A Theoretical Model of Quasicrystal Resonators: A Guided Optimization Approach
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Theoretical Model of 1D Fibonacci-Spaced Defect Resonators
2.2. Analytical Results and Discussion
3. Simulation and Validation
4. Inverse Design of Laser Resonators Based on the Fibonacci-Spaced Defect Resonators
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984, 53, 1951–1953. [Google Scholar] [CrossRef] [Green Version]
- Kraus, Y.E.; Aahini, Y.; Ringel, Z.; Verbin, M.; Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 2012, 109, 106402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourne, C.; Prodan, E. Non-commutative chern numbers for generic aperiodic discrete systems. J. Phys. A Math. Theor. 2018, 51, 235202. [Google Scholar] [CrossRef] [Green Version]
- Kohmoto, M.; Sutherland, B.; Iguchi, K. Localization of optics: Quasiperiodic media. Phys. Rev. Lett. 1987, 58, 2436–2438. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.; Nahata, A.; Vardeny, Z.V. Measurement of surface plasmon correlation length differences using Fibonacci deterministic hole arrays. Opt. Express 2012, 20, 15222–15231. [Google Scholar] [CrossRef]
- Vitiello, M.S.; Nobile, M.; Ronzani, A.; Tredicucci, A.; Castellano, F.; Talora, V.; Li, L.; Linfield, E.H.; Davies, A.G. Photonic quasi-crystal terahertz lasers. Nat. Commun. 2014, 5, 5884. [Google Scholar] [CrossRef] [Green Version]
- Boguslawski, M.; Lučić, N.M.; Diebel, F.; Timotijević, D.V.; Denz, C.; Jović Savić, D.M. Light localization in optically induced deterministic aperiodic Fibonacci lattices. Optica 2016, 3, 711–717. [Google Scholar] [CrossRef] [Green Version]
- Schokker, A.H.; Koenderink, A.F. Lasing in quasi-periodic and aperiodic Plasmon lattices. Optica 2016, 3, 686–693. [Google Scholar] [CrossRef]
- Negro, L.D.; Chen, Y.; Sgrignuoli, F. Aperiodic photonics of elliptic curves. Crystals 2019, 9, 482. [Google Scholar] [CrossRef] [Green Version]
- Moretti, L.; Rea, I.; Stefano, L.D.; Rendina, I. Periodic versus aperiodic: Enhancing the sensitivity of porous silicon based optical sensors. Appl. Phys. Lett. 2007, 90, 191112. [Google Scholar] [CrossRef]
- Makarava, L.N.; Nazarov, M.M.; Ozheredov, I.A.; Shkurinov, A.P.; Smirnov, A.G.; Zhukovsky, S.V. Fibonacci-like photonic structure for femtosecond pulse compression. Phys. Rev. E 2007, 75, 036609. [Google Scholar] [CrossRef] [PubMed]
- Macia, E. Exploiting aperiodic designs in nanophotonic devices. Rep. Prog. Phys. 2012, 75, 036502. [Google Scholar] [CrossRef]
- Negro, L.D.; Boriskina, S.V. Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photonics Rev. 2012, 6, 178–218. [Google Scholar] [CrossRef]
- Barriuso, A.G.; Monzon, J.J.; Yonte, T.; Felipe, A.; Soto, L. Omnidirectional reflection from generalized Fibonacci quasicrystals. Opt. Express 2013, 21, 30039–30053. [Google Scholar] [CrossRef] [Green Version]
- Biasco, S.; Li, L.; Linfield, E.; Davies, A.; Vitiello, M. Multimode, aperiodic terahertz surface-emitting laser resonators. Photonics 2016, 3, 32. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.S.; Zhu, W.; Xu, T.; Lee, J.K.; Lezec, H.J.; Agrawal, A. Aperiodic nanoplasmonic devices for directional colour filtering and sensing. Nat. Commun. 2017, 8, 1347. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, M.S.; Albuquerque, E.L. Transmission fingerprints in quasiperiodic dielectric multilayers. Phys. Rev. B 1999, 59, 11128–11131. [Google Scholar] [CrossRef]
