Experimental Study on the Effect of Compound Activator on the Mechanical Properties of Steel Slag Cement Mortar
Abstract
:- A method for using a compound activator to improve the activity of steel slag powder is proposed.
- The optimal dosage combination of activator, steel slag, metakaolin, and silica fume is suggested.
- The economic benefit analysis is carried out on the steel slag powder activated by the compound activator to replace part of the cement.
1. Introduction
2. Experimental and Methods
2.1. Raw Materials
2.2. Mix Proportions
2.3. Test Methods
2.4. GM (0, N) Prediction Model
3. Analysis of Results
4. Orthogonal Analysis
4.1. Compressive Strength Analysis
4.2. Analysis of Flexural Strength
5. Prediction of Mortar Strength
5.1. Prediction of Compressive Strength
5.2. Prediction of Flexural Strength
6. Economic Benefit Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pang, B.; Zhou, Z.H.; Hou, P.K. Autogenous and engineered healing mechanisms of carbonated steel slag aggregate in concrete. Constr. Build. Mater. 2016, 107, 191–202. [Google Scholar] [CrossRef]
- Furlani, E.; Tonello, G.; Maschio, S. Recycling of steel slag and glass cullet from energy saving lamps by fast firing production of ceramics. Waste Manag. 2010, 30, 1714–1719. [Google Scholar] [CrossRef]
- Das, B.; Prakash, S.; Reddy, P. An overview of utilization of slag and sludge from steel industrie. Resour. Conserv. Recycl. 2007, 50, 40–57. [Google Scholar] [CrossRef]
- Xiang, X.D.; Xi, J.C.; Li, C.H. Preparation and application of the cement-free steel slag cementitious material. Constr. Build. Mater. 2016, 114, 874–879. [Google Scholar] [CrossRef]
- Guo, Y.; Xie, J.; Zheng, W. Effects of steel slag as fine aggregate on static and impact behaviours of concrete. Constr. Build. Mater. 2018, 192, 194–201. [Google Scholar] [CrossRef]
- Saxena, S.; Tembhurkar, A.R. Impact of use of steel slag as coarse aggregate and wastewater on fresh and hardened properties of concrete. Constr. Build. Mater. 2018, 165, 126–137. [Google Scholar] [CrossRef]
- Cardoso, C.; Camões, A.; Eires, R.; Mota, A.; Araújo, J.; Castro, F.; Carvalho, J. Using foundry slag of ferrous metals as fine aggregate for concrete. Resour. Conserv. Recycl. 2018, 138, 130–141. [Google Scholar] [CrossRef]
- Martinho, F.C.; Picado-Santos, L.G.; Capitao, S.D. Influence of recycled concrete and steel slag aggregates on warm-mix asphalt properties. Constr. Build. Mater. 2018, 185, 684–696. [Google Scholar] [CrossRef]
- Zhang, P.; Zheng, Y.X.; Wang, K.J. A review on properties of fresh and hardened geopolymer mortar. Compos. Part B Eng. 2018, 152, 79–95. [Google Scholar] [CrossRef]
- Sheen, Y.N.; Wang, H.Y.; Sun, T.H. A study of engineering properties of cement mortar with stainless steel oxidizing slag and reducing slag resource materials. Constr. Build. Mater. 2013, 40, 239–245. [Google Scholar] [CrossRef]
- Calmon, J.L.; Tristão, F.A.; Giacometti, M.; Meneguelli, M.; Moratti, M.; Teixeira, J.E. Effects of BOF steel slag and other cementitious materials on the rheological properties of self-compacting cement pastes. Constr. Build. Mater. 2013, 40, 1046–1053. [Google Scholar] [CrossRef]
