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Abstract: Superconducting thin films are widely applied in various fields, including switching
devices, because of their phase transition behaviors in relation to temperature changes. Therefore, it
is important to quantitatively determine the optical constant of a superconducting material in the
thin-film state. We performed a terahertz time-domain spectroscopy, based on a 10 femtoseconds
pulse laser, to measure the optical constant of a superconducting GdBa2Cu3O7−x (GdBCO) thin
film in the terahertz region. We then estimated the terahertz refractive indices of the 70 nm-thick
GdBCO film using a numerical extraction process, even though the film thickness was approximately
1/10,000 times smaller than the terahertz wavelength range of 200 µm to 1 mm. The resulting
refractive indices of the GdBCO thin film were consistent with the theoretical results using the
two-fluid model. Our work will help to further understand the terahertz optical properties of
superconducting thin films with thicknesses under 100 nm, as well as provide a standard platform for
characterizing the optical properties of thin films without the need of Kramers–Kronig transformation
at the terahertz frequencies.

Keywords: terahertz time domain spectroscopy; complex refractive index; thin film characterization;
superconductor; femtosecond laser

1. Introduction

Because of their high conductivity, noble-metal films are most commonly used in vari-
ous applications, such as metamaterials and sensing devices in the terahertz region [1–8].
Recently, many studies have been carried out in order to develop new switching devices
combined with phase transition materials modulated via external stimuli, such as tem-
perature and electrical voltage [9–12]. In addition, superconducting materials are widely
applied in the field of switching devices because of their phase transition below the critical
temperature Tc [13–17]. In the terahertz frequency region, such materials are much more
promising for developing metamaterials and switching devices because the superconductor
properties remain robust and well-maintained [18]. Furthermore, it is important to ensure
that the superconducting property is well maintained in the desired thin film form, because
superconductors are used in the form of thin films in most terahertz applications [19,20].

One advantage of employing time-domain spectroscopy is that the optical constants of
a target material can be determined via a transmission or reflection experiment without the
need of Kramers–Kronig transformation, because the amplitude and phase information can
be obtained simultaneously [21]. Of these, analysis of the results is relatively simpler in the
transmission experiment than in the reflection experiment. In the case of a thick substrate
there is a sufficient phase difference; hence, the refractive index can be easily obtained.
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However, phase retardation of a terahertz-transparent thin film is not sufficient, and the
refractive index is difficult to obtain owing to the pulse width resolution of the probe
beam [22]. In contrast, because the film in a metal has a sufficiently large refractive index,
the phase difference can be distinguished even in the case of a thin film. Therefore, the
complex refractive index of the metal sample can be determined [23–25]. More specifically,
if nd/c > PW, where n is the real part of the refractive index of the material, d is the
thickness, c is the speed of light, and PW is the pulse width of the probe beam, we can
estimate the complex refractive indices of the material. For example, a probe beam with a
pulse width of 10 fs can be used to analyze a material with the optical path (=nd) of 3 µm.
In many terahertz time-domain spectroscopy studies, lasers with a pulse width of about
100 fs were used [19,26,27]. The corresponding resolution of the optical path by the 100 fs
pulse is about 30 µm, which is too long to directly measure any change in the phase of
the terahertz pulse through the thin film with a short optical path (nd/c � PW). One
study estimated the complex conductivities of metal thin films with a thicknesses of 10 to
30 nm, using a laser with a pulse width of 12 fs [28]. In the case of a conducting material,
it would be relatively easier to estimate its refractive index, even within the form of thin
films, but we need one more procedure to accurately estimate complex refractive indices of
superconductor thin films, which retain relatively low refractive indices below Tc.

In this work, we introduced a method for measuring the complex refractive indices of
a target material using terahertz time-domain spectroscopy combined with a numerical
extraction process. Consistent with previous studies, we double-checked the complex
refractive indices of an optically thick insulating substrate (undoped silicon and LaAlO3)
and metallic thin films [25,27,29,30]. Based on our ability to analyze the refractive indices of
both insulating and conducting materials, we estimated the terahertz refractive indices of a
70 nm-thick superconducting GdBa2Cu3O7−x (GdBCO) thin film with a critical temperature
of around 90 K in a broad temperature range of 20–180 K.