- Thiem, S.; Schreiber, M. Local symmetry dynamics in one-dimensional aperiodic lattices: A numerical study. Nonlinear Dynam. 2014, 78, 71–91. [Google Scholar]
- Tanese, D.; Gurevich, E.; Baboux, F.; Jacqmin, T.; Lemaˆıtre, A.; Galopin, I.S.E.; Amo, A.; Bloch, J.; Akkermans, E. Fractal energy spectrum of a polariton gas in a Fibonacci quasi-periodic potential. Phys. Rev. Lett. 2014, 112, 146404–146409. [Google Scholar] [CrossRef] [Green Version]
- Karman, G.P.; Mcdonald, G.S.; New, G.H.C.; Woerdman, J.P. Fractal modes in unstable resonators. Nature 1999, 402, 138. [Google Scholar] [CrossRef]
- Mahler, L.; Tredicucci, A.; Beltram, F.; Walther, C.; Faist, J.; Beere, H.E.; Ritchie, D.A.; Wiersma, D.S. Quasi-periodic distributed feedback laser. Nat. Photon. 2010, 4, 165–169. [Google Scholar] [CrossRef]
- Biasco, S.; Ciavatti, A.; Li, L.; Davies, A.G.; Linfield, E.H.; Beere, H.; Ritchie, D.; Vitiello, M.S. Highly efficient surface-emitting semiconductor lasers exploiting quasi-crystalline distributed feedback photonic patterns. Light Sci. Appl. 2020, 54, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Maciá, E. Physical nature of critical modes in Fibonacci quasicrystals. Phys. Rev. B 1999, 60, 10032–10036. [Google Scholar] [CrossRef] [Green Version]
- Negro, L.D.; Oton, C.J.; Gaburro, Z.; Pavesi, L.; Johnson, P.; Lagendijk, A.; Righini, R.; Colocci, M.; Wiersma, D.S. Light transport through the band-edge states of Fibonacci quasicrystals. Phys. Rev. Lett. 2003, 90, 055501. [Google Scholar] [CrossRef]
- Ghulinyan, M.; Oton, C.J.; Negro, L.D.; Pavesi, L.; Sapienza, R.; Colocci, M.; Wiersma, D.S. Light-pulse propagation in Fibonacci quasicrystals. Phys. Rev. B 2005, 71, 094204. [Google Scholar] [CrossRef] [Green Version]
- Gellermann, W.; Kohmoto, M.; Sutherland, B.; Taylor, P.C. Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett. 1994, 72, 633–636. [Google Scholar] [CrossRef]
- Hendrickson, J.; Richards, B.C.; Sweet, J.; Khitrova, G.; Poddubny, A.N.; Ivchenko, E.L.; Wegener, M.; Gibbs, H.M. Excitonic polaritons in Fibonacci quasicrystals. Opt. Express 2008, 16, 15382–15387. [Google Scholar] [CrossRef]
- Hsueh, W.J.; Chang, C.H.; Lin, C.T. Exciton photoluminescence in resonant quasi-periodic thue–morse quantum wells. Opt. Lett. 2014, 39, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Chen, C.H.; Tsao, C.W.; Hsueh, W.J. Superradiant modes in resonant quasi-periodic double-period quantum wells. Opt. Express 2015, 23, 11946–11951. [Google Scholar] [CrossRef] [PubMed]
- Kohmoto, M.; Kadanoff, L.P.; Tang, C. Localization problem in one dimension: Mapping and escape. Phys. Rev. Lett. 1983, 50, 1870–1872. [Google Scholar] [CrossRef]
- Wang, X.; Grimm, U.; Schreiber, M. Trace and antitrace maps for aperiodic sequences: Extensions and applications. Phys. Rev. B 2000, 62, 14020–14031. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.F.; Liu, S.; Kong, X.K.; Bian, B.R.; Zhao, X. Properties of omnidirectional photonic band gaps in Fibonacci quasi-periodic one-dimensional superconductor photonic crystals. Prog. Electromagn. Res. B 2012, 40, 415–431. [Google Scholar] [CrossRef] [Green Version]
- Rychły, J.; Mieszczak, S.; Kłos, J.W. Spin waves in planar quasicrystal of Penrose tiling. J. Magn. Magn. Mater. 2018, 450, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.P. Coupled-mode theory for optical waveguides: An overview. JOSA A 1994, 11, 963–983. [Google Scholar] [CrossRef]
- Hardy, A.; Streifer, W. Coupled mode theory of parallel waveguides. J. Lightwave Technol. 1985, 3, 1135–1146. [Google Scholar] [CrossRef]
- Cui, L.; Zhang, S.; Lv, L.; Xu, Z.; Hayat, A.; Zhai, T. Effects of cavity coupling on 1D defect modes: A theoretical model. OSA Contin. 2020, 3, 1408–1416. [Google Scholar] [CrossRef]
- Zhang, S.; Tong, J.; Chen, C.; Cao, F.; Liang, C.; Song, Y.; Zhai, T.; Zhang, X. Controlling the performance of polymer lasers via the cavity coupling. Polymers 2019, 11, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Cui, L.; Zhang, X.; Tong, J.; Zhai, T. Tunable polymer lasing in chirped cavities. Opt. Express 2020, 28, 2809–2817. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Tong, J.; Chen, C.; Niu, L.; Aziz, G.; Zhai, T.; Zhang, X. Multi-wavelengh colloidal quantum dot laser in distributed feedback cavities. Sci. China Inf. Sci. 2020, 63, 1–7. [Google Scholar] [CrossRef]
- Wong, Y.; Jia, H.; Jian, A.; Lei, D.; Abed, A.I.E.; Zhang, X. Enhancing plasmonic hot-carrier generation by strong coupling of multiple resonant modes. Nanoscale 2021, 13, 2731–3310. [Google Scholar] [CrossRef]
- Werchner, M.; Schafer, M.; Kira, M.; Koch, S.W.; Sweet, J.; Olitzky, J.D.; Hendrickson, J.; Richards, B.C.; Khitrova, G.; Gibbs, H.M.; et al. One dimensional resonant Fibonacci quasicrystals: Noncanonical linear and canonical nonlinear effects. Opt. Express 2009, 17, 6813–6828. [Google Scholar] [CrossRef]
- Whiteaway, J.E.A.; Garrett, B.; Thompson, G.H.B.; Collar, A.J.; Armistead, C.J.; Fice, M.J. The static and dynamic characteristics of single and multiple phase-shifted DFB laser structures. IEEE J. Quantum Electron. 1992, 28, 1277–1293. [Google Scholar] [CrossRef]
- Zhou, Y.; Shi, Y.; Chen, X.; Li, S.; Li, J. Numerical study of an asymmetric equivalent phase shift semiconductor laser for use in laser arrays. IEEE J. Quantum Electron. 2011, 47, 534–540. [Google Scholar] [CrossRef]
The Defect Numbers | The Frequencies of the Coupled Defect Modes |
---|---|
1 | |
2 | |
3 | , |
5 | , , |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Hayat, A.; Lv, L.; Xu, Z.; Zhai, T. A Theoretical Model of Quasicrystal Resonators: A Guided Optimization Approach. Crystals 2021, 11, 749. https://doi.org/10.3390/cryst11070749
Cui L, Hayat A, Lv L, Xu Z, Zhai T. A Theoretical Model of Quasicrystal Resonators: A Guided Optimization Approach. Crystals. 2021; 11(7):749. https://doi.org/10.3390/cryst11070749
Chicago/Turabian StyleCui, Libin, Anwer Hayat, Linzheng Lv, Zhiyang Xu, and Tianrui Zhai. 2021. "A Theoretical Model of Quasicrystal Resonators: A Guided Optimization Approach" Crystals 11, no. 7: 749. https://doi.org/10.3390/cryst11070749
APA StyleCui, L., Hayat, A., Lv, L., Xu, Z., & Zhai, T. (2021). A Theoretical Model of Quasicrystal Resonators: A Guided Optimization Approach. Crystals, 11(7), 749. https://doi.org/10.3390/cryst11070749