- Li, D.X.; Fu, X.H.; Wu, X.Q.; Tang, M.S. Durability study of steel slag cement. Cem. Concr. Res. 1997, 27, 983–987. [Google Scholar]
- Li, Y.X.; Chen, Y.M.; Wei, J.X. A study on the relationship between porosity of the cement paste withmineral additives and compressive strength of mortar based on this paste. Cem. Concr. Res. 2006, 36, 1740–1743. [Google Scholar] [CrossRef]
- Wu, X.; Hong, Z.; Hou, X. Study on steel slag and fly ash composite Portland cement. Cem. Concr. Res. 1999, 29, 1103–1106. [Google Scholar]
- Hu, S.G. Research on Hydration of Steel Slag Cement Activated with Waterglass. J. Wuhan Univ. Technol. Mater. Sci. 2001, 16, 37–40. [Google Scholar]
- Hu, S.G.; He, Y.J.; Lu, L.N. Effect of fine steel slag powder on the early hydration process of Portland cement. J. Wuhan Univ. Technol. Mater. Sci. 2006, 21, 147–149. [Google Scholar]
- Zhu, X.; Hou, H.B.; Huang, X.Q. Enhance hydration properties of steel slag using grinding aids by mechano chemical effect. Constr. Build. Mater. 2012, 29, 476–481. [Google Scholar] [CrossRef]
- Altun, İ.A.; Yılmaz, İ. Study on steel furnace slags with high MgO as additive in Portland cement. Cem. Concr. Res. 2002, 32, 1247–1249. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, K.X.; Wang, J. Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2. Ceram. Int. 2020, 46, 20027–20037. [Google Scholar] [CrossRef]
- Huo, B.B.; Li, B.L.; Chen, C. Surface etching and early age hydration mechanisms of steel slag powder with formic acid. Constr. Build. Mater. 2021, 280, 1–11. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, K.X.; Li, Q.F. Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders—A review. J. Clean. Prod. 2020, 258, 1–22. [Google Scholar] [CrossRef]
- Peng, X.Q.; Liu, C.; Li, S. Research on the setting and hardening performance of Alkali-activated steel slag-slag based cementitious materials. J. Hunan Univ. (Nat. Sci.) 2015, 42, 47–52. (In Chinese) [Google Scholar]
- Sun, J.W.; Zhang, Z.Q.; Zhuang, S.Y. Hydration properties and microstructure characteristics of alkali–activated steel slag. Constr. Build. Mater. 2020, 241, 1–9. [Google Scholar] [CrossRef]
- Huo, B.B.; Li, B.L.; Huang, S.Y. Hydration and soundness properties of phosphoric acid modified steel slag powder. Constr. Build. Mater. 2020, 254, 1–9. [Google Scholar] [CrossRef]
- Zhang, T.S.; Liu, F.T.; Liu, S.Q. Factors influencing the properties of a steel slag composite cement. Adv. Cem. Res. 2008, 20, 145–150. [Google Scholar] [CrossRef]
- Du, J.; Liu, J.X. Compound effect of dehydrate gypsum and silica fume on strength of steel slag-cement binding materials. J. Civ. Archit. Environ. Eng. 2013, 35, 131–136. (In Chinese) [Google Scholar]
- Lin, Z.S.; Tao, H.Z. Research for Increasing the Activation of Steel Slag and Fly Ash. J. Wuhan Univ. Technol. 2001, 2, 4–7. (In Chinese) [Google Scholar]
- Kang, L.; Zhang, Y.J.; Zhang, L. Preparation, characterization and photocatalytic activity of novel CeO2 loaded porous alkali-activated steel slag-based binding material. Int. J. Hydrog. Energy 2017, 42, 17341–17349. [Google Scholar] [CrossRef]