2. Experimental Method
2.1. Terahertz Time-Domain Spectroscopy

To experimentally determine the complex refractive indices of the samples, terahertz
time-domain spectroscopy was performed (Figure 1). A terahertz pulse with a single-
cycle picosecond pulse was generated from a commercial GaAs emitter (Tera-SED3, Laser
Quantum, Stockport, UK), illuminated with a Ti:sapphire laser pulse train with the center
wavelength of 780 nm, repetition rate of 75.1 MHz, and pulse width of 10 fs (Synergy,
Spectra-Physics, Andover, MA, USA). For the detection, we used the electro-optic sampling
method with a 1 mm-thick ZnTe crystal [31], and the resulting signal-to-noise ratio (SNR) is
5000:1. As mentioned in the introduction, the 10 fs probe pulse in the electro-optic sampling
method has limited to an optical path resolution of 3 um.

2.2. Sample Fabrication

Silver thin films with thicknesses of 15, 30 and 50 nm, which are sub-skin depth in
the terahertz region, were deposited via e-beam evaporation onto a 500 µm-thick undoped
silicon substrate. The deposition conditions for the silver thin film included a degree of
vacuum less than 5.0 × 10−6 Torr and deposition rate of 1 Å/s. Additionally, a 70 nm-thick
GdBCO thin film was deposited onto a 500 µm-thick single-crystal LaAlO3 (LAO) substrate
using pulsed laser deposition (KrF excimer laser, LPX pro240, 248 nm, Coherent, Santa
Clara, USA). The deposition conditions for the GdBCO thin film were optimized for the
best epitaxial quality as follows: GdBCO was synthesized at 780 ◦C under the partial O2
pressure of 350 mTorr with the laser energy of 130 mJ/pulse; subsequently, oxygen annealing
was performed at 500 mTorr and 500 ◦C for 1 h. As shown in Figure 2, the GdBCO film
thickness is 70 ± 6 nm confirmed by scanning electron microscope (SEM).
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3. Analytical Method
3.1. Transmission Coefficients of Bulk and Thin Film Samples

Using the Fresnel equation, we can obtain the transmission and reflection of light of
the media using the refractive index, and vice versa. As shown in Figure 3, the Fresnel
equation is defined as follows [32].
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When the electric field is normally incident to material j from i, the Fresnel coefficients are:

rij =
nj − ni

ni + nj
, (1)

tij =
2ni

ni + nj
. (2)

The electric field of light passing through the interface is given by:

Et = Eitij. (3)

When the electric field passes through the inside of the medium, the electric field is
exponentially decayed as follows

Edecayed = Einiteikkd (4)

where kk is a wavevector in the medium, expressed as:

kk = 2πñk/λ (5)

According to Equations (4) and (5), it can be seen that the real part of the refractive in-
dex mainly contributes to the phase changes, and the imaginary part of the refractive index
mainly contributes to the amplitude changes. Using these relationships, the transmitted
electric fields for the bulk and thin film samples can be calculated as follows.

In time-domain spectroscopy experiments, the first and multiple signals for bulk
samples, such as single crystals, can be distinguished from the time data. Therefore, there
is no need to consider multiple reflections.

In the experiment, the case was first measured with only the aperture, and then the
sample was measured. Subsequently, the data measured on the sample was divided by
the data measured with only the aperture. For the transmitted electric field of the aperture
case, as shown in Figure 4a, the sample thickness was considered.

Eref = Eit11t11eik1d (6)
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The transmitted electric field of the sample (Figure 4b) is given by:

Esub = Eit13t31eik3d. (7)

Thus, the transmission coefficient of the bulk sample is:

tsub = Esub/Eref = t13t31ei(k3−k1)d/t11t11 = t13t31ei(k3−k1)d, (8)

For thin films, the terms reflected from the interface (so-called multiple reflections
or Fabry–Perot interference) must be considered as the multiple reflections, and the first
signal cannot be distinguished from the time data. Thin films are generally deposited onto
substrates, and the interfaces of the materials are shown in Figure 5.
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Fabry–Perot interference is defined as the multiple reflections that occur at both
interfaces of a thin sample, as shown in Equation (9).

