Long-Term Properties of Different Fiber Reinforcement Effect on Fly Ash-Based Geopolymer Composite
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- The geopolymer composite with 5% polypropylene fiber incorporation had the highest creep resistance of all types of specimens, followed by specimens with 1% polypropylene fiber reinforcement, the plain geopolymer, and specimens with 1% steel fiber reinforcement. At the peak, the geopolymer with 1% polypropylene fiber had 1.40 times higher creep strains. In comparison, the geopolymer without reinforcement and with 1% steel fiber had values that were 1.99 and 2.44 times higher, respectively.
- If the elastic strains are exempt, then the 5% polypropylene fiber reinforced geopolymer showed the smallest amount of creep strains, followed by the 1% polypropylene fiber-reinforced specimen, the 1% steel fiber-reinforced specimen, and the plain geopolymer specimen. The creep deformation differences were 1.84, 2.19, and 2.99 times, respectively.
- The specimens with 5% polypropylene had the least elastic strains, followed by the 1% polypropylene-reinforced specimen, the plain specimen, and the 1% steel fiber-reinforced geopolymer composite specimen. The difference were 1.25, 1.67, and 2.52 times, respectively.
- Each type of reinforcement was observed to have its own optimal amount that contributes to increased material mechanical and long-term properties. A 10-M geopolymer composite incorporating 1% polypropylene fibers was observed to improve the compressive strength, providing low creep and shrinkage strains. Specimens with 5% polypropylene fiber reinforcement were observed to have the lowest creep and second lowest shrinkage strains. They also were observed to have the lowest compressive strength of all of the tested specimens.
Author Contributions
Funding
Conflicts of Interest
References
- Yan, S.; He, P.; Jia, D.; Wang, J.; Duan, X.; Yang, Z.; Wang, S.; Zhou, Y. Effects of high-temperature heat treatment on the microstructure and mechanical performance of hybrid Cf-SiCf-(Al2O3p) reinforced geopolymer composites. Compos. Part B Eng. 2017, 114, 289–298. [Google Scholar] [CrossRef]
- Lokuge, W.; Wilson, A.; Gunasekara, C.; Law, D.W.; Setunge, S. Design of fly ash geopolymer concrete mix proportions using Multivariate Adaptive Regression Spline model. Constr. Build. Mater. 2018, 166, 472–481. [Google Scholar] [CrossRef]
- Galiano, Y.L.; Leiva, C.; Villegas, R.; Arroyo, F.; Vilches, L.; Fernández, C.L. Carbon fiber waste incorporation in blast furnace slag geopolymer-composites. Mater. Lett. 2018, 233, 1–3. [Google Scholar] [CrossRef]
- Pan, Z.; Sanjayan, J.G.; Collins, F. Effect of transient creep on compressive strength of geopolymer concrete for elevated temperature exposure. Cem. Concr. Res. 2014, 56, 182–189. [Google Scholar] [CrossRef]
- Nguyen, K.; Le, T.A.; Lee, K. Evaluation of the mechanical properties of sea sand-based geopolymer concrete and the corrosion of embedded steel bar. Constr. Build. Mater. 2018, 169, 462–472. [Google Scholar] [CrossRef]
- Sele, L.; Bajare, D.; Bumanis, G.; Dembovska, L. Alkali Activated Binders Based on Metakaolin. Environ. Technol. Resour. Proc. Int. Sci. Pract. Conf. 2015, 1, 200–204. [Google Scholar] [CrossRef]
- Wallah, S.E.; Rangan, B.V. Low-Cakcium Fly Ash Based. 2006, pp. 1–107. Available online: https://espace.curtin.edu.au/handle/20.500.11937/34322 (accessed on 6 May 2021).
- Sagoe-Crentsil, K.; Brown, T.; Taylor, A. Drying shrinkage and creep performance of geopolymer concrete. J. Sustain. Cem. Mater. 2013, 2, 35–42. [Google Scholar] [CrossRef]
- Chen, S.; Wu, C.; Yan, D. Binder-scale creep behavior of metakaolin-based geopolymer. Cem. Concr. Res. 2019, 124, 105810. [Google Scholar] [CrossRef]
- Khan, I.; Xu, T.; Castel, A.; Gilbert, R.I.; Babaee, M. Risk of early age cracking in geopolymer concrete due to restrained shrinkage. Constr. Build. Mater. 2019, 229, 116840. [Google Scholar] [CrossRef]
- Nizina, T.; Balykov, A. Experimental-statistical models of properties of modified fiber-reinforced fine-grained concretes. Mag. Civ. Eng. 2016, 62, 13–25. [Google Scholar] [CrossRef]
- Lee, N.; Jang, J.; Lee, H. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cem. Concr. Compos. 2014, 53, 239–248. [Google Scholar] [CrossRef]
- Kuenzel, C.; Li, L.; Vandeperre, L.; Boccaccini, A.; Cheeseman, C. Influence of sand on the mechanical properties of metakaolin geopolymers. Constr. Build. Mater. 2014, 66, 442–446. [Google Scholar] [CrossRef]
- Ranjbar, N.; Talebian, S.; Mehrali, M.; Kuenzel, C.; Metselaar, H.S.C.; Jumaat, M.Z. Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos. Sci. Technol. 2016, 122, 73–81. [Google Scholar] [CrossRef]