- Yin, S.H.; Guo, H.; Yu, Q.J. Steel Slag Reconstruction Experiment by Reduction FeOx and Its Mineral Composition. J. Chin. Ceram. Soc. 2013, 41, 966–971. (In Chinese) [Google Scholar]
- Zhao, H.J.; Yu, Q.J.; Wei, J.X. Effect of Composition and Temperature on Structure and Early Hydration Activity of Modified Steel Slag. J. Build. Mater. 2012, 15, 399–405. (In Chinese) [Google Scholar]
- Wei, R.; Li, H.; Zhang, W. Mechanism and Recent Development of Steel Slag Activating Activity. Mater. Rep. 2014, 28, 105–108+128. (In Chinese) [Google Scholar]
- Yi, L.S.; Wen, J. Research Status and Progress on the Steel Slag Activity Excitation Technology. Bull. Chin. Ceram. Soc. 2013, 32, 2057–2062. (In Chinese) [Google Scholar]
- Guan, J.F.; Yuan, P.; Hu, X.Z. Statistical analysis of concrete fracture using normal distribution pertinent to maximum aggregate size. Theor. Appl. Fract. Mech. 2019, 101, 236–253. [Google Scholar] [CrossRef]
- Yao, X.H.; Li, L.L.; Guan, J.F. Initial cracking strength and initial fracture toughness from three-point-bending and wedge splitting concrete specimens. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 601–621. [Google Scholar] [CrossRef]
- Yao, X.H.; Qin, P.Q.; Guan, J.F. Residual mechanical properties and constitutive model of high-strength seismic steel bars through different cooling rates. Materials 2021, 14, 469. [Google Scholar] [CrossRef] [PubMed]
- GB/T 17671-1999, Method of Testing Cements-Determination of Strength; China Standards Press: Beijing, China, 1999. (In Chinese)
- Guan, J.F.; Hu, X.Z.; Yao, X.H. Fracture of 0.1 and 2 m long mortar beams under three-point-bending. Mater. Des. 2017, 133, 363–375. [Google Scholar] [CrossRef]
- Miah, M.J.; Patoary, M.; Paul, S.C. Enhancement of Mechanical Properties and Porosity of Concrete Using Steel Slag Coarse Aggregate. Materials 2020, 13, 2865. [Google Scholar] [CrossRef]
- Chen, S.F. The Study of Sexual Assault under Age Factors Affection via GM (0, N) and Grey Structure Modeling. J. Grey Syst. 2015, 18, 173–179. [Google Scholar]
- Ren, J. GM (1, N) method for the prediction of anaerobic digestion system and sensitivity analysis of influential factors. Bioresour. Technol. 2018, 247, 1258–1261. [Google Scholar] [CrossRef]
- Yu, Y.F.; Zhu, S.Y.; Wang, H. A Forecasting Method of Road Freight Volume Based on GM (0, N). J. Wuhan Univ. Technol. (Traffic Sci. Eng.) 2010, 34, 93–96. (In Chinese) [Google Scholar]
- Liu, S.F. Grey System Theory and Application; Science Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Zhang, G.X. Chinese Quality Engineer Handbook; Enterprise Management Publishing House: Beijing, China, 2002. (In Chinese) [Google Scholar]
Silica Fume | Sodium Aluminate | Sodium Sulfate | Sodium Tripolyphosphate | Water Quenched Slag | Desulfurization Gypsum | Stone Powder |
---|---|---|---|---|---|---|
6.25 | 0.63 | 1.25 | 0.62 | 21.25 | 3.13 | 66.87 |
Composition | SiO2 | Al2O3 | Fe2O3 | CaO | SO3 | MgO | Na2O | MnO | K2O |
---|---|---|---|---|---|---|---|---|---|
Cement | 19.31 | 5.86 | 3.15 | 60.33 | 4.42 | 3.03 | 0.12 | - | 1.13 |
Steel slag powder | 14.24 | 1.94 | 19.69 | 46.19 | - | 10.06 | - | 1.36 | - |
Metakaolin | 55.36 | 35.46 | 1.83 | 0.54 | - | 0.03 | 0.04 | - | 0.26 |