FP = ∑
p

(
r12r23e2ik2d

)p
=

1
1− r12r23e2ik2d (9)
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Thus, the transmitted electric field through the thin sample can be established as:

Et = Eit12t23 × FP. (10)

In the experiment, the situation will be as shown in Figure 6.
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Typical data processing for calculating the transmission coefficient in an experiment
involves dividing the transmitted signal through the thin film on the substrate (Figure 6)
by that of the substrate only (Figure 4b). Therefore, the transmission coefficient of the thin
film is given by:

tfilm = Efilm/Esub = t12t23t31eik2d2eik3d × FP/t13t31eik3d =
t12t23

t13
eik2d2 × FP. (11)

3.2. Numerical Method

Most of the materials used as a substrate have very little absorption in the terahertz
region. In particular, when the refractive index of the substrate is n3 = N3 + iK3, the K3
value is very small compared with the N3 value. Then, the following approximation can be
obtained [33]:

tsub = t13t31ei(k3−k1)d =
4n1(N3 + iK3)

(n1 + N3 + iK3)
2 ei(k3−k1)d ≈ 4n1N3

(n1 + N3)
2 ei(k3−k1)d. (12)

The transmitted electric field can be expressed as Equation (13), including the ampli-
tude and phase components.

tsub = |t|e−i∅ (13)

Combining Equations (12) and (13) provides the following:

∠tsub = ∅ = −[N3 − n1]
ωd
c

, (14)

ln |tsub| = ln
[

4n1N3

n1 + N3

]
− K3

ωd
c

. (15)
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Therefore, the equations for the refractive indices of thick and insulating materials can
be obtained, respectively, as:

N3 = n1 −
c

ωd
∅, (16)

K3 =
c

ωd

{
ln
[

4n1N3

n1 + N3

]
− ln |tsub|

}
. (17)

These values are almost correct; however, to improve the accuracy, these values are
used as the initial value, and the numerical method is performed to determine the result
faster and more accurately, as shown in Figure 7. We used the fsolve function in MATLAB
for our analysis. The fsolve function is an optimization tool that finds the optimal solution
using the Levenberg–Marquardt algorithm [34,35]. Using the optimization tool, we finally
obtained the most accurate refractive indices, which were perfectly matched with the
amplitude and phase of the transmitted signal through the sample.
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In the case of conducting samples, the n and κ values of the complex refractive index
are generally comparable in the terahertz frequencies. For this reason, to set an appropriate
initial value when calculating the numerical solution, the refractive indices are considered
to be n = κ when the refractive index of the film is ñ f ilm = n + iκ. If n = κ, we can assume
that there is only one variable. Therefore, Equation (18) was established, which can be
solved using only the amplitude data.∣∣∣∣ t12t23

t13
× FP

∣∣∣∣ = ∣∣∣∣Efilm
Esub

∣∣∣∣ (18)

Following this, a reasonable solution of the complex refractive index can be obtained
using the same optimization tool with this initial value.

t12t23

t13
× FP =

Efilm
Esub

(19)
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4. Results and Discussions
4.1. Undoped Silicon and Single Crystal LaAlO3

Silicon wafers are one of the most commonly used substrates. In Section 4.2, an
undoped silicon wafer (2000 Ω) was used as a substrate for the silver thin films. The
time data of the terahertz transmitted through the aperture and the Si wafer are shown in
Figure 8, and the normalized Fourier transform data are shown in Figure 9. By substituting
the amplitude and phase of the Fourier transform data into Equations (16) and (17), the
refractive index values can be obtained. Using these as an initial value, we obtained
the numerical solution of Equation (6) to determine the refractive indices, as shown in
Figure 10 (n ≈ 3.4, κ ≈ 0.005). This result is consistent with the generally known refractive
indices of high resistivity: float-zone silicon [29].
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the undoped silicon wafer.

A 500 µm-thick single-crystal LAO was used to deposit the GdBCO film. Usually an
SrTiO3 (STO) substrate is used, but in the terahertz region transmission is very low, owing
to the influence of its phonon, thus an STO is not suitable [36,37]. The time data of the
transmission through the aperture and LAO are shown in Figure 11, and the normalized
Fourier transform data are shown in Figure 12. Meanwhile, Figure 13 presents the refractive
indices of LAO, obtained using the same method as that used to calculate the refractive
indices of the Si wafer. Therefore, we obtained the refractive indices of LAO (n = 4.8,
κ ≈ 0.01). This result is consistent with the generally known refractive indices of single
crystal LAO [30].
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4.2. Silver Thin Films

