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Abstract: The stability of hydrophobic surface has an important influence on the application of super-
hydrophobic function. The destruction of hydrophobic micro-nano structures on the material surface
is the main factor leading to the loss of superhydrophobic property. In order to improve the corrosion
resistance of superhydrophobic surface, Ni-Co-BN nanocomposite coatings with superhydrophobic
property were prepared on 45 steel by two-step jet electrodeposition. The surface morphology, water
contact angle, and corrosion resistance of the samples were measured and characterized by scanning
electron microscope, surface contact angle measuring instrument, and electrochemical workstation.
The results of electrochemical analysis show that the superhydrophobic property improved the corro-
sion resistance of Ni-Co-BN nanocomposite coating. The enhanced corrosion resistance is of great
significance to the integrity of the microstructure and the durability of the superhydrophobic function.

Keywords: superhydrophobic; Ni-Co-BN nanocomposite coating; water contact angle; corrosion resistance

1. Introduction

Water is an important substance in industrial production and people’s daily lives.
According to the different water contact angles (WCA) on material surface, the material
surface can be divided into hydrophilic surface and hydrophobic surface [1–3]. When
the WCA of material surface is more than 150◦ and the rolling angle is less than 10◦, the
surface is called superhydrophobic surface [4,5]. Water droplets have smaller solid-liquid
interface and smaller adhesion on superhydrophobic surface. These characteristics make
superhydrophobic surfaces have broad application prospects in surface self-cleaning, anti-
icing, high load water equipment, corrosion resistance, and oil-water separation [6–10]. For
example, the use of hydrophobic cement on the surface of marine buildings can effectively
reduce the corrosion of steel in concrete by seawater [11]. The nano-grass structures
prepared by mixing hydrophobic and hydrophilic micro-nanostructure have excellent
heat dissipation performance, which can provide better help for the miniaturization of
electronic devices [12]. Inspired by the water strider walking on the water, researchers have
made high load equipment on the water by using superhydrophobic characteristics [13].
After superhydrophobic treatment, the self-cleaning performance, and corrosion resistance
of aluminum surface are improved obviously [14,15]. According to the difference of oil
and water in surface tension, researchers used superhydrophobic copper mesh to make
oil-water separation auxiliary device [16].

Although researchers have made great achievements in the study of superhydrophobic
surface, the research and reports related to superhydrophobic surface mainly focus on
the easily machined materials, such as aluminum and copper. These materials have
the disadvantages of poor wear resistance and corrosion resistance. Micro-nano rough
structures with hydrophobic function are often worn and corroded in use, which leads
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to the hydrophobic property decreases rapidly. Therefore, it is of great significance to
improve hydrophobic stability by using high surface strength materials to replace the
vulnerable materials.

Nickel based alloy coating has high microhardness, good wear resistance, and cor-
rosion resistance, and it is often used as surface strengthening material and decorative
material on the surface of parts [17,18]. The stability of hydrophobic surface can be greatly
improved by constructing hydrophobic micro-nanostructure on the Ni based alloy surface.
In order to obtain the superhydrophobic property on the surface of Ni based materials, re-
searchers performed several methods (such as electrodeposition, acidification, fluorination,
and hydrothermal reaction) to construct micro-nanostructures [8–10,19]. The self-cleaning,
corrosion resistance, wear resistance, and oil-water separation properties of Ni based
hydrophobic surface were studied.

Jet electrodeposition (JED) is an efficient electrodeposition method developed in recent
years. Compared with the traditional electrodeposition, JED can allow higher overpotential
in the deposition process. Therefore, it can obtain higher deposition speed and larger depo-
sition thickness. With the help of these advantages, JED has better application prospects
in local rapid repair of parts and preparation of nanocrystalline materials [20–22]. In
this work, the superhydrophobic Ni-Co-BN nanocomposite coatings were prepared on
45 steel, under different parameters, by jet electrodeposition. The surface morphology,
WCA, self-cleaning, and corrosion resistance of the samples were analyzed. The related
research in this paper can provide technical references for the preparation of nickel-based
alloy superhydrophobic surface.

