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Abstract: In this paper, the lattice Boltzmann–cellular automata (LBM-CA) model with dynamic and
static grids was used to study the growth of three-dimensional (3D) multidendrites under directional
solidification with random preferred angles. In the static grid, the temperature field, flow field,
and solute field during solidification were calculated by the LBM method, and in the dynamic grid,
each dendrite evolution was calculated based on the CA method at its preferential crystallographic
orientation. The coupling of LBM and CA was made by interpolation of the correlation quantities
between the two sets of grids. The effects of wall-equiaxed crystal density on the number of columnar
crystals and the thickness of the equiaxed crystal layer were studied by this model. The results
showed that the density of the wall-equiaxed crystal has little effect on the number of columnar
crystals and the thickness of the equiaxed crystal layer. When other conditions were the same, the
lower the undercooling, the fewer the columnar crystals, and the thicker the equiaxed layer. In
addition, the smaller the heat transfer coefficient, the lower the number of columnar grains, and the
smaller the thickness of equiaxed grains.

Keywords: two sets of meshes; random preferential orientation; 3D LBM-CA model; wall-equiaxed
crystal density

1. Introduction

In the study of dendrite growth, it is difficult to observe details of the growth process.
With the rapid development of computer techniques, it is becoming increasingly important
to study the solidification process by numerical methods combined with verification. The
lattice Boltzmann method (LBM) has been a popular method for computing fluids in recent
years. Compared with other methods [1,2], the LBM algorithm has the advantages of
being a simple algorithm with a high computational efficiency, easy-to-handle complex
boundary, and good stability [3,4]. The CA method [5] has a certain physical background,
it has the characteristics of being a simple program with flexible calculation in simulating
dendrite growth, and it has great potential in simulating the calculation of the solidification
structure [6,7]. The advantages of the two methods can be developed by coupling the two
methods, which has great potential and advantages in solidification structure simulation.

There have been many papers on the two-dimensional (2D) numerical simulation of
dendrite growth by the CA method [8–10], but the morphology of dendrites is 3D [11], and
the results based on 2D calculation cannot fully reflect the true dendritic morphology, so it
is impossible to investigate the effect of preferential crystallographic orientation and grain
density on the growth morphology of columnar crystals.

In recent years, the numerical simulation of the 3D dendrite growth process has also
gradually become in-depth. Brown et al. [12,13] established a 3D CA coupled finite dif-
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ference (FD) method model to predict the eutectic growth of two phases. Wang et al. [14]
combined CA with the finite element method (FE) to predict the selection of primary
dendrite arm spacings and simulate the growth of 3D equiaxed crystals and columnar
crystals. Zhang et al. [15] established a 3D CA model for dendrite growth of a multi-
component alloy, and they verified the correctness of the model by comparison with the
theoretical prediction of a ternary alloy. Xu et al. [16] established a 3D CA model for the
evolution of the aluminum alloy solidification process. Compared with the phase field
method, the calculation time of this model is very short. Jiang et al. [17] established a 3D
model for the dendrite growth of cubic metals and alloys by coupling CA with the FD
method. The model can accurately describe the solidification structure evolution process
of cubic metals and alloys. Wei et al. [18] used 3D adaptive mesh refinement technology
coupled with the CA model to simulate the morphology of 3D equiaxed dendrites of pure
materials, and they studied the influence of the interface energy anisotropy coefficient on
the 3D grain morphology. Pan et al. [19] established a sharp interface model of the 3D
CA method and quantitatively simulated the growth of dendrites, and they calculated the
growth morphology of 3D equiaxed dendrites with different crystallographic orientations.
Chen et al. [20] eliminated the anisotropy of the mesh through the eccentric algorithm, and
established an improved CA model, which is suitable for the calculation of the 2D and
3D growth of dendrites. Gu et al. [21,22] established a 3D quantitative CA model for den-
drite growth during the solidification of a ternary alloy, which can accurately predict the
dendrite morphology and solute distribution of equiaxed dendrites and columnar crystals
during solidification. Pian [23] established a 3D CA model to simulate a single-phase solid
solution alloy. This model can calculate the growth of regular dendrites under natural
convection but cannot calculate the evolution of dendrites with preferential angles, which
is obviously inconsistent with the actual situation.

Among the numerous research studies on 3D dendrite growth numerical simulation,
the research on 3D equiaxed-columnar transformation mainly includes Wang and Lee [14],
Wei et al. [24], Pan and Zhu [19], Eshraghi and Felicelli [25], and Gu et al. [22]. Among
them, only Wang and Lee have studied the effect of the density of wall-equiaxed crystals
on the distribution and morphology of columnar crystals, but their calculation assumes
that the preferred growth direction of wall-equiaxed crystals is parallel to the coordinate
axis. They did not study the case when the preferred growth direction of wall-equiaxed
crystals is random, but the actual situation is random. Wei’s CET calculation is similar
to Wang’s, and the wall-equiaxed crystal also grows in the positive direction. Pan and
Zhu, Eshraghi and Felicelli, and Gu all calculated the wall-equiaxed crystals with random
preferred orientations, but they did not study the effect of the growth of wall-equiaxed
crystals with random preferred orientations on the morphology of columnar crystals. In
addition, the effect of natural convection on dendrite growth was not calculated in the
above numerical simulation.

It can be seen from the above that the 3D numerical simulation of dendrite growth has
made some progress, but research on the 3D numerical simulation of dendrite competitive
growth evolution with random preferential angles under the influence of directional heat
flux has hardly been reported, and the influence of equiaxed crystal density on the number
of columnar crystals has rarely been studied. However, this is a scientific question that
needs to be answered in general ingot solidification or directional solidification. In this
paper, a three-dimensional LBM-CA coupling model based on two sets of meshes was
established. By setting two sets of meshes, the three fields (temperature field, flow field,
and solute field) and the growth and capture of dendrites in the calculation area were
separately carried out in two sets of grids. On the basis of this model, the effects of the
grain density of wall-equiaxed grains on the number of columnar grains and the thickness
of the equiaxed layer under the action of directional heat flux were calculated and studied.
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2. Materials and Methods

We selected the Al-4.7wt%Cu alloy as the simulation research material, and its physical
parameters are listed in Table 1. Detailed symbol abbreviations can be found in Table A1
in Appendix A.

Table 1. Physical properties of Al-4.7wt%Cu alloy.

Physical Parameter Symbol Value

Liquidus temperature TL[K] 917
Solidus temperature TS[K] 821

Liquidus slope m[m·K/%] −3.44
Thermal diffusivity α[W·m−1 K−1] 3 × 10−8

Interface anisotropy coefficient ε 0.05
Diffusivity in liquid D[m2·s−1] 3.0 × 10−9

Partition coefficient k 0.145
Kinematic viscosity ν[m2·s−1] 9 × 10−9

Temperature expansion coefficient βT 1 × 10−2

Concentration expansion coefficient βC 1 × 10−3

2.1. LBM Model

In this paper, the D3Q15 model [5] was selected to calculate the three-dimensional
flow field, and the evolution equation of the distribution function [10] can be described
as follows:

fi(x + ei∆t, t + ∆t) − fi(x, t) = (fieq(x, t) − fi(x, t))/τf + Fi (1)

where fi(x, t) is the distribution function, which represents the probability of particles
appearing in position x and time t. fieq(x, t) is the equilibrium distribution function, ei is
the particle velocity in the direction i, ∆t is the time step, and τf is the flow field relaxation
time. fieq(x, t) can be calculated by

fieq(x, t) = ωiρ(1 + 3ei·u/(c2) + 9(ei·u)2/(2c4) − 3(u·u)/(2c2)) (2)

where c is the lattice velocity and ωi is the weight coefficient. When I = 0, ωi = 16/72; when
I = 1~6, ωi = 8/72; when I = 7~14, ωi = 1/72.

The relationship between τf and viscosity ν can be expressed as

τf = 3ν/(c2∆t) + 0.5 (3)

where F is the buoyancy that produces natural convection. According to the Boussinesq
approximation, the density in the buoyancy term is a linear function of temperature
gradient and concentration gradient and can be calculated by

F = gρ0βT(T − T0) + gρ0βC (C − C0) (4)

where ρ0 is the initial density of the fluid, T is the current temperature, T0 is the initial
temperature, C is the current concentration, C0 is the initial concentration, βT is the volume
expansion coefficient of the temperature change, βC is the volume expansion coefficient of
the concentration change, and g is the gravity acceleration.

The density and velocity of the macroscopic physical quantity can be evaluated by

P = ∑fi (5)

U = (eifi + F·∆t/2)/ρ (6)
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The calculation of the temperature field and concentration field is similar to that
of the flow field. hi(x, t) and gi(x, t) are the distribution functions of temperature and
concentration, respectively, and they can be calculated by

hi(x + ei∆t, t + ∆t) = hi(x, t) + (hi
eq(x, t) − hi(x, t))/τα + Hi (7)

gi(x + ei∆t, t + ∆t) = gi(x, t) + (gi
eq(x, t) − gi(x, t))/τD + Gi (8)

The equilibrium distribution functions corresponding to hi(x, t) and gi(x, t) can be
calculated by

hi
eq(x, t) = ωiT(1 + 3ei·u/(c2) + 9(ei·u)2/(2c4) − 3(u·u)/(2c2)) (9)

gi
eq(x, t) = ωiC(1 + 3ei·u/(c2) + 9(ei·u)2/(2c4) − 3(u·u)/(2c2)) (10)

where Hi and Gi in the distribution function of temperature and concentration are the
concentration and temperature source terms caused by solute redistribution and latent
heat release during dendrite growth, respectively, which can be given by

Gi = ωiCl(1 − k)∆fs (11)

Hi = ωi∆fsL/cP (12)

Among them, k is the equilibrium distribution coefficient, L is the latent heat of
solidification, cP is the specific heat capacity, Cl is the composition in the liquid phase, and
∆fs is the increase in solid fraction of an interface cell in a time step. The relationships
between temperature field relaxation time τα and thermal diffusion coefficient α, and
concentration field relaxation time τD and solute diffusion coefficient D are as follows:

τα = 3α/(c2∆t) + 0.5 (13)

τD = 3D/(c2∆t) + 0.5 (14)

The macroscopic temperature and concentration of the fluid can be obtained by
summing the corresponding distribution functions:

T = ∑hi(x,t) (15)

C = ∑gi(x,t) (16)

The boundary of the simulation domain and the SL interface of the flow field are
treated by the nonslip bounce back. The boundary of the simulation area of the concentra-
tion field is the nondiffusion boundary, and the SL interface is treated by bounce back. The
nonequilibrium extrapolation method is used to simulate the boundary of the temperature
field, and the thermal conductivity is assumed to be the same at the SL interface.

2.2. CA Model

In this paper, the model proposed by Zhu et al. [19] was used for dendrite evolution.
The driving force of dendrite evolution is controlled by the difference between the equi-
librium concentration of the solute and the actual solute concentration at the interface.
According to the interface equilibrium conditions, the increase in solid fraction of the
growth cell can be calculated by

∆fs = (Cl
eq − Cl)/(Cl

eq(1 − k)) (17)
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Among them, k is the equilibrium partition coefficient, Cl is the actual solute con-
centration of the interfacial cell, and Cl

eq is the equilibrium solute concentration of the
interfacial cell, which can be calculated by

Cl
eq = C0 + (T − Teq)/m + Γ·wmc/m (18)

where T is the actual temperature of the interface cell, Teq is the equilibrium liquidus
temperature corresponding to the initial alloy concentration of C0, m is the slope of the
liquidus, Γ is the Gibbs–Thomson coefficient, and wmc is the 3D weighted mean curvature,
which can be calculated by

wmc = (3ε − 1)(∂nx/∂x + ∂ny/∂y + ∂nz/∂z) − 48ε(nx
2·∂nx/∂x + ny

2·∂ny/∂y + nz
2·∂nz/∂z) +

12Qε(∂nx/∂x + ∂ny/∂y + ∂nz/∂z) + 12ε(nx·∂Q/∂x + ny·∂Q/∂y + nz·∂Q/∂z)
(19)

where ε is the anisotropic coefficient of interface energy, nx = (∂ fs/∂x)/|∇ fs|, ny =

(∂ fs/∂y)/|∇ fs|, nz = (∂ fs/∂z)/|∇ fs|, and |∇ fs| =
(
(∂ fs/∂x)2 + (∂ fs/∂y)2 + (∂ fs/∂z)2

)1/2
.

In this paper, a capture mode of 6 neighboring cells was used. Solid-state cells capture only 6
cells nearest to them.

2.3. Dynamic and Static Mesh Methods
2.3.1. Algorithm for Dendrite Growth Calculation by Dynamic and Static Meshes

In this paper, the dynamic and static meshes were used to calculate the dendrites with random
preferential crystallographic orientations. The static mesh is set-up for the whole calculation domain,
which is in the absolute coordinate system; a set of dynamic grids is set for each dendrite in the
dynamic coordinate system, and the direction of the axes is parallel to the preferential orientation of
the dendrite, therefore, the dendrite evolution is always regular in the dynamic coordinate system,
and the size of the dynamic mesh changes dynamically with the evolution of the dendrite. The
schematic diagram of the two meshes is shown in Figure 1.
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Figure 1. The schematic diagram of the two meshes.

The temperature field, solute field, and flow field are calculated in the absolute coordinate
system by the LBM method. The interpolation method is used to transform the calculation results
into a dynamic mesh, and the CA method is used to calculate dendrite evolution. Dendrites grow
regularly in the dynamic coordinate system without considering the anisotropy of the mesh. In a
time step, after the dendrite evolution is calculated, the calculation results are converted to the static
mesh for the next cycle calculation. LBM and CA are independently used in the dynamic mesh and
static mesh, respectively, where coordinate transformation and interpolation calculation are the links
between them.
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2.3.2. Coordinate Transformation between Static and Dynamic Meshes
Because the meshes of two coordinate systems are not a one-to-one correspondence, and the

dynamic meshes are not necessarily within the static mesh, the coordinate of the dynamic mesh node
(i, j, k) in the absolute coordinate system (i2, j2, k2) should be considered in the calculation.

There is a certain coordinate relationship between dynamic mesh and static mesh. The position
of dynamic mesh nodes in the static mesh can be obtained by coordinate transformation. Coordinate
transformation is realized by the coordinate rotation matrices R1, R2, and R3. These three coordinate
rotation matrices are as follows:

R1 =

 cos(angle_z) − sin(angle_z) 0
sin(angle_z) cos(angle_z) 0

0 0 1

 (20)

R2 =

 cos(angle_y) 0 sin(angle_y)
0 1 0

− sin(angle_y) 0 cos(angle_y)

 (21)

R3 =

 1 0 0
0 cos(angle_x) − sin(angle_x)
0 sin(angle_x) cos(angle_x)

 (22)

where angle_x, angle_y, and angle_z are the angles corresponding to the x, y, and z axes between the
two coordinate systems. The transformation relationship between the mesh node coordinates in the
dynamic coordinate system and the coordinates of this node in the absolute coordinate system is
given by  x_tran

y_tran
z_tran

= R1·R2·R3

 i
j
k

 (23)

i2 = x_tran + DMP_x (24)

j2 = y_tran + DMP_y (25)

k2 = z_tran + DMP_z (26)

where (i, j, k) is the coordinate of the dynamic mesh node, (i2, j2, k2) is the coordinate of this node
in the absolute coordinate system, (x_tran, y_tran, z_tran) is the coordinate of the dendrite node in
the dynamic mesh relative to the nucleation point in the absolute coordinate system, and (DMP_x,
DMP_y, DMP_z) is the coordinate of the nucleation point in the absolute coordinate system.

In addition, in order to ensure that the dendrite calculated in the dynamic mesh is within the
range of the absolute coordinate system, if the dendrite growth reaches the boundary of the calculation
domain, it is necessary to make a correct judgment. The method is to convert the coordinates of the
6 nearest mesh nodes around the calculated dynamic node into the absolute coordinate system. If
one of the 6 nodes is outside the range of the static mesh, the dynamic node (i, j, k) is considered the
computational boundary in the dynamic mesh, i.e., the growth boundary of the dendrite.

Furthermore, in the calculation of multidendrite growth, the evolution of each dendrite is
carried out separately in its own dynamic mesh, so when the adjacent dendrites grow to contact each
other, it is also necessary to identify and stop the growth of adjacent dendrites. The method is to
introduce variable fs_decide into the dynamic mesh, which is obtained by linear interpolation from the
solid fraction (fs) of the static mesh. That is, according to the position relationship between the static
mesh nodes and the surrounding nodes, to calculate the distribution coefficients, the distribution
coefficients are multiplied by the fs of the corresponding nodes and summed. When the state of the
node (i, j, k) is 2, the state of the surrounding six nodes and their positions in the absolute coordinate
system are searched. If one of the six nodes is in the computation domain and its state is 0, this node
is captured when the fs_decide is less than 1.

2.3.3. Numerical Transformation between Two Sets of Meshes
According to the coordinate correspondence between the above two sets of meshes, at each

calculation time step, the values of the temperature field, flow field, and solute field are converted
into the dynamic mesh through linear interpolation for the calculation of growth and capture. Then,
the obtained fs and dfs and other values are mapped back to the static mesh for the macro field
calculation of the next step. A diagram of the numerical transformation is shown in Figure 2.
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Figure 2. Schematic diagram of numerical transformation.

2.3.4. Calculation of Dynamic Mesh Size
As the dendrite is constantly growing, the size of the corresponding dynamic mesh should also

be dynamically changing according to the size of the dendrite, to save computing space. In this paper,
the dendrite grows regularly in the dynamic mesh, so the size of the dynamic mesh in each axis can
be computed according to the current size of the dendrite. The method calculates the sum of the
node state of each plane perpendicular to the axis from the nucleation point. If the sum in the current
plane is not 0, but that in the next plane is 0, this means that the current plane is the tangent plane
of the dendrite, and the length from the nucleation node to the current plane is the dendrite length;
then, taking the SL interface and other conditions into account, the dynamic mesh size at the next
step can be obtained by adding 3 to the dendrite length. This size can not only satisfy the calculation
of the next step, but also avoid the low efficiency.

3. Verification
The rationality of the three-dimensional LBM calculation of the flow field, temperature field,

and solute field, and the correctness of regular dendrite growth have been verified [22,26], which is
not repeated here. In this paper, the growth of a three-dimensional single dendrite under natural
convection was calculated, and the results were compared with the solution of the LGK analytical
model to verify the rationality of this LBM-CA model in calculating the dendrite growth with random
preferential angles.

The computational area is shown in Figure 3. The calculation area was divided into 140 × 140
× 140 cells, the static cell size was 0.5 µm, the dynamic cell size was 0.5 µm, and the six sides of the
calculation area were adiabatic. At the initial time, a solid seed with the composition kC0 was placed
at the center of the calculation domain, and the angle_x, angle_y, angle_z of the seed were π/30, π/30,
and π/30, respectively. The composition of the other cells was C0, and the overall temperature of the
simulation area was 913 K.
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Figure 3. Schematic diagram of calculation domain.

The growth process of dendrite is accompanied by solute discharge and latent heat release.
The temperature gradient and concentration gradient will form natural convection under the action
of gravity. Figure 4 presents the comparison of dendrite tip concentration between steady-state
growth with pure diffusion and under natural convection conditions, and the analytical solution of
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the LGK model. The concentration in the figure has been normalized with the initial composition,
and the purely diffused composition is between that at the upstream and downstream tips of natural
convection. As the calculation in this paper is of 3D scale, the solute diffusion speed at the dendrite
tip is faster than that of 2D, and there is a calculation error in the difference calculation by using
two sets of grid methods, which leads to the calculation of the concentration value of the tip being
smaller than that of the LGK solution, but the calculation accuracy is still acceptable. The simulation
results of this study are consistent with the calculation results of the literature [27] using the phase
field method to calculate the upflow dendrite growth.
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Figure 5 shows the comparison of the steady-state tip velocity of the upstream and downstream
with the analytical solutions of LGK under the condition of natural convection. When the tip velocity
tends to be stable, the steady-state velocity of the upstream tip is higher than the analytical solution,
and the downstream tip steady-state velocity is lower than the analytical solution. Both are similar to
the analytical solution. The above results are in good agreement with the LGK model, which shows
that the numerical model established in this study is reliable.

Figure 5. Variation in tip growth rate with time in steady-state dendrite growth under natural
convection condition.
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4. Discussion
In order to study the effect of wall-equiaxed crystal density on the number of columnar crystals

and the thickness of the wall-equiaxed crystal layer during directional solidification, the calculation
domain was set as shown in Figure 6. The calculation domain was divided into 40, 80, and 40 cells
in the X, Y, and Z directions, respectively, the cell size was 0.5 µm, the Y = 0 surface was the heat
dissipation surface, the heat dissipation coefficient was 2000 W·m−2 k−1, and the other five surfaces
were adiabatic surfaces.
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Under the action of directional heat flux at the y = 0 plane, the wall-equiaxed crystal
will grow competitively and finally form a columnar crystal, so an equiaxed crystal layer
will be formed near the heat dissipation surface. The distribution of the equiaxed crystal
layer and columnar crystal is shown in Figure 6a. The equiaxed crystal layer is in the red
dotted line frame, and some streamline lines are also shown in the figure. Figure 6b,c show
the cross-sections of the concentration field and temperature field in the simulation results,
respectively. In this paper, the effect of wall-equiaxed crystal density on the number of
columnar crystals and the thickness of the equiaxed crystal layer under different conditions
was qualitatively analyzed by numerical simulation.

4.1. The Effect of Wall Grain Density on the Number of Columnar Crystals

Figure 7(a1)–(h1) show the growth process of a single dendrite with preferential angles
of π/6, π/6, and π/6 respectively. At the initial time, a crystal seed is set at the center of
the heat dissipation surface on the left side of the calculation domain, and the crystal seed
grows along the preset preferential growth angle to form the equiaxed crystal, as shown
in Figure 7(a1),(b1).

When the equiaxed crystal contacts the boundary of the calculation domain, due to
the existence of the preferential angle, the dendrite arms incline to the direction of point A
(see Figure 7(b1)) and obliquely contact the BAD surface and spread out, while, on the BCD
surface, the spreading speed is slow, resulting in an asymmetry in the dendrite spreading
on the heat dissipation surface and an uneven columnar crystal formation. The columnar
crystals corresponding to the BAD surface are formed earlier, as shown in Figure 7(c1),(d1).
As the calculation continues, the initial dendrites cover the heat dissipation surface, and
columnar crystals continue to form. The columnar crystals formed first are coarser, and the
columnar crystals formed later are finer.

As shown in Figure 7(e1),(f1), the columnar crystals on the BAD surface are relatively
developed, while the columnar crystals on the BCD surface are relatively underdeveloped.
After the columnar crystals have been fully developed, taking the cross-section of the
calculation domain Y = 29 as a reference, eight columnar crystals have grown to this section.
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computational domain.

Figure 7(g1) shows an oblique view of the calculation domain and the cross-section,
and Figure 7(h1) shows a view of the calculation domain and the cross-section along the
negative direction of the Y axis. As shown in Figure 7(a2), 30 seeds are randomly arranged
on the heat dissipation surface. Then, equiaxed crystals are formed at each nucleus, and
the equiaxed crystals grow continuously and cover the whole heat dissipation surface, as
shown in Figure 7(b2),(c2). As the calculation time proceeds, obvious competitive growth
occurs among grains. The dendrite arms with the preferred growth direction close to the
heat flow grow faster and form columnar crystals, while the dendrites with other angles
are eliminated, as shown in Figure 7(d2)–(f2). Figure 7(g2),(h2) show the oblique view of
the calculation domain and the cross-section of Y = 29, and the view along the negative
direction of the Y axis, respectively. It can be seen that eight columnar crystals grow to the
cross-section.

The effect of wall grain density on the number of columnar grains was studied by
setting several groups of different nucleation densities. In each group, different nucleation
densities were set near the cooling surface at the initial time. Each group was repeated five
times, and the nucleation position and preferred growth angle of grains were randomly
assigned in each calculation, to ensure the universality of the calculation results. Taking
30 initial grains as an example, the simulation results shown in Figure 8a–e are the sim-
ulation results of five calculation times. The figure on the left is the oblique view of the



Crystals 2021, 11, 815 11 of 20

calculation domain and y = 29 section, and the figure on the right is the view along the
negative direction of the Y-axis.
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Figure 8. Solid phase distribution after full development of columnar crystal for a nucleation number
of 30; five runs were performed with different randomly chosen initial positions: (a–e): results of five
calculations, the figure on the left is the oblique view of the calculation domain and y = 29 section,
and the figure on the right is the view along the negative direction of the Y-axis.
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The final number of columnar crystals corresponding to the five calculations of differ-
ent initial nucleation densities is summarized in Table 2. The final number of columnar
crystals in the random calculation results of a different initial number of grains is taken
as the average value. The relationship between the fully developed average number of
columnar crystals and the initial number of grains is shown in Figure 9.

Table 2. Final number of columnar crystals calculated with different initial crystal grains and different randomly chosen
initial positions (calculations 1–5).

Number of
Equiaxed Grains

Number of Columnar Crystals

Calculation
No. 1

Calculation
No. 2

Calculation
No. 3

Calculation
No. 4

Calculation
No. 5 Average Value

1 14 10 14 8 10 11.2
2 10 11 12 11 10 10.8
4 5 8 7 13 8 8.2
6 8 8 9 10 11 9.2
8 10 10 9 8 9 9.2
10 8 8 8 8 8 8.0
15 8 7 7 6 8 7.2
20 7 7 6 8 9 7.4
25 10 6 7 8 8 7.8
30 8 7 6 8 8 7.4
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Figure 9. Relationship between the number of average columnar grains and the number of
initial grains.

It can be seen from Table 2 that when the initial number of grains is 1, the number of
columnar crystals is the most. This is because the columnar crystals are all developed from
the same grain, so the preferred growth angle of each columnar crystal is the same, and
the columnar crystals grow in parallel with each other, so there is no competitive growth
behavior. When the initial number of grains is 2, there are only two kinds of preferred
angles for dendrites, and the number of columnar grains is also larger. When the initial
number of grains continues to increase, the number of columnar grains generally decreases.
When the initial number of grains exceeds a certain number, the number of columnar grains
finally formed tends to a stable value, as shown in Figure 9. This shows that in the actual
casting process, the initial equiaxed grain density on the wall has no significant effect on
the density of columnar grains finally formed.
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4.2. The Effect of Wall Grain Density on Thickness of Equiaxed Layer

The equiaxed grains on the wall first grow freely close to the wall during the solidifi-
cation process. When they are close to other grains, they will compete with each other, so a
layer of equiaxed grains will be formed on the wall. In this section, the effect of the wall
grain density on the thickness of the equiaxed crystal layer was studied.

The thickness of the equiaxed crystal layer was calculated by different random nucle-
ation numbers on the wall. The calculation conditions were as before, and the calculation
results are shown in Table 3. The averages of the values in the table have been taken to
produce Figure 10.

Table 3. Thickness of equiaxed crystal layer calculated with different initial crystal grains and different randomly chosen
initial positions (calculations 1–5).

Number of
Equiaxed

Grains

The Thickness of the Equiaxed Crystal Layer (µm)

Calculation
No. 1

Calculation
No. 2

Calculation
No. 3

Calculation
No. 4

Calculation
No. 5 Average Value

1 4.5 6.5 5.0 7.0 6.0 5.8
2 5.0 5.0 6.0 7.0 6.0 5.8
4 6.0 6.0 5.5 5.0 5.5 5.6
6 7.0 5.0 5.5 5.5 5.5 5.7
8 5.5 5.5 5.5 6.0 5.0 5.5
10 5.0 5.0 5.0 5.0 5.0 5.0
15 5.5 6.0 5.0 6.0 4.5 5.4
20 5.0 4.5 5.5 5.0 5.5 5.1
25 4.5 5.0 5.0 5.0 5.0 4.9
30 5.5 5.0 5.5 5.5 5.0 5.3
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It can be seen from Table 3 and Figure 10 that the thickness of the equiaxed crystal
layer is basically independent of the initial number of equiaxed crystals, and it is always
stable at about 5.5 µm. In the case of a certain cooling strength, even for a single crystal
grain, the density of the secondary and multiple branches remains constant during the
spreading process on the wall surface, so an equiaxed crystal layer with the same thickness
as the polycrystalline grain will be formed on the wall surface.
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4.3. The Effect of Supercooling Degree and Heat Transfer Coefficient on Cylindrical
Crystal Density

In this section, different supercooling degrees and surface heat exchange coefficients
were set based on the calculation in the previous sections. The influence of supercooling
degree and heat dissipation intensity on the density of columnar crystals was studied
by comparing the calculation results in the previous section. First, the influence of the
heat exchange coefficient on the density of columnar crystals was calculated. The heat
exchange coefficient was set to 1000 W·m−2 K−1 with the remaining calculation parameters
unchanged. Similar to the calculation designed in the previous section, in order to fully
reflect the general variation rule of columnar crystal density under different initial grain
densities when changing the heat exchange coefficient, 10 different initial grain numbers
were calculated. Five calculations were carried out for each initial grain number, and the av-
erage number of columnar crystals and the average equiaxed layer thickness corresponding
to each initial grain number were calculated.

The final number of columnar crystals corresponding to the five calculations of differ-
ent initial nucleation densities is summarized in Table 4. Figure 11 shows a comparison
diagram of the average final columnar crystal numbers corresponding to different initial
crystal grain numbers when the heat transfer coefficients are 1000 and 2000 W·m−2 K−1.
From Table 4, it can be seen that the average number of final columnar crystals correspond-
ing to different initial grains has little difference when the heat exchange coefficient is
1000 W·m−2 K−1. It is shown that the relationship between the number of columnar crys-
tals and initial crystals does not change with the heat transfer coefficient. From Figure 11,
it can be seen that when the heat exchange coefficient decreases, the average number of
columnar crystals corresponding to different initial grains decreases, i.e., the smaller the
cooling intensity on the cooling surface and the smaller the number of columnar crystals,
the larger the size of columnar crystals when the solidification is completed, which is
consistent with the solidification principle.

Table 4. Final number of columnar grains calculated with different initial crystal grains and different randomly chosen initial
positions (calculations 1–5) when heat transfer coefficient is 1000 W·m−2 K−1.

Number of
Equiaxed

Grains

Number of Columnar Crystals

Calculation
No. 1

Calculation
No. 2

Calculation
No. 3

Calculation
No. 4

Calculation
No. 5 Average Value

1 7 9 6 4 5 6.2
2 4 4 6 5 4 4.6
4 6 6 4 7 4 5.4
6 6 4 4 4 6 4.8
8 5 5 6 7 4 5.4
10 4 5 4 6 5 4.8
15 5 6 5 4 6 5.2
20 7 6 6 7 8 6.8
25 4 8 8 6 6 6.4
30 6 5 8 7 7 6.6

The equiaxed crystal layer thickness corresponding to the five calculations of different
initial nucleation densities in this group is summarized in Table 5. It can be seen that the
average equiaxed crystal layer thickness corresponding to different initial grain numbers
is stable at about 4.0, which indicates that the thickness of the equiaxed crystal layer is
basically independent of the number of initial equiaxed crystals at different heat exchange
coefficients. Figure 12 is a comparison of the average equiaxed crystal layer thickness
corresponding to different initial grains with two heat transfer coefficients. It can be
seen that when the heat transfer coefficient is reduced, the average equiaxed crystal layer
thickness corresponding to different initial grains decreases, i.e., the smaller the cooling
intensity on the heat dissipation surface, the smaller the equiaxed crystal thickness. This is
because the cooling ability of the cooling surface directly affects the driving force of the
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competitive growth of grains. The smaller the cooling capacity, the smaller the driving
force of grain-oriented growth, and the less intense the competition between dendrites is.
Therefore, the more dendrites that can participate in the competitive growth, the fewer
grains that cannot participate in the competitive growth, finally decreasing the thickness of
the equiaxed crystal layer.
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Table 5. Thickness of equiaxed crystal layer calculated with different initial crystal grains and different randomly chosen
initial positions (calculations 1–5) with heat transfer coefficient of 1000 W·m−2 K−1.

Number of
Equiaxed

Grains

The Thickness of the Equiaxed Crystal Layer (µm)

Calculation
No. 1

Calculation
No. 2

Calculation
No. 3

Calculation
No. 4

Calculation
No. 5 Average Value

1 4.5 4.0 4.5 5.5 4.0 4.5
2 4.0 3.5 4.5 3.5 4.0 3.9
4 4.0 4.0 4.0 5.0 4.0 4.2
6 4.0 4.0 4.0 4.0 4.0 4.0
8 4.0 4.0 4.0 4.0 4.0 4.0
10 4.0 4.0 4.0 4.0 4.0 4.0
15 4.0 3.5 4.5 3.5 4.0 3.9
20 4.0 4.5 4.0 4.0 4.0 4.1
25 4.0 4.0 3.5 4.0 4.0 3.9
30 4.0 4.0 3.5 4.0 4.5 4.0

Next, the effect of undercooling on the density of fully developed columnar crystals
was calculated. The supercooling of the calculation domain was set to 3 K, and the
other calculation parameters remained unchanged. This set of calculations is the same
as that in the study of the heat dissipation coefficient. A total of 50 calculations were
performed. The final calculation results of the number of columnar crystals and the
thickness of the equiaxed crystal layer are summarized in Tables 6 and 7, respectively.
Figures 13 and 14 show the comparison between the average number of final columnar
crystals and the average thickness of the equiaxed crystal layer when the undercoolings
are 3 and 6 K, respectively.
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Figure 12. The relationship between the average thickness of the equiaxed crystal layer and the initial
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Table 6. The final number of columnar crystals calculated with different initial crystal grains and different randomly chosen
initial positions (calculations 1–5) when the supercooling degree is 3 K.

Number of
Equiaxed

Grains

Number of Columnar Crystals

Calculation
No. 1

Calculation
No. 2

Calculation
No. 3

Calculation
No. 4

Calculation
No. 5 Average Value

1 12 15 11 8 6 10.4
2 14 8 6 10 4 8.4
4 6 7 9 11 4 7.4
6 6 6 7 7 8 6.8
8 9 8 5 7 4 6.6
10 7 7 6 8 7 7.0
15 5 5 8 5 6 5.8
20 6 5 5 6 6 5.6
25 6 7 7 6 7 6.6
30 7 6 7 7 7 6.8

Table 7. The thickness of the equiaxed crystal layer calculated with different initial crystal grains and different randomly
chosen initial positions (calculations 1–5) when the undercooling degree is 3 K.

Number of
Equiaxed

Grains

The Thickness of the Equiaxed Crystal Layer (µm)

Calculation
No. 1

Calculation
No. 1

Calculation
No. 1

Calculation
No. 1

Calculation
No. 1 Average Value

1 7.0 6.5 7.0 6.5 7.0 6.8
2 5.5 6.0 6.0 6.0 6.5 6.0
4 7.0 5.0 6.5 5.0 6.0 5.9
6 6.5 6.5 5.5 5.5 5.0 5.8
8 5.0 6.0 6.0 5.0 6.0 5.6
10 5.5 6.0 6.0 6.0 5.5 5.8
15 6.5 6.5 5.0 5.0 5.5 5.7
20 5.0 6.0 5.5 5.5 6.5 5.7
25 5.5 6.0 5.5 5.0 6.0 5.6
30 6.0 5.5 5.5 5.0 5.5 5.5
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It can be seen from Table 6 that when the undercooling is 3 K, the relationship between
the average number of final columnar grains and the initial number of grains still conforms
to the previous rule, that is, although the initial number of grains increases continuously,
the number of final columnar grains is still relatively stable, and the average number of
columnar grains is about 7.4. It can be seen from Figure 13 that when the undercooling is
3 K, the number of fully developed columnar crystals decreases slightly compared with
6 K, so the columnar crystals with a smaller number but larger size will be formed after
solidification, which is in line with the solidification principle. It can be seen from Table 7
that when the undercooling is 3 K, the thickness of the equiaxed crystal layer corresponding
to different initial grain numbers also has little difference, with an average value of about
5.8, indicating that the thickness of the equiaxed crystal layer is not affected by the initial
grain number under different undercoolings. It can be seen from Figure 14 that when
the undercooling is 3 K, the thickness of the equiaxed crystal layer is larger than that of
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6 K, that is, the thickness of the equiaxed crystal layer will increase with the decrease in
undercooling. Unlike the influence of the heat transfer coefficient on the thickness of the
equiaxed crystal layer, the decrease in undercooling degree affects the driving force of
grain growth. When the undercooling degree changes from 6 to 3 K, the growth velocity of
wall grain slows down, and the time for the equiaxed grain to grow to a columnar grain
increases, so the equiaxed grain layer becomes thicker.

5. Conclusions

In this paper, a three-dimensional LBM-CA coupling model was established by using
two sets of grid methods, and the rationality of the model was verified. This model was
used to study the effect of the wall-equiaxed crystal density on the number of columnar
crystals and the thickness of the equiaxed crystal layer, and the following conclusions
were obtained: (1) Under the same solidification condition, the initial equiaxed crystal
density on the wall has no significant effect on the final cylindrical crystal density and
the thickness of the equiaxed crystal layer. (2) When the other conditions are the same,
the lower the supercooling degree, the smaller the number of fully developed cylindrical
crystals and the thicker the equiaxed crystal layer. With the decrease in heat exchange
coefficient, the number of cylindrical crystals decreases and the thickness of the equiaxed
crystal layer decreases.
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Appendix A

Table A1. Detailed list of symbol abbreviations used in this paper with brief explanations.

Symbols Unit Meaning

fs mass% Solid fraction
CL mass% Actual solute concentration at interface

CL
eq mass% Liquid-phase equilibrium crystallization concentration at the interface

∆fs mass% Solid fraction increment
k — Equilibrium partition coefficient of solute

C0 mass% Initial concentration of the alloy
TL K Actual temperature of the interface

TL
eq K Equilibrium liquidus temperature

m k/mass% Liquidus slope
Γ m·K Gibbs–Thomson coefficient
K 1/m Average curvature at the solid/liquid interface
ε — Anisotropic strength of interface energy
τf — Relaxation time of flow field
τα — Relaxation time of temperature field
τD — Relaxation time of concentration field
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Table A1. Cont.

Symbols Unit Meaning

ν m2/s Fluid viscosity
α m2/s Thermal diffusivity
D m2/s Concentration diffusion coefficient
ρ0 Kg/m3 Initial density of fluid
T0 K Initial temperature
βT K−1 Volume expansion coefficient of temperature change
βC Mass%−1 Volume expansion coefficient of concentration change
ωi — Weight coefficient
ei m/s Discrete velocity
c m/s Lattice velocity

g m/s2 Gravitational acceleration
F N The force of fluid on dendrite
Fi N The component force of the particle in the i direction
Gi mass% Source term of concentration field
Hi K Source term of temperature field
u m/s Macroscopic velocity

∆T K Undercooling
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