Silver is a noble metal with very high conductivity. Thus, it is widely applied in
the field of metamaterials and plasmonics as a perfect metal in the terahertz and lower
frequency region. Noble metals have very large refractive indices in the terahertz region,
so even if it is thin, the optical path is large enough. As a result, there is no problem in
estimating the refractive index, even with the form of the thin film. Figure 14 shows the
measured time trace data of the silver films and the substrate. Using the data in Figure 15,
obtained from the Fourier transform of the data in Figure 14, the refractive indices of
the silver thin film can be estimated, as shown in Figure 16, by applying the numerical
extraction method presented in Section 3.
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The simple Drude model for conductors is useful for describing the properties of
metals in the low-frequency region. The Drude model dielectric function is given by

ε̃(ω) = ε∞ −
ω2

p

ω2 + iωωτ
= ñ2. (20)

where ωp = 1.37× 1016 Hz and ωτ = 27.4× 1012 Hz are the Drude parameters of a bulk
silver [38].

As shown in Figure 16, it is possible to estimate the refractive indices of the sub-50 nm-
thick silver films, which are in a sub-skin depth region. It can be observed that the feature
for this thin film tends to differ from that of bulk metal. Compared with the n and κ values
extracted from the Drude model of the bulk characteristic, it is apparent that both these
values decrease as the film becomes even thinner. In particular, κ decreases relatively more.
In addition, the refractive indices of the 15 nm-thick silver film are approximately half that
of the bulk. It should be noted that the terahertz transmittance through the metal film of
the sub-skin depth thickness increases even more as its thickness decreases, because the
refractive indices of the metal film also decline with the decreasing thickness. As the optical
path of the silver thin film with a thickness of 15 nm is approximately 400 × 15 nm = 6 µm,
the refractive indices of the silver film as thin as 10 nm can be experimentally extracted
accurately. The estimated indices of n and κ in the sub-skin depth thick silver films are
qualitatively consistent with previous results [25,27].

4.3. GdBCO Thin Film

GdBCO is a high-Tc cuprate superconducting material with a Tc of about 90 K. Such
materials are more intriguing in various fields because they exhibit phase transition charac-
teristics at moderately high temperatures. We measured transmitted signals through the
70 nm-thick GdBCO film on the LAO substrate in the temperature range between 20 and
180 K (Figure 17). By Fourier-transforming the time-domain data, we obtained the transmit-
ted amplitude and phase spectra for the sample and a bare substrate. For normalization of
the measured spectra, we used a reference signal for the bare LAO substrate. We obtained
the normalized transmitted amplitude and phase spectra as the ratio between the measured
data for the sample and the bare substrate, as shown in Figure 18. Using the same method
as was used for the analysis of the silver thin films described in Section 4.2., we estimated
the refractive indices of the GdBCO thin film at the selected temperatures, as shown in
Figure 19.
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As shown in Figure 19, the GdBCO thin films exhibit a Drude feature above Tc, like a
general conducting material, and superconducting features at temperatures below Tc. We
will further explain the details of the two-fluid model in the following paragraph.

To analyze the optical properties of the superconducting thin film, a two-fluid model
was used (Figure 20a,b). The two-fluid model is similar to the Drude model, except that it
explains the conductivity characteristics of a superconductor such that the ratio of carriers
(normal electrons and superconducting electrons) changes with temperature [39]. The
two-fluid model conductivity is expressed as follows

σ̃ = σ1 + iσ2, (21)

σ1 =
ne2

m∗
fn(T)ωτ

1 + ω2τ2 = ω2
pε0

fn(T)τ
1 + ω2τ2 , (22)

σ2 =
ne2

m∗

[
fn(T)ωτ

1 + ω2τ2 +
fs(T)

ω

]
= ω2

pε0

[
fn(T)ωτ

1 + ω2τ2 +
fs(T)

ω

]
, (23)
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where fn and fs are ratios of the normal and superconducting carriers, respectively, given by

fn(T) + fs(T) = 1, (24)

fs(T) = (1− tγ)2, (25)

fn(T) = 1− fs(T), (26)

where τ and t are the relaxation time and the reduced temperature T/Tc, respectively, and
γ is an empirical parameter.