2. Experiment
2.1. Experiment Materials

JED was carried out on a self-made experimental device in experiment. The schematic
image of JED experimental device is shown in Figure 1. In the process of the deposition,
45 steel was used as a cathode, titanium coated with ruthenium oxide coating was used
as anode nozzle. The cathode size was 7 mm × 8 mm × 30 mm, the anode nozzle was
a rectangle of 15 mm × 2 mm. The 8 mm × 30 mm surface of the cathode was the main
deposition surface, the nozzle was facing the main surface and reciprocated along the long
side. The grease and fatigue layer on the cathode surface should be removed by cleaning,
polishing, electrochemical degreasing, and activation before deposition.
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Figure 1. Schematic image of JED experimental device, 1 Submersible pump, 2 Thermostatic appara-
tus, 3 Circulating pump, 4 Flowmeter, 5 Throttle, 6 Thermometer, 7 Servo motor, 8 Numerical control
device, 9 Power source, 10 Cathode, 11 Anode.

The bath used in this experiment was the modified Watts bath. Firstly, proper amount
of BN nanoparticles was put into deionized water and dispersed by ultrasonic for 5 min.
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The dispersed nanoparticles were added into the modified Watts bath to prepare nanocom-
posite plating solution. Then the composite plating solution was further dispersed by
ultrasonic for 20 min. The pH was adjusted to about 4.3 by NaOH and dilute HCl. Finally,
the nanocomposite plating solution was placed in 60 ◦C water bath for 24 h. Both the
solvent and cleaning liquid used in this experiment were deionized water, and the grade of
reagents were analytical pure. The solutions used in this paper are shown in Table 1.

Table 1. Composition of the solution used in the experiment.

Solution Component (g/L)

Plating solution 200.0 NiSO4·6H2O + 10.0 CoSO4·7H2O + 50.0 NiCl2·6H2O + 30.0 H3BO3 + 0.05 Sodium
dodecyl sulfate + 0.002 Thiourea +5.0 BN nanoparticles (50 nm)

Electro-cleaning solution 25.0 NaOH + 21.7 Na2CO3 + 50.0 Na3PO4 + 2.4 NaCl
Strong activating solution 25.0 HCl + 140.1 NaCl
Weak activating solution 141.2 Na3C6H5O7·2H2O + 94.2 H3C6H5O7·H2O + 3.0 NiCl2·6H2O

2.2. Preparation Process of Samples

Firstly, Ni-Co-BN nanocomposite coating was deposited on the surface of 45 steel
as basic coating. The preparation parameters of this step were as follows: the deposition
voltage was 18.14 V, the jet speed of the plating solution was 1.5 m/s, the feed speed of
the nozzle was 140 mm/s, duty cycle was 0.67, pulse frequency was 3.95 kHz, jet gap (the
distance between the anode nozzle and the cathode surface) was 1.6 mm, nanoparticle
concentration was 5 g/L, and the deposition time was 20 min. When the basic coating was
finished, the pulse power supply was switched to DC power supply to prepare hydrophobic
Ni-Co-BN nanocomposite coatings on the basic coating surface. The specific parameters
in this step were as follows: the deposition voltages were 0.5, 1.0, 1.5, and 2.0 V, the feed
speed of the nozzle was 5 mm/s, jet gap was 1.6 mm, the jet speed of the plating solution
was 0.5 m/s, and the deposition time was 5 min. After this step, the samples were cleaned
in ultrasonic for 5 min and then dried.

2.3. Fluorination Treatment of Samples

Fluoroalkylsilane and anhydrous ethanol (1:49, v/v) was put into a beaker and stirred
at 600 rpm for 7 h at room temperature. Keeping the mixed solution stand for 24 h. In
the process of fluorination treatment, the dry and clean samples were immersed into the
fluoroalkylsilane ethanol solution for 2 h. After the fluorination treatment, put the samples
into the drying oven for surface curing treatment. The curing time was 1 h, and the curing
temperature was 120 ◦C.

