability during the cooling process, so that the outermost layer of the slag has
a large supercooling degree. Considering the rough crucible wall, the outermost layer
would form a large number of heterogeneous nucleation. After the formation of fine
equiaxed grains on the surface, the temperature drops slowly and the transfer of heat
to the outside becomes stable. The tiny nucleus grows along the central direction, thus
forming the intermediate columnar grains. Finally, when the temperature drops below the
liquidus, and as the solidification layer moves inward, the subcooling of components keeps
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increasing. When the degree of subcooling was sufficient, the remaining liquid begins to
crystallize, leading to the formation of internal equiaxed crystals.

Figure 4a presents the back-scattering image of the cross-section of cooled slag. It
can be found that the white area exists in the form of a block and is surrounded by gray
area. Besides, there are small parts of dark gray area. A number of feature points were
selected for EDS (Dispersive Spectrometer Energy) analysis, as shown in Table 3. It can
be obtained that the composition of the points A and B is CaTiO3, C is Ca2MgSi2O7, and
D is MgAl2O4. A small amount of Ti element is also contained in C and D, which does
not affect the main composition. Mapping results also confirm the above analysis (shown
in Figure 4a–f). Additionally, thus, combined with EDS analysis, the white block area,
the dark gray area, and the gray area correspond to CaTiO3, MgAl2O4, and other phases
(CaMgSi2O6, Ca2MgSi2O7, CaAl2Si2O8), respectively. Phase type corresponds to phases in
the thermodynamic calculation results.
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Table 3. EDS composition distribution corresponding to Figure 4a (a–d points) and Figure 4j
(e point) (atom.%).

Point Ti Ca O Mg Al Si

a 18.70 18.93 62.38 0 0 0
b 18.09 18.39 63.52 0 0 0
c 2.45 9.73 56.45 7.09 8.93 15.35
d 0.43 0 55.84 15.05 28.68 0
e 18.53 18.79 62.68 0 0 0
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Figure 3. (a) X-ray Diffraction (XRD) patterns, and (b) the surface morphologies of the samples
after cooling.

The three-dimensional morphology characteristics of the crystal were observed as
shown in Figure 4g–j. Figure 4g displays that the sample is composed of numerous
dendritic crystals stacking together. Figure 4h,i show that the main stem presents a spine-
like appearance and the edge is blade-like. Combining BSE (Backscattered electron image)
and EDS analyses (Figure 4a and Table 3), it can be obtained that the inner part of the
crystal is perovskite phase and the outer part is CaMgSi2O6 phase or spinel, in Figure 4j.
The reason for this is that in the crystallization process, perovskite precipitates at first, and
then, CaMgSi2O6 phase and spinel start to precipitate, covering the surface of perovskite
phase and filling the interdendritic space.

Finally, the electron microscope photos were preprocessed to remove the outside and
record the gray level of the white perovskite area. Then, the Python OpenCV module was
used to carry out image processing, gray level recognition, and contour calculation. The
comparison of images before and after processing is shown in Figure 5a,b and it suggests
that 200× is the most ideal magnification. Under different basicity, more than 10 photos of
magnified 200× were taken to study the relationship between the amount of perovskite
crystallization and basicity. The change of perovskite area as a function of basicity is shown
in Figure 5c, which indicates that with the basicity increasing, the volume ratio of perovskite
crystallization to the total crystallization increases. The experimental results show that
perovskite is the main titania phase, and only a small amount of titania is distributed in the
other phases. With the increase of basicity, the amount of perovskite precipitation increases,
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which is not verified the thermodynamic calculation. The main reason for the difference
between the experiment and thermodynamics is that as the basicity becomes higher, and
although the concentration of TiO2 in the slag is fixed, the amount of CaO is increased,
which makes it conducive to the precipitation of perovskite kinetically. In detail, the change
of perovskite content with basicity is not obvious in theoretical calculation, which is the
result of equilibrium condition. Because CaO is excessive, all TiO2 and CaO combine to
form CaTiO3. However, in the actual cooling process, perovskite is the first crystalline
phase. According to the crystallization kinetic conditions, the higher the concentration
of CaO in the liquid phase, the more conducive to the formation of CaTiO3, so a higher
basicity caused more perovskite formed in the experiment.
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Figure 5. (a) The optical micrographs of cross sections of the samples with basicity of 1.1; (b) the recognition of CaTiO3

corresponding to (a); (c) the function of CaTiO3 area percentage with basicity.

3.3. The Crystallization Mechanism

The degree of supercooling affects the crystallization during the slag cooling process.
Figure 6a–c show the crystal morphology of three stages: at the beginning of crystalliza-
tion (around 1698 K), in the process of crystallization (around 1573 K), and completed
crystallization (below 1473 K). At the beginning of crystallization, because the crucible
wall has strong thermal conductivity and heat dissipation, it can be used as nucleation
substrate, resulting in a large number of heterogeneous nuclei (perovskite) formed on it
as shown in Figure 6a. During the crystallization process, the crystals grow continuously
as the temperature decreases. The crystal morphology changes from crystal nucleus to
dendrite. When the liquid phase is cooled to the precipitation temperature of the spinel
phase. It begins to precipitate on the dendrite, as shown in light gray in Figure 6b. Then
the liquid phase continues to change into solid phases, which accumulates on the surface
of the perovskite. When the temperature drops near the liquidus temperature, the fluidity
of liquid phase decreases and the intercrystalline void cannot be filled completely, and the
decrease in temperature leads to the shrinkage of crystal volume and further produces
holes. After the crystallization is completed, as shown in Figure 6c, the crystal morphology
presents dendritic and snowflake shape.
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4. Conclusions

In this study, the effect of basicity on the crystallization behavior of pentabasic slag was
investigated thermodynamically and experimentally. Thermodynamic calculation shows
that perovskite precipitates firstly from the liquid phase during the cooling process. The
precipitation temperature of perovskite increases with basicity increasing, and the content
of perovskite almost does not change. When the temperature drops to 1492 K, the liquid
phase disappears completely and is transformed into perovskite, spinel, melilite (olivine),
clinopyroxene and anorthite. The experiment shows similar results except for the amount
of perovskite, which is mainly caused by kinetic conditions. The morphology of the slag at
different scales was observed as well. The surface of the cooled slag is granular, vein-like,
and irregular, multilaterally shaped from outside to inside. The crystal is dendritic with
a spine-like trunk, and the edge is blade-like. In terms of the structure of the crystal, the
inner part of it is perovskite, and the outer part is covered with a layer of other phases with
spinel inlaying it. Finally, the precipitated mechanism is proposed as well. It is suggested
that the basicity of slag should be properly increased to enrich titanium in CaTiO3 during
the processing of titanium-containing blast furnace slag.
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analyzed the experimental and theoretical results. H.L. wrote the manuscript with help from all the
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the published version of the manuscript.
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