1
τ
=

1
τ(1)

t
1 + α(t1−γ − t)

(27)

t =
T
Tc

(28)
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Figure 20. Calculated (a) real part and (b) imaginary part of the refractive indices of the bulk YBa2Cu3O7 with the different
temperatures of 20 (black), 40 (red), 60 (blue), and 80 K (green) using the two-fluid model are shown. Estimated (c) real part
and (d) imaginary part of the refractive indices of the 70 nm-thick GdBCO film with the different temperatures of 20 (black),
40 (red), 60 (blue), and 80 K (green), respectively.
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Here, α = 10, γ = 1.5, Tc = 90 K, ωp = 2× 1015 Hz, and τ(1) = 3.57× 10−14 s. The
superconductivity emerges on the CuO2 plane in cuprate superconductors. The A site ion
(Y, Gd), located in between two CuO2 layers, plays the role of the insulating layer. The
two-fluid model is based on normal and superconducting carriers, and since the two-fluid
model has been mainly applied for YBa2Cu3O7 (YBCO), we used the parameters of YBCO,
which is similar to the GdBCO [40], in the analysis using the two-fluid model [41].

The complex dielectric function is expressed as:

ε̃(ω) = ñ2 = ε∞ +
iσ̃

ωε0
. (29)

The complex refractive index is given by:

ñ = n + iκ =
√

ε̃. (30)

In the time data of Figure 17, the tendency of the terahertz transient appears at an
earlier delay time, as the temperature decrease is contrary to the belief that the conductivity
increases and the refractive index increases as the temperature decreases. This is because,
as the temperature decreases, the real part of the refractive index decreases, which shortens
the optical path. In addition, the imaginary part of the refractive index will greatly affect
the amplitude of the exponential term in the Fresnel coefficient. However, as it also exists in
the term outside the exponential, it may affect the optical path, although it is less than the
real part of the refractive index. As shown in Figure 20, the 70 nm-thick superconducting
GdBCO film exhibited qualitatively similar properties. However, the reason why the
quantitative values are different not only owes to the use of the YBCO parameters, but
also the GdBCO film, which is too thin to sustain the quality of bulk [37,42]. Moreover,
contrary to the theory (Figure 20a,b), there was no significant difference in the real part of
the refractive index from 20 to 60 K throughout the experiment (Figure 20c,d). The pulse
width of the probe beam was approximately 10 fs; therefore, it was difficult to distinguish
the time delay when the optical path was less than 3 µm. As the thickness of the thin film
is 70 nm and the real part of the refractive index is approximately 50, the optical path is
approximately 3.5 µm, which is close to the resolution limit. Therefore, it is difficult to
accurately estimate a refractive index value that is smaller than this. However, as previously
mentioned, the imaginary part of the refractive index corresponds more with amplitude, so
it would be qualitatively good agreement with the results obtained by the two-fluid model.

In the experiment, the SNR is 5000:1. Therefore, it hardly affects the error in the
estimated values, and the most critical error is the uncertainty in the thickness of the
GdBCO film, as shown in the SEM image in Figure 2. Accordingly, the refractive index
and the related error bars that can occur due to the thickness at the highest and lowest
temperatures are shown in Figure 21. The error of the refractive indices due to the thickness
uncertainty of about ±10% is about ±5%.

In summary, we experimentally estimated the refractive indices of a 70 nm-thick
superconducting GdBCO film via transmission-type terahertz time-domain spectroscopy
combined with the numerical extraction method. Although many studies were performed
with superconducting thin films, especially in the terahertz and lower frequency regions,
they were limited to analysis of the actual index of refraction of the superconducting
thin film, where its thickness is in the sub-skin depth region. Our terahertz time-domain
spectroscopy, based on the 10-fs pulse laser, showed a great possibility of estimating the
terahertz dielectric constants of sub-100 nm thick superconducting films, even in the
superconducting state. In addition, this technique, combined with the numerical extraction
method, can be applied to experimentally analyze the terahertz optical properties of various
thin film materials with the one-shot measurement.
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15. Demirhan, Y.; Alaboz, H.; Nebioğlu, M.; Mulla, B.; Akkaya, M.; Altan, H.; Sabah, C.; Ozyuzer, L. Fourcross shaped metamaterial
filters fabricated from high temperature superconducting YBCO and Au thin films for terahertz waves. Supercond. Sci. Technol.
2017, 30, 074006. [CrossRef]

