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Abstract: Adding basalt fiber into concrete can significantly improve its mechanical properties. In
order to explore the influence of basalt fiber content on the uniaxial compressive strength and splitting
tensile strength of concrete and the mechanism of fiber action, this paper conducts compressive and
splitting tensile tests on three kinds of basalt fiber concrete specimens with different fiber content
and obtains the relationship between the macro mechanical properties and the fiber content. At the
same time, with the help of CT scanning equipment and digital image processing technology, the
microstructure of basalt fiber concrete with three groups of fiber content is reconstructed, and the
pore, crack, and fiber distribution are quantitatively described using the calculation and processing
function of the Avizo reconstruction software. The results show that when the optimal fiber content
is 3 kg/m3, the improvement rates of uniaxial compressive strength and splitting tensile strength
are 31.9% and 23.7%, respectively. The network structure formed by fiber in concrete has the best
compactness and the least number of pores, with an average sphericity of 0.89 and an average pore
volume of 20.26 µm3. Through analysis, it was found that the initial defects of basalt fiber concrete
exist in the form of pores, and the addition of basalt fiber will destroy the large pore size of concrete,
change the pore size distribution, and increase the average sphericity; The distribution of the fiber
in the concrete is a three-dimensional network, and the distribution of the fiber in the initial defect
distribution area is parallel to the direction of pore arrangement.

Keywords: basalt fiber reinforced concrete; fiber distribution; CT scanning; meso-structure

1. Introduction

Fiber has excellent mechanical properties and durability. In engineering practice, fiber
is commonly used as a reinforcement material to improve mechanical properties, such
as adding fiber into polymer composite material [1–3], concrete material, etc. [4–6]. Fiber
reinforced concrete can improve concrete performance by effectively adding fiber into
concrete. Compared to ordinary concrete, fiber reinforced concrete has excellent tensile
strength, impact strength, elongation, crack resistance, ductility, and high temperature
resistance [7–10]. Because of the different physical properties of various fibers, the effects
of fiber on concrete are also very different. Basalt fiber, as a green environmental protec-
tion material, has high tensile strength, good alkali resistance, large elastic modulus and
excellent interface shear strength, and low production cost. Therefore, using basalt fiber
as a concrete reinforcement material is a good choice [11]. At present, the research on
the mechanical properties of basalt fiber concrete is relatively mature [12,13]. It is agreed
that basalt fiber can improve the tensile strength of concrete, but there are differences in
the influence of basalt fiber on the compressive performance of concrete. Li et al. [14],
through the BFRC mechanical properties experiment, found that when the fiber content
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increases from 0.05% to 0.3%, the 7 d compressive strength and 28 d compressive strength
decreased by varying degrees. According to the mechanical property test in reference [15],
whether the fiber length was 6 mm or 12 mm, increasing the fiber causes the compressive
strength to first increase and then decrease, while the flexural strength shows an increasing
trend. Therefore, there is no consistent conclusion regarding the effect of basalt fiber on the
compressive strength of concrete.

As a composite material, the macro properties of basalt fiber concrete are not only di-
rectly related to basalt fiber and the concrete matrix material, but also with meso-structure.
The meso-structure has a great influence on the mechanical properties and damage mech-
anism of concrete. Therefore, mastering the variation law of the fine structure of basalt
fiber concrete can create a more scientific explanation for problems that occur in the macro
level of the concrete. The fine structure of basalt fiber concrete mainly includes fiber distri-
bution, pore cracks, and other internal defects. At present, the research methods for fiber
distribution are as follows: SEM scanning [16], mercury pressure, and the nuclear magnetic
resonance method are used to analyze pore structure [17]. The research on fractures has
been mainly conducted using the acoustic emission method and digital image correlation
technology [18]. If we want to study the fine structure of basalt fiber concrete, two or
more methods are usually needed to realize results, and these methods also have different
limitations. For example, the microstructure area of concrete that can be observed by SEM
is very small, and the results are often limited by the observation area [19,20]; the results
of the mercury compression method are easily affected by the structure type and shape
of the holes in concrete samples, which caused the the measurement results to be discrete
and have large errors; the porosity measured by NMR is mainly concentrated on nano gel
holes, and this type of pore has little effect on the concrete performance. When the crack is
measured using the acoustic emission method, crack propagation information can only
be obtained by changing characteristic parameters, and the quantitative description of the
cracks is not available. Therefore, a comprehensive characterization method for basalt fiber
reinforced concrete fine structure is needed.

In the 1980s, CT technology was applied to the research of concrete materials, and
nondestructive concrete testing was realized. However, in the early development of this
technology, only two-dimensional CT images could be obtained after CT scanning the
concrete, and the relevant information was recorded and saved in the digital form on a
computer. In recent years, with the improvement of computer processing ability, the use of
a computer can realize the commands of CT image denoising, filtering, image segmenta-
tion, so as to build a three-dimensional model of concrete, which is called digital image
processing technology [21–24]. At present, there is a variety of research on the processing of
CT scanning images of fiber reinforced concrete with digital image processing technology,
but there is little research on the microstructure of basalt fiber reinforced concrete with this
technology [25]. For example, in reference [26], the concrete aggregate, pores, and other
structures were extracted using digital image processing technology. In reference [27], the
damage process of the concrete meso-structure under uniaxial compression was studied by
CT technology. Based on traditional digital image processing technology, a convolution
neural network method for the segmentation and extraction of concrete meso-structure
cracks in a CT scanning image is proposed. The cracks and pores are segmented and
reconstructed, and the effectiveness of the method is verified. Based on CT scanning im-
ages and Avizo software, Rios studied the pore structure of high-strength self-compacting
concrete mixed with polypropylene fiber. On the basis of obtaining the three-dimensional
reconstruction model of the specimen, it quantitatively expressed the pore number and
pore size distribution and obtained the influence of polypropylene fiber on the micro
pore structure of concrete [28]. Vicente et al. took steel fiber reinforced concrete as the
object of study and first conducted CT scanning on it; imported the two-dimensional
image obtained from the scanning into the reconstruction software, Avizo; established
the fiber distribution model; and quantitatively characterized the steel fiber with spatial
angle and efficiency index, showing the synergistic effect of fiber from the quantitative and
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qualitative angles [29]. In reference [30], X-ray computed tomography and digital image
processing techniques were used to reconstruct the pore and crack distribution maps of
plain concrete and boron–basalt fibers concrete, and the pore diameter distribution and
volume parameters were quantitatively characterized. The results showed that the basalt
fiber implanted with boron oxide limited the microcrack area.

In this paper, based on three kinds of basalt fiber content, splitting tensile and com-
pression experiments are conducted to explore the influence of basalt fiber content on the
uniaxial strength and splitting tensile strength of concrete, and the best fiber content is
obtained. At the same time, the microstructure of basalt fiber reinforced concrete is recon-
structed using CT scanning and digital image processing technology. The microstructure
characteristics of basalt fiber reinforced concrete are described qualitatively and quantita-
tively. The influence of basalt fiber on the microstructure of concrete and its mechanism
are analyzed.

2. Materials and Methods
2.1. Materials

The base concrete was designed according to the strength grade C30, the cement
was 42.5 ordinary silicate cement, the sand was made of machine-made sand, the coarse
aggregate was made of crushed stone with the maximum particle size not exceeding 10 mm,
the basalt fiber is 18 mm basalt fiber was produced by Shanxi Jintou Basalt Development
Company, and the water was ordinary tap water. Based on the idea of the fiber volume
rate method, the fibers were added directly to the specimens when they were made to
the specifications of the design of the base concrete mix. The BFRC mixing is shown in
Table 1. Each specimen group was dosed with basalt fiber as the variable, the dosage range
was 0–6 kg/m3, and the unit variable was 3 kg/m3. The size of the specimen used in the
uniaxial compression test was a cube with a diameter of 25 mm and a height of 50 mm. In
the splitting tensile test, the specimen size was 100 mm cube. The specimens are shown in
Figure 1.

Table 1. The mix proportion of plain concrete kg/m3.

Cement Cobble Sand Water Accelerator

440 880 880 260 17.6
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Figure 1. The specimen.

2.2. Methods
2.2.1. CT Scanning

The equipment used for CT scanning was the Phoenix V|tome|x s series X-ray CT
scanner from GE, Germany, as seen Figure 2a, which is able to perform observations down
to 0.5 µm, and the sample placement table is shown in Figure 2b.
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Figure 2. CT scanning equipment.

When scanning the specimen, the probe of the industrial CT scanning equipment emits
X-rays, and the intensity of the X-rays after penetrating the concrete will be different because
of the different X-ray absorption ability of the internal concrete material. After converting
these light signals into digital signals, the horizontal and vertical slice information maps
are obtained. Figure 3 shows the horizontal slice map the fiber dosage of which is 3 kg/m3.
Through the slice map, the distribution of pores, cracks, and aggregates can be visualized,
but the slice map can only reflect the two-dimensional structural information of the internal
material and cannot realize the quantitative characterization, which needs to be further
processed using reconstruction software.
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Figure 3. The horizontal slice.

2.2.2. Uniaxial Compression Experiment

Basalt fiber reinforced concrete with each fiber content consisting of three-cylinder
specimens, were tested on a WES-1000b electro-hydraulic universal testing machine in
accordance with IS Code Standard and the Test Standard for Mechanical Properties of Ordinary
Concrete (GB/T50081-2002) [12,13,25]. In the test results, the arithmetic mean value of
3 specimens was used as the compressive strength value of the group of specimens. If
the difference between the maximum value and the minimum value and the intermediate
value was not more than 15% of the intermediate value, the intermediate value was taken
as the compressive strength value of the group of specimens. If the difference between the
two values and the median value was greater than 15% of the median value, the group of
test results was invalid. The placement status of the specimen on the universal press is
shown in the Figure 4.
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Figure 4. Loading diagram of specimen.

2.2.3. Tensile Strength Experiment

When the splitting tensile strength test was conducted for three groups of fiber rein-
forced concrete, the basalt fiber concrete with fiber content of each group contained three
100 mm cube specimens, which were carried out according to the standard of IS-5816 and
the Test Standard for Mechanical Properties of Ordinary Concrete (GB/T50081-2002) [12,31,32].
The test strip adopted an 80 mm diameter steel arc-shaped cushion strip, the length of
the strip was not less than the side length of the test piece. The wooden backing plate
was placed between the cushion strip and the sample, the width of the backing plate was
20 mm, the thickness of 3–4 mm was not less than the side length of the test piece, and
the backing plate could not be reused. See the Figure 5 for the loading diagram and the
actual diagram.
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Figure 5. Loading diagram of specimen of tensile strength experiment.

3. Results
3.1. Mesostructure Reconstruction

The slice map obtained by the CT scanning equipment could only reflect two-dimensional
information and could not realize the quantitative characterization of the spatial structure.
In this paper, based on the reconstruction and calculation functions software Avizo, the
2D slice map was stacked and reconstructed to obtain a 3D reconstructed model of the
microstructure. Considering computer operation processing capacity, a region of 200 × 200
× 200 voxels was uniformly selected for reconstruction in this paper [33,34].

3.1.1. Internal Defect

There were a large number of internal defects such as pores and cracks in the concrete,
and the distribution of pores and cracks could be directly observed based on the slices
obtained from the CT scanning. However, the quantitative statistics and characterization
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of these defective structures could not be achieved, which would cause the effect of the
fiber dosage on the original defect in concrete to not be reflected.

The reconstruction software Avizo could effectively solve this problem by determining
the appropriate threshold value through image processing. In this way, the distribution of
pores and cracks inside the concrete could be reconstructed in the Avizo software. Figure 6
shows the distribution of internal defects structure in the area taken from a specimen with a
different fiber dosage mainly including pores and cracks, which are rendered into different
colors according to the volume and surface area size. It is easy to see that there are more
pores and cracks inside the plain concrete, mostly distributed in the approximate horizontal
direction. The volume is larger, and in the middle part, a red line of fissures can be clearly
observed in an inclined direction, with a longer length, while the number of long cracks is
significantly reduced in the specimens mixed with basalt fibers, and the pores and cracks
are mostly present in a small volume.
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(1) Sphericity analysis

The internal concrete defects mostly exist in the form of pores and cracks. Through
consulting references [35], it can be found that the cracks and pores can be distinguished
according to the size of the sphericity. According to the Formula (1), the maximum
sphericity is 1, and the corresponding shape is a sphere. The sphericity of other shapes
is less than 1. The closer shape is to a sphere, the greater the sphericity. For example, the
sphericity of a 20hedron can reach 0.939, but the sphericity of the tetrahedron is 0.671.
Combined with this knowledge of geometry, the surface area of the sphere is the smallest
when the volume is the same. For concrete, the smaller the pore surface area is, the higher
the density and strength of concrete will be.

ϕ =

3
√
π(6V)2

A
(1)

Through the statistics of sphericity in Figure 7, it can be found that the sphericity of
the three groups of specimens is not less than 0.3, which indicates that the corresponding
internal defects of the three kinds of specimens mainly exist in the form of pores. It can be
seen from the figure below that the distribution of the pore sphericity of the concrete will
change after adding basalt fiber. When the fiber content is 3 kg/m3, compared to ordinary
concrete, the proportion of pores with sphericity less than 0.6 decreases significantly,
making the proportion of pores corresponding to larger sphericity increase, indicating that
basalt fiber can destroy the internal pore morphology of concrete; When the fiber content is
6 kg/m3, the proportion of pores with sphericity between 0.6 and 0.8 decreases. In addition
to the increase of the proportion of pores between 0.8 and 1.0, the proportion of pores with
sphericity between 0.4 and 0.6 also increases. It may be that the fiber content increases,
which destroys the original pores and makes the pores develop into an irregular shape due
to the amount of fiber. It can be seen that the average sphericity of ordinary concrete is
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0.876. With the increase of fiber content, the average sphericity gradually increases, but the
average sphericity changes little with the change of fiber content. When the fiber content is
3 kg/m3 and 6 kg/m3, the corresponding average coordination number is 0.89 and 0.902,
respectively, which indicates that the original pore morphology will be destroyed after the
addition of fiber content, making the pores more regular as a whole. However, this effect is
less affected by the change of fiber content.
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(2) Quantitative statistics

Table 2 lists the number of pores, the average volume, and the average surface area in
the ROI reconstruction area of the three specimens. Overall, the fiber dosage has a large
effect on the number of pores, and the number of pores is the least at the fiber dosage of
3 kg/m3. The number of pores increases slightly at the fiber dosage of 6 kg/m3, but still
shows a decreasing trend compared with plain concrete, indicating that the addition of
fiber will destroy the production of original pores in concrete, which is reflected by the
number of pores decreasing and then increasing. In addition, the fiber will also affect the
volume and surface area of the pores, which will lead to a decrease in the average surface
area and average volume of the pores. This is probably because the fiber dosage causes a
portion of the pore to be penetrated. The cement mortar enters, and the pore is filled. The
effect is related to the fiber dosage. The greater the dosage, the more obvious the effect is.
When the fiber dosage is large, the fiber will appear as agglomeration in some areas, and
new pores will be formed between the fibers.

Table 2. Statistics of pore structure of BFRC specimens with different fiber dosages.

Fiber Dosage/kg m−3 Average Surface Area/µm2 Average Volume/µm3 Number

0 33.31 24.82 1356
3 28.58 20.26 841
6 19.70 10.63 1073

This result is contrary to the research results of Zhang et al. [36] found that basalt fiber
would pass through the pores and fissures using SEM. When the fiber content increased, the
number of micropores increased. On the other hand, Zhang et al. [37] measured the pore
size of basalt fiber concrete using the mercury intrusion method and found that basalt fiber
can reduce the number of harmful pores and multi harmful pores in concrete. However, the
influence of the fibers obtained in this paper on the pore size of concrete is only reflected in
the average surface area and average volume. Although the visualization of microstructures
such as pores is realized, there are still some deficiencies in the quantitative statistics.
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3.1.2. Fiber Distribution

Assuming that the basalt fibers distributed within the concrete are not bent, based on
the search cone algorithm, the fibers will be divided into a number of small sections and
the coordinates of the start and end points of that fiber can be obtained, respectively. In
this way, a model of fiber distribution can be obtained.

The model of fiber distribution in Figure 8 shows the fiber distribution at the fiber
dosage of 3 kg/m3 and 6 kg/m3. In order to fully compare the three groups of specimens,
the reconstructed part of the plain concrete is shown in grey, as in Figure 8a. Most of the
fibers inside the concrete are distributed in an approximately horizontal state regardless
of the fiber dosage, and the number of vertically distributed fibers is low. This feature is
most evident at the fiber dosage of 6 kg/m3. In Figure 8b, the fibers are distributed in
all directions, except for a few local areas where the distance between fibers is moderate
and there is no obvious fiber agglomeration. In Figure 8c, the number of fibers increases,
the fiber spacing decreases, and the proportion of fibers distributed horizontally increases
significantly. Additionally, the phenomenon of fiber accumulation occurs in dense areas,
while some areas are missing this phenomenon due to missing fibers.
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Figure 8. The model of fiber distribution.

In Avizo, the fiber distribution model can be obtained based on the search cone
algorithm, which treats fibers as cylinders and achieves quantitative fiber statistics by
counting the two distribution angles in the spatial coordinate system.

In Figure 9, θ is the polar angle, which represents the angle between the fiber and
Z-axis ranging from 0–90◦. Andϕ is the azimuth angle, which represents the angle between
the projection of the fiber on the horizontal plane and the positive axis of X-axis ranging
from 0–360◦.

Crystals 2021, 11, x FOR PEER REVIEW 9 of 14 
 

 

 

Figure 9. The fiber orientation. 

The distribution of  is more uniform, indicating that the fibers will interlock and 

overlap in the internal space of the concrete, so the fibers can form a dense mesh struc-

ture together. The value θ reflects the inclination degree of the fibers, and the larger the 

angle, the more inclined the fibers are, and the more they tend to be distributed in a 

horizontal direction. 

The fiber spatial distribution angles are represented in polar coordinates in the form 

of polar angles and polar diameters using the statistics of the two angles θ and  in the 

model of fiber distribution, as shown in Figure 10. In Figure 10, the polar diameter is 

represented as θ and the polar angle as . By observing the density of the distribution 

of the points in the concentric circles, the uniformity of the distribution of the fibers on 

the horizontal plane can be obtained. The more uniform the distribution of the points in 

the concentric circles, the better the denseness of the mesh structure formed by the fi-

bers. By observing the dispersion of the points inside the sector, the vertical distribution 

of the fibers can be obtained. The corresponding larger pole diameter indicates that the 

distribution state of fiber tends to be of a more horizontal distribution. From the distri-

bution of points in Figure 10a,b, the fibers under both doping levels can form a dense 

mesh structure inside the concrete, and most of the fibers in the two groups of speci-

mens correspond to θ greater than 45°, indicating that most of the fibers inside the 

concrete are distributed in an approximately horizontal direction. Second, the distribu-

tion of all points in the two figures within each concentric circle area is not obviously 

missing, indicating that the basalt fibers are distributed in all areas inside the concrete. 

When the fiber dosage changed from 3 kg/m3 to 6 kg/m3, the distribution of points in 

Figure 10b appeared concentrated in some areas, which may cause the phenomenon of 

fiber agglomeration and crossover inside the concrete due to the increase of fiber dosage. 

Figure 9. The fiber orientation.



Crystals 2021, 11, 847 9 of 13

The distribution of ϕ is more uniform, indicating that the fibers will interlock