Silica fume | 91.33 | 0.85 | 0.57 | 0.47 | 0.47 | 1.55 | 0.42 | - | 1.38 |
Dosage Level | Factor | |||
---|---|---|---|---|
Activator | Steel Slag Powder | Metakaolin | Silica Fume | |
1 | 5 | 10 | 5 | 2 |
2 | 10 | 20 | 10 | 4 |
3 | 15 | 30 | 15 | 6 |
4 | 20 | 40 | 20 | 8 |
Experimental Group | Activator | Steel Slag Powder | Metakaolin | Silica Fume | Cement | Sand | Water |
---|---|---|---|---|---|---|---|
G0 | 0 | 0 | 0 | 0 | 450 | 1350 | 225 |
G1 | 22.5 | 45 | 22.5 | 9 | 351 | 1350 | 225 |
G2 | 22.5 | 90 | 45 | 18 | 274.5 | 1350 | 225 |
G3 | 22.5 | 135 | 67.5 | 27 | 198 | 1350 | 225 |
G4 | 22.5 | 180 | 90 | 36 | 121.5 | 1350 | 225 |
G5 | 45 | 45 | 45 | 27 | 288 | 1350 | 225 |
G6 | 45 | 90 | 22.5 | 36 | 256.5 | 1350 | 225 |
G7 | 45 | 135 | 90 | 9 | 171 | 1350 | 225 |
G8 | 45 | 180 | 67.5 | 18 | 139.5 | 1350 | 225 |
G9 | 67.5 | 45 | 67.5 | 36 | 234 | 1350 | 225 |
G10 | 67.5 | 90 | 90 | 27 | 175.5 | 1350 | 225 |
G11 | 67.5 | 135 | 22.5 | 18 | 207 | 1350 | 225 |
G12 | 67.5 | 180 | 45 | 9 | 148.5 | 1350 | 225 |
G13 | 90 | 45 | 90 | 18 | 207 | 1350 | 225 |
G14 | 90 | 90 | 67.5 | 9 | 193.5 | 1350 | 225 |
G15 | 90 | 135 | 45 | 36 | 144 | 1350 | 225 |
G16 | 90 | 180 | 22.5 | 27 | 130.5 | 1350 | 225 |
Experimental Group | Activator (%) | Steel Slag Powder (%) | Metakaolin (%) | Silica Fume (%) | Compressive Strength (MPa) | Flexural Strength (MPa) |
---|---|---|---|---|---|---|
G1 | 5 | 10 | 5 | 2 | 43.4 | 8.2 |
G2 | 5 | 20 | 10 | 4 | 37.2 | 7.8 |
G3 | 5 | 30 | 15 | 6 | 45.6 | 8.3 |
G4 | 5 | 40 | 20 | 8 | 44.6 | 7.9 |
G5 | 10 | 10 | 10 | 6 | 44.2 | 8.8 |
G6 | 10 | 20 | 5 | 8 | 40.6 | 8.7 |
G7 | 10 | 30 | 20 | 2 | 29.8 | 7.4 |
G8 | 10 | 40 | 15 | 4 | 28.4 | 7.6 |
G9 | 15 | 10 | 15 | 8 | 47.9 | 8.2 |
G10 | 15 | 20 | 20 | 6 | 24.3 | 3.0 |
G11 | 15 | 30 | 5 | 4 | 31.1 | 3.7 |
G12 | 15 | 40 | 10 | 2 | 29.0 | 8.4 |
G13 | 20 | 10 | 20 | 4 | 16.0 | 4.0 |
G14 | 20 | 20 | 15 | 2 | 14.5 | 2.5 |
G15 | 20 | 30 | 10 | 8 | 12.5 | 2.4 |
G16 | 20 | 40 | 5 | 6 | 11.5 | 2.2 |
Index | Compressive Strength (MPa) | |||
---|---|---|---|---|
Activator | Steel Slag Powder | Metakaolin | Silica Fume | |
K1 | 170.8 | 151.4 | 126.6 | 116.6 |
K2 | 142.9 | 116.6 | 122.9 | 112.7 |
K3 | 132.3 | 119.0 | 136.3 | 125.6 |
K4 | 54.6 | 113.5 | 114.7 | 145.6 |
k1 | 42.7 | 37.9 | 31.7 | 29.2 |
k2 | 35.7 | 29.2 | 30.7 | 28.2 |
k3 | 33.1 | 29.8 | 34.1 | 31.4 |
k4 | 13.7 | 28.4 | 28.7 | 36.4 |
MAX | 42.7 | 37.9 | 34.1 | 36.4 |
MIN | 13.7 | 28.4 | 28.7 | 28.2 |
R | 29.0 | 9.5 | 5.4 | 8.2 |
Material | SS | df | MS | F | Significant Degree |
---|---|---|---|---|---|
Activator | 5562.2 | 3 | 1854.1 | 154.6 | ** |
Steel slag powder | 703.0 | 3 | 234.3 | 19.5 | ** |
Metakaolin | 181.0 | 3 | 60.3 | 5.0 | ** |
Silica fume | 485.8 | 3 | 161.9 | 13.5 | ** |
Se1 | 300.9 | 3 | F0.01 (3, 35) = 4.4 F0.05 (3, 35) = 2.9 F0.2 (3, 35) = 1.6 | ||
Se2 | 118.8 | 32 | |||
Se | 419.7 | 35 | 12.0 | ||
Sum | 7232.9 | 47 |
Index | Flexural Strength (MPa) | |||
---|---|---|---|---|
Activator | Steel Slag Powder | Metakaolin | Silica Fume | |
K1 | 32.2 | 29.1 | 22.8 | 26.4 |
K2 | 32.5 | 22.0 | 27.4 | 23.0 |
K3 | 23.2 | 21.8 | 26.6 | 22.4 |
K4 | 11.1 | 26.1 | 22.2 | 27.2 |
k1 | 8.0 | 7.3 | 5.7 | 6.6 |
k2 | 8.1 | 5.5 | 6.8 | 5.7 |