16. Lazarides, N.; Tsironis, G. Superconducting metamaterials. Phys. Rep. 2018, 752, 1–67. [CrossRef]
17. Holdengreber, E.; Gao, X.; Mizrahi, M.; Schacham, S.; Farber, E. Superior impedance matching of THz antennas with high

temperature superconducting Josephson junctions. Supercond. Sci. Technol. 2019, 32, 074006. [CrossRef]
18. Singh, R.; Zheludev, N. Superconductor photonics. Nat. Photonics 2014, 8, 679–680. [CrossRef]
19. Frenkel, A.; Gao, F.; Liu, Y.; Whitaker, J.F.; Uher, C.; Hou, S.Y.; Phillips, J.M. Conductivity peak, relaxation dynamics, and

superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies. Phys. Rev. B 1996, 54,
1355–1365. [CrossRef] [PubMed]

20. Lloyd-Hughes, J.; Jeon, T.-I. A Review of the Terahertz Conductivity of Bulk and Nano-Materials. J. Infrared Millim. Terahertz
Waves 2012, 33, 871–925. [CrossRef]

21. Grischkowsky, D.; Keiding, S.; Van Exter, M.; Fattinger, C. Far-infrared time-domain spectroscopy with terahertz beams of
dielectrics and semiconductors. J. Opt. Soc. Am. B 1990, 7, 2006–2015. [CrossRef]

22. Withayachumnankul, W.; O’Hara, J.F.; Cao, W.; Al-Naib, I.; Zhang, W. Limitation in thin-film sensing with transmission-mode
terahertz time-domain spectroscopy. Opt. Express 2014, 22, 972–986. [CrossRef]

23. Laman, N.; Grischkowsky, D. Terahertz conductivity of thin metal films. Appl. Phys. Lett. 2008, 93, 051105. [CrossRef]
24. Wang, Z.; Han, Y.; Xu, N.; Chen, L.; Li, C.; Wu, L.; Zhang, W. Characterization of Thin Metal Films Using Terahertz Spectroscopy.

IEEE Trans. Terahertz Sci. Technol. 2018, 8, 161–164. [CrossRef]
25. Zhou, D.-X.; Parrott, E.P.J.; Paul, D.J.; Zeitler, J.A. Determination of complex refractive index of thin metal films from terahertz

time-domain spectroscopy. J. Appl. Phys. 2008, 104, 053110. [CrossRef]
26. Demsar, J.; Averitt, R.D.; Taylor, A.J.; Kang, W.-N.; Kim, H.J.; Choi, E.-M.; Lee, S.-I. Photoinduced Conductivity Dynamics Studies

of MgB2 Thin Films. Int. J. Mod. Phys. B 2003, 17, 3675–3681. [CrossRef]
27. Walther, M.; Cooke, D.G.; Sherstan, C.; Hajar, M.; Freeman, M.R.; Hegmann, F.A. Terahertz conductivity of thin gold films at the

metal-insulator percolation transition. Phys. Rev. B 2007, 76, 125408. [CrossRef]
28. Thoman, A.; Kern, A.; Helm, H.; Walther, M. Nanostructured gold films as broadband terahertz antireflection coatings. Phys. Rev.

B 2008, 77, 195405. [CrossRef]
29. Dai, J.; Zhang, J.; Zhang, W.; Grischkowsky, D. Terahertz time-domain spectroscopy characterization of the far-infrared absorption

and index of refraction of high-resistivity, float-zone silicon. J. Opt. Soc. Am. B 2004, 21, 1379–1386. [CrossRef]
30. Zou, X.; He, M.; Springer, D.; Lee, N.; Nair, S.K.; Cheong, S.A.; Wu, T.; Panagopoulos, C.; Talbayev, D.; Chia, E.E.M. Effect

of annealing on the temperature-dependent dielectric properties of LaAlO3 at terahertz frequencies. AIP Adv. 2012, 2, 12120.
[CrossRef]

31. Gallot, G.; Grischkowsky, D. Electro-optic detection of terahertz radiation. J. Opt. Soc. Am. B 1999, 16, 1204–1212. [CrossRef]
32. Hecht, E. Optics, 5th ed.; Pearson: Seoul, Korea, 2017; pp. 433–441.
33. Mickan, S.P.; Zhang, X.-C. T-Ray Sensing and Imaging. Int. J. High Speed Electron. Syst. 2003, 13, 601–676. [CrossRef]
34. Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168.

[CrossRef]
35. Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441.

[CrossRef]
36. Kozina, M.; Fechner, M.; Marsik, P.; Van Driel, T.; Glownia, J.M.; Bernhard, C.; Radovic, M.; Zhu, D.; Bonetti, S.; Staub, U.; et al.

Terahertz-driven phonon upconversion in SrTiO3. Nat. Phys. 2019, 15, 387–392. [CrossRef]
37. Ji, G.; Park, W.; Lee, H.-T.; Song, C.-Y.; Seo, C.; Park, M.; Kang, B.; Kim, K.; Kim, D.-S.; Park, H.-R. Terahertz time domain

spec-troscopy of GdBCO superconducting thin films. Prog. Supercond. Cryog. 2019, 21, 15–17. [CrossRef]

http://doi.org/10.1002/advs.201902699
http://www.ncbi.nlm.nih.gov/pubmed/32154074
http://doi.org/10.1021/nl1002153
http://doi.org/10.1364/OE.19.021211
http://www.ncbi.nlm.nih.gov/pubmed/22108973
http://doi.org/10.1021/acs.nanolett.5b02361
http://doi.org/10.1002/adom.201900548
http://doi.org/10.1103/PhysRevLett.105.247402
http://www.ncbi.nlm.nih.gov/pubmed/21231556
http://doi.org/10.1515/nanoph-2012-0007
http://doi.org/10.1088/1361-6668/aa6fbe
http://doi.org/10.1016/j.physrep.2018.06.005
http://doi.org/10.1088/1361-6668/ab1f61
http://doi.org/10.1038/nphoton.2014.206
http://doi.org/10.1103/PhysRevB.54.1355
http://www.ncbi.nlm.nih.gov/pubmed/9985408
http://doi.org/10.1007/s10762-012-9905-y
http://doi.org/10.1364/JOSAB.7.002006
http://doi.org/10.1364/OE.22.000972
http://doi.org/10.1063/1.2968308
http://doi.org/10.1109/TTHZ.2017.2786692
http://doi.org/10.1063/1.2970161
http://doi.org/10.1142/S0217979203021605
http://doi.org/10.1103/PhysRevB.76.125408
http://doi.org/10.1103/PhysRevB.77.195405
http://doi.org/10.1364/JOSAB.21.001379
http://doi.org/10.1063/1.3679725
http://doi.org/10.1364/JOSAB.16.001204
http://doi.org/10.1142/S0129156403001843
http://doi.org/10.1090/qam/10666
http://doi.org/10.1137/0111030
http://doi.org/10.1038/s41567-018-0408-1
http://doi.org/10.9714/psac.2019.21.1.015


Crystals 2021, 11, 651 18 of 18

38. Ordal, M.A.; Bell, R.J.; Alexander, R.W.; Long, L.L.; Querry, M.R. Optical properties of fourteen metals in the infrared and far
infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 1985, 24, 4493–4499. [CrossRef]

39. Vendik, O.; Vendik, I.; Kaparkov, D. Empirical model of the microwave properties of high-temperature superconductors. IEEE
Trans. Microw. Theory Tech. 1998, 46, 469–478. [CrossRef]

40. Dubroka, A.; Rossle, M.; Kim, K.W.; Malik, V.K.; Munzar, D.; Basov, D.N.; Schafgans, A.A.; Moon, S.J.; Lin, C.T.; Haug,
D.; et al. Evidence of a Precursor Superconducting Phase at Temperatures as High as 180 K in RBa2Cu3O7−δ (R = Y, Gd, Eu)
Superconducting Crystals from Infrared Spectroscopy. Phys. Rev. Lett. 2011, 106, 047006. [CrossRef]

41. Tsiatmas, A.; Fedotov, V.; De Abajo, F.J.G.; Zheludev, N. Low-loss terahertz superconducting plasmonics. New J. Phys. 2012,
14, 115006. [CrossRef]

42. Jang, H.-B.; Lim, J.S.; Yang, C.-H. Film-thickness-driven superconductor to insulator transition in cuprate superconductors. Sci.
Rep. 2020, 10, 1–10. [CrossRef]

http://doi.org/10.1364/AO.24.004493
http://doi.org/10.1109/22.668643
http://doi.org/10.1103/PhysRevLett.106.047006
http://doi.org/10.1088/1367-2630/14/11/115006
http://doi.org/10.1038/s41598-020-60037-y

	Introduction 
	Experimental Method 
	Terahertz Time-Domain Spectroscopy 
	Sample Fabrication 

	Analytical Method 
	Transmission Coefficients of Bulk and Thin Film Samples 
	Numerical Method 

	Results and Discussions 
	Undoped Silicon and Single Crystal LaAlO3 
	Silver Thin Films 
	GdBCO Thin Film 

	References