2.4. Sample Characterization

Scanning electron microscope (SEM, Quanta 250, FEI, Hillsboro, OR, USA), surface
contact angle measuring instrument (OCA15EC, Dataphysics, Germany) and electrochem-
ical workstation (CS350, Wuhan Corrtest Instruments Corp., Ltd., Wuhan, China) were
used to test and characterize the surface morphology, surface contact angle, and corrosion
resistance of the samples, respectively. Before the test of surface contact angle, the sample
should be placed in a dust-free container for 24 h to obtain a stable surface. The surface
contact angle was measured by suspension-drop method. The liquid used in this test was
deionized water. The volume of single drop was about 3 µL, and the test temperature
was 25 ◦C. The average value of the contact angle at five different positions was taken as
the WCA of the sample. The corrosion resistances were tested in a three-electrode system
with 3.5 wt% NaCl solution. The sample was used as a working electrode, saturated
calomel electrode as a reference electrode, and platinum as a counter electrode. Before
electrochemical testing, the samples were packaged with epoxy resin, and the test area
was about 1 cm2. The polarization curve was measured by the potentiodynamic scanning
method. The rate of the potentiodynamic scanning was 1 mV/s, and the scanning voltage
range was ±600 mV relative to the open circuit potential.
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For the convenience of description, the samples prepared under the second deposition
(0.5, 1.0, 1.5 and 2.0 V) were represented by SV0.5, SV1.0, SV1.5, and SV2.0, respectively. The
fluorinated samples were represented by FV0.5, FV1.0, FV1.5, and FV2.0, respectively.

3. Results and Discussions
3.1. Surface Morphologies of Samples

Figure 2 shows the surface morphology of basic coating with different magnification.
From the figures, we can see that there are a lot of spherical convex structures on the coating
surface. The spherical convex structures were smooth and compactness, and there were no
obvious gaps and pores on the surface.
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Figure 3 shows the surface morphology of samples by second deposition with varying
voltages. It can be seen from Figure 3 that a large number of micro-nanostructures with
cauliflower shape appear on the sample surfaces. The size of the large convex structure
was about 5–10 µm. There were some small convex structures distributed on the large
convex surface, and the size was about 0.5–1 µm. With the increase in deposition voltage
from 0.5 V to 2.0 V, the diameter of the large convex structures was decreased. When the
voltage was 1.0 V, the number of the small convex structures was increased and became
uniform. While when the voltage was increased to 2.0 V, the small convex structures
almost disappeared. Figure 3 also showed that, with the varying of the voltages, the gaps
between the large convex structures were gradually disappeared, and the compactness
of the micro-nanostructure of the coatings was improved. Maybe because of the small
content and good dispersion of nanoparticles, no obvious nanoparticles were found in
Figures 2 and 3.

Figure 4 is the EDS spectrums and elemental maps of samples. Figure 4a,b show the
contents of Ni, Co and N in the basic coating and the secondary coating. The changes of
element content in the samples were mainly caused by the changes of deposition voltage
and bath flow rate. Considering the N element in the bath was provided only by the BN
nanoparticles, the change of N content in the coatings indirectly reflected the change in
nanoparticles content. Figure 4c is SEM morphology of elemental maps. Figure 4e–g are
the elemental maps of SV1.0 surface. It was further proved that BN nanoparticles existed in
the prepared composite coating.

3.2. Hydrophobicity of Samples

Figure 5 shows the WCA of the samples before and after fluorination treatment. The
figure shows that, the average WCAs of SV0.5, SV1.0, SV1.5, and SV2.0 were 132.5◦, 134.7◦,
127.5◦, and 120.5◦, respectively. The surfaces of all the samples were hydrophobic before
fluorination treatment. With the increase in the deposition voltage, the WCA of the samples
was fluctuated slightly at this time, but the overall trend was downward. When the samples
were fluorinated, the WCA was improved largely. The WCAs of FV0.5, FV1.0, FV1.5, and
FV2.0 were 152.7◦, 155.3◦, 150.4◦, and 143.5◦, respectively. The WCA of all the samples
exceeds 150 degrees except FV2.0.

Figure 6 shows the optical profile of water-drop on the different sample surfaces after
fluorination treatment. In those figures, the external diameter and internal diameter of



Crystals 2021, 11, 813 5 of 13

syringe needle were 0.22 mm and 0.11 mm, respectively. The volume of the water-drop
was about 3 µL. We can see from the figures that there is a small solid-liquid contact surface
between the sample and the water-drop. The larger the WCA was, the smaller the solid-
liquid contact surface was, and the rounder the water-drop was. The dynamic contact angle
test was carried out on the sample surface, which the WCA exceeded 150◦. The results
showed that the rolling angles of FV0.5 and FV1.0 were 8.6◦ and 6.5◦, respectively. Although
the WCA of FV1.5 exceeded 150◦, the adhesion of the sample surface to water-drop was
still strong, resulting in the rolling angle exceeded 10◦. According to the definition of
superhydrophobic surface, only FV0.5 and FV1.0 obtained the superhydrophobic property.

For superhydrophobic surface, the state of liquid-drop on solid surface accords with
the Cassie-Baxter hydrophobic model [23]. In the Cassie-Baxter hydrophobic model, the
contact surface between liquid-drop and solid is a composite contact surface, which is
composed of liquid, solid, and air. Figure 7 is the schematic image of the Cassie-Baxter
hydrophobic model. In the Figure 7, θC is the contact angle of rough surface, γSA , γLA ,
γSL are the surface tension of solid-air, liquid-air, and solid-liquid interface, respectively.
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The hydrophobic model of Cassie-Baxter can be expressed by Formula (1).

cosθC =
f1(γSA − γSL)

γLA
− f 2 = f1cosθ − f 2 (1)

where f1 is the proportion of solid-liquid interface in the composite interface, f2 is the
proportion of liquid-air interface in the composite interface, and f1+ f 2= 1. θ is the intrinsic
contact angle of material surface.

In order to obtain the percentage of liquid-air interface in the composite interface
under superhydrophobic state, Formula (2) is obtained by combining Formula (1) with the
constraint condition f1 + f2 = 1.

f2 =
cosθ − cosθC

cosθ + 1
(2)

The measurement of intrinsic contact angle of Ni-Co-BN nanocomposite coating
showed that the intrinsic contact angle before fluorination treatment was 80.75◦. After
fluorination treatment, the intrinsic contact angle of the Ni-Co-BN nanocomposite coating
was 112.26◦. Since the superhydrophobic property of the sample was obtained after
fluorination treatment, the intrinsic contact angle after fluorination treatment was the basis
for the calculation of the liquid-air interface. Substituting the contact angle and the intrinsic
contact angle of superhydrophobic sample into Formula (2), the proportions of liquid-air
interface of FV0.5 and FV1.0 were 82.07% and 85.27%, respectively. That was to say, in the
composite interface, composed by superhydrophobic sample surface and water-drop, the
actual solid-liquid contact surface accounts for less than 20% of the total contact surface.

Figure 8 shows adhesion test of superhydrophobic sample to water-drop. The external
diameter and internal diameter of the syringe needle used in this test were 0.52 mm and
0.26 mm, respectively. Because of the low adhesion of the superhydrophobic surface, it
was difficult for the sample to attach the water-drop from the needle. When the water-drop
contacted with the sample surface (Figure 8a), there was a small apparent solid-liquid
contact. The water-drop cannot be attached by the sample surface, and the shape of the
water-drop was approximately spherical. As the sample was pulled down gradually
(Figure 8b), the shape of the water-drop was changed from the spherical shape to spindle
shape due to the adhesion force of both the needle tip and the sample surface. With the
further downward movement of the sample (Figure 8c), the water-drop finally broken away
from the sample surface and bounced back from the spindle shape to the spherical shape.
When the sample rose to a higher position (Figure 8d), due to the small adhesion force of the
sample surface, the water-drop was squeezed by the sample surface and became deformed.

Figure 9 shows self-cleaning performance of superhydrophobic surface. As shown
in Figure 9a–e, under the action of gravity, the water-drop fell on the superhydrophobic
surface roll down directly. It showed that the superhydrophobic sample had good self-
cleaning performance.

The self-cleaning principle of superhydrophobic surface is shown in Figure 10. When
liquid-drop falls on the inclining superhydrophobic surface, the larger surface contact
angle, and the smaller surface rolling angle, can cause the liquid-drop instability and roll
down. During the rolling process, the liquid-drop can adhere to the micro particles and
other pollutants, and take them away from the material surface [24,25].
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carry dust particles off superhydrophobic surface.

3.3. Corrosion Resistance of Samples

Figure 11 shows the polarization curves of the samples before and after superhy-
drophobic. Table 2 shows the corrosion parameters of different samples obtained from
polarization curves. It can be seen from Table 2 that, before fluorination treatment, the corre-
sponding corrosion current densities of SV0.5 and SV1.0 were 4.33 µA/cm2 and 2.07 µA/cm2,
polarization resistances were 5.76 kΩ cm2 and 12.61 kΩ cm2, and corrosion rates were
54.78 µm/year and 25.04 µm/year, respectively. After fluorination treatment, the corre-
sponding corrosion current densities of FV0.5 and FV1.0 decreased to 0.87 µA/cm2 and
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0.79 µA/cm2, polarization resistances increased to 29.04 kΩ cm2 and 32.85 kΩ cm2, corro-
sion rates decreased to 10.28 µm/year and 9.34 µm/year, respectively.
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Figure 11. Polarization curves of samples before and after superhydrophobic.

Table 2. Corrosion parameters of the samples.

Samples Corrosion Current Density Icorr (µA/cm2)
Corrosion Potential

Ecorr (mV)
Polarization Resistance

Rp (kΩ cm2)
Corrosion Rate

(µm/year)

SV0.5 4.33 −0.32 5.76 54.78
SV1.0 2.07 −0.41 12.61 25.04
FV0.5 0.87 −0.23 29.04 10.28
FV1.0 0.79 −0.26 32.85 9.34

Figure 12 is surface morphologies of corroded samples. It can be seen from the
figures that a large number of corrosion products are absorbed on the sample surface after
polarization test, and the cauliflower-like micro-nanostructures are destroyed. Compared
with Figure 12a,b, there are still some cauliflower-like micro-nanostructures in Figure 12c,d.
Some slight stress corrosion cracks appear on the sample surface.

The changes of sample corrosion resistance are mainly caused by the superhydropho-
bic function and deposition voltage, the specific reasons are analyzed as follows:

(1) The effects of superhydrophobic surface on the corrosion resistance. The changes
of hydrophobic property can influence the contact area between the sample and corrosive
medium. From the calculation and analysis of the superhydrophobic surface, it can be seen
that the liquid-air interface accounts for more than 80% in the apparent solid-liquid interface.

When the superhydrophobic sample was placed into the corrosive medium, the
excellent hydrophobic micro-nano structure can store a lot of air on the surface. The air
formed numerous tiny air isolation layers between the sample surface and the corrosive
medium, reduced the contact area between the corrosive medium and the sample, and
improved the corrosion resistance [26–28]. The solid-liquid interface diagram of the sample
in NaCl solution is shown in Figure 13.
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(2) The effects of deposition voltage on the corrosion resistance. In the electrodeposi-
tion deposition process, deposition voltage has an important influence on the morphology
and grain size. Increasing the voltage in a suitable range is conducive to refine the grain
size and improve coating properties [29–31]. In the previous description of the sample
morphology, the increase in the deposition voltage had reduced the pores and the gaps
between the grain boundaries and improved the compactness of micro-nano structure.
Those changes on the sample surface are good for improving the corrosion resistance.
Therefore, when the voltage parameters are different, the electrochemical properties of the
sample are different.

4. Conclusions

In this article, Ni-Co-BN nanocomposite coatings with cauliflower shape micro-nano
structures were prepared by JED. Through the tests and analysis of different samples, the
following conclusions can be reached:
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(1) The micro-nanostructures of the sample surface have direct effects on the hydropho-
bicity of the sample. It is beneficial to improve the surface hydrophobicity of samples
to prepare and control the micro-nanostructures with proper shape.

(2) Fluorination treatment is very important to improve the surface hydrophobicity of
samples. After fluorination treatment, the WCAs of SV0.5, SV1.0, FV0.5, and FV1.0
reached 132.5◦, 134.7◦, 152.7◦, and 155.3◦, respectively. The rolling angles of FV0.5 and
FV1.0 reached 8.6◦ and 6.5◦, respectively. Superhydrophobic functions were obtained
on the surface of FV0.5 and FV1.0.

(3) The measurement and calculation of the superhydrophobic samples showed that the
liquid-air interface accounted for more than 80% of the apparent solid-liquid compos-
ite interface, and the surface has less adhesion to water-drop and better self-cleaning
performance. Electrochemical tests showed that the corrosion resistance of superhy-
drophobic samples were improved compared with non-superhydrophobic samples.
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