k3 | 5.8 | 5.4 | 6.7 | 5.6 |
k4 | 2.8 | 6.5 | 5.6 | 6.8 |
MAX | 8.1 | 7.3 | 6.8 | 6.8 |
MIN | 2.8 | 5.4 | 5.6 | 5.6 |
R | 5.4 | 1.8 | 1.3 | 1.2 |
Material | SS | df | MS | F | Significant Degree |
---|---|---|---|---|---|
Activator | 228.7 | 3 | 76.2 | 51.1 | ** |
Steel slag powder | 28.1 | 3 | 9.4 | 6.3 | ** |
Metakaolin | 15.6 | 3 | 5.2 | 3.5 | * |
Silica fume | 13.3 | 3 | 4.4 | 3.0 | * |
Se1 | 28.9 | 3 | F0.01 (3, 35) = 4.4 F0.05 (3, 35) = 2.9 F0.2 (3, 35) = 1.6 | ||
Se2 | 23.3 | 32 | |||
Se | 52.2 | 35 | 1.5 | ||
Sum | 314.6 | 47 |
Number | Actual Value | Simulated Value | Residual | Relative Simulation Error |
2 | 37.188 | 39.830 | −2.642 | 0.071 |
3 | 45.583 | 38.612 | 6.971 | 0.153 |
4 | 44.625 | 50.581 | −5.956 | 0.133 |
5 | 44.188 | 42.412 | 1.775 | 0.040 |
6 | 40.625 | 40.771 | −0.146 | 0.004 |
7 | 29.750 | 29.894 | −0.144 | 0.005 |
8 | 28.354 | 28.253 | 0.101 | 0.004 |
Mean | 0.059 |
Number | Actual Value | Simulated Value | Residual | Relative Simulation Error |
---|---|---|---|---|
2 | 7.766 | 8.203 | −0.437 | 0.056 |
3 | 8.344 | 7.156 | 1.188 | 0.142 |
4 | 7.906 | 8.938 | −1.032 | 0.130 |
5 | 8.844 | 8.556 | 0.288 | 0.033 |
6 | 8.734 | 8.758 | −0.024 | 0.003 |
7 | 7.359 | 7.392 | −0.033 | 0.004 |
8 | 7.586 | 7.594 | −0.008 | 0.001 |
Mean | 0.053 |
Dosage Combination of Binding Materials (%) | Cost (RMB/ton) | Reduction Rate (%) | |||||
---|---|---|---|---|---|---|---|
Steel Slag Powder | Activator | Metakaolin | Silica Fume | Cement | Binging Materials in Study | Cement | |
10 | 15 | 15 | 8 | 52 | 409.5 | 450 | 9.00 |
20 | 10 | 5 | 8 | 57 | 393.5 | 12.56 | |
30 | 5 | 15 | 6 | 44 | 356.5 | 20.78 | |
40 | 5 | 20 | 8 | 27 | 330 | 26.67 | |
Max | 26.67 | ||||||
Min | 9.00 |
Dosage Combination of Binding Materials (%) | Cost (RMB/ton) | Reduction Rate (%) | |||||
---|---|---|---|---|---|---|---|
Steel Slag Powder | Activator | Metakaolin | Silica Fume | Cement | Binging Materials in Study | Cement | |
10 | 10 | 10 | 6 | 64 | 415 | 450 | 7.78 |
20 | 10 | 5 | 8 | 57 | 393.5 | 12.56 | |
30 | 5 | 15 | 6 | 44 | 356.5 | 20.78 | |
40 | 15 | 10 | 2 | 33 | 274 | 39.11 | |
Max | 39.11 | ||||||
Min | 7.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, J.; Zhang, Y.; Yao, X.; Li, L.; Zhang, L.; Yi, J. Experimental Study on the Effect of Compound Activator on the Mechanical Properties of Steel Slag Cement Mortar. Crystals 2021, 11, 658. https://doi.org/10.3390/cryst11060658
Guan J, Zhang Y, Yao X, Li L, Zhang L, Yi J. Experimental Study on the Effect of Compound Activator on the Mechanical Properties of Steel Slag Cement Mortar. Crystals. 2021; 11(6):658. https://doi.org/10.3390/cryst11060658
Chicago/Turabian StyleGuan, Junfeng, Yulong Zhang, Xianhua Yao, Lielie Li, Lei Zhang, and Jinhua Yi. 2021. "Experimental Study on the Effect of Compound Activator on the Mechanical Properties of Steel Slag Cement Mortar" Crystals 11, no. 6: 658. https://doi.org/10.3390/cryst11060658
APA StyleGuan, J., Zhang, Y., Yao, X., Li, L., Zhang, L., & Yi, J. (2021). Experimental Study on the Effect of Compound Activator on the Mechanical Properties of Steel Slag Cement Mortar. Crystals, 11(6), 658. https://doi.org/10.3390/cryst11060658