- Ranjbar, N.; Mehrali, M.; Mehrali, M.; Alengaram, U.J.; Jumaat, M.Z. High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber. Constr. Build. Mater. 2016, 112, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Ranjbar, N.; Zhang, M. Fiber-reinforced geopolymer composites: A review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Das, C.S.; Dey, T.; Dandapat, R.; Mukharjee, B.B.; Kumar, J. Performance evaluation of polypropylene fibre reinforced recycled aggregate concrete. Constr. Build. Mater. 2018, 189, 649–659. [Google Scholar] [CrossRef]
- Xin, C.; Wang, Z.; Zhou, J.; Gao, B. Shaking table tests on seismic behavior of polypropylene fiber reinforced concrete tunnel lining. Tunn. Undergr. Space Technol. 2019, 88, 1–15. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, X.; Chai, J.; Xu, Z.; Li, S. Experimental study of compressive behavior of polypropylene-fiber-reinforced and polypropylene-fiber-fabric-reinforced concrete. Constr. Build. Mater. 2019, 194, 216–225. [Google Scholar] [CrossRef]
- Marcos-Meson, V.; Fischer, G.; Edvardsen, C.; Skovhus, T.; Michel, A. Durability of Steel Fibre Reinforced Concrete (SFRC) exposed to acid attack—A literature review. Constr. Build. Mater. 2019, 200, 490–501. [Google Scholar] [CrossRef]
- Ruiz, G.; de la Rosa, Á.; Poveda, E. Relationship between residual flexural strength and compression strength in steel-fiber reinforced concrete within the new Eurocode 2 regulatory framework. Theor. Appl. Fract. Mech. 2019, 103, 102310. [Google Scholar] [CrossRef]
- Han, J.; Zhao, M.; Chen, J.; Lan, X. Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete. Constr. Build. Mater. 2019, 209, 577–591. [Google Scholar] [CrossRef]
- Korniejenko, K. Geopolymers for Increasing Durability for Marine Infrastructure. Spec. Publ. 2018, 326, 20.1–20.10. [Google Scholar]
- Łach, M.; Mikuła, J.; Hebda, M. Thermal analysis of the by-products of waste combustion. J. Therm. Anal. Calorim. 2016, 125, 1035–1045. [Google Scholar] [CrossRef] [Green Version]
- Acker, P.; Agullo, L.; Auperin, M.; Carol, I.; Carreira, D.J.; Catarino, J.M. Rilem tc 107-csp: Creep and shrinkage prediction models: Principles of their formation recommendation measurement of time-dependent strains of concrete. Mater. Struct. 1998, 31, 507–512. [Google Scholar]
- Sprince, A.; Pakrastinsh, L.; Baskers, B.; Gaile, L. Crack Development Research in Extra Fine Aggregate Cement Composites. Environ. Technol. Resour. Proc. Int. Sci. Pract. Conf. 2015, 1, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Moradikhou, A.B.; Esparham, A.; Avanaki, M.J. Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete. Constr. Build. Mater. 2020, 251, 118965. [Google Scholar] [CrossRef]
- Ravinder, R.; Kumar, V.; Kumar, C.; Prakash, A.; Krishna, P.V. Strength Characteristics of Fibrous Self Curing Concrete Using Super Absorbent Polymer. In Proceedings of the National Conference on Recent Advances in Civil Engineering, Coimbatore, India, 8–9 May 2019. [Google Scholar]
- Ahmed, T.W.; Ali, A.A.M.; Zidan, R.S. Properties of high strength polypropylene fiber concrete containing recycled aggregate. Constr. Build. Mater. 2020, 241, 118010. [Google Scholar] [CrossRef]
- Yap, S.P.; Bu, C.H.; Alengaram, U.J.; Mo, K.H.; Jumaat, M.Z. Flexural toughness characteristics of steel–polypropylene hybrid fibre-reinforced oil palm shell concrete. Mater. Des. 2014, 57, 652–659. [Google Scholar] [CrossRef]
Test Specimen Type | Average Compressive Strength, MPa |
---|---|
Plain geopolymer composite (OGP) | 52.5 |
Geopolymer composite with 1% polypropylene fibers (GP with 1% PPF) | 55.1 |
Geopolymer composite with 5% polypropylene fibers (GP with 5% PPF) | 33.9 |
Geopolymer composite with 1% steel fibers (GP with 1% SF) | 48.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gailitis, R.; Sprince, A.; Kozlovskis, T.; Radina, L.; Pakrastins, L.; Vatin, N. Long-Term Properties of Different Fiber Reinforcement Effect on Fly Ash-Based Geopolymer Composite. Crystals 2021, 11, 760. https://doi.org/10.3390/cryst11070760
Gailitis R, Sprince A, Kozlovskis T, Radina L, Pakrastins L, Vatin N. Long-Term Properties of Different Fiber Reinforcement Effect on Fly Ash-Based Geopolymer Composite. Crystals. 2021; 11(7):760. https://doi.org/10.3390/cryst11070760
Chicago/Turabian StyleGailitis, Rihards, Andina Sprince, Tomass Kozlovskis, Liga Radina, Leonids Pakrastins, and Nikolai Vatin. 2021. "Long-Term Properties of Different Fiber Reinforcement Effect on Fly Ash-Based Geopolymer Composite" Crystals 11, no. 7: 760. https://doi.org/10.3390/cryst11070760
APA StyleGailitis, R., Sprince, A., Kozlovskis, T., Radina, L., Pakrastins, L., & Vatin, N. (2021). Long-Term Properties of Different Fiber Reinforcement Effect on Fly Ash-Based Geopolymer Composite. Crystals, 11(7), 760. https://doi.org/10.3390/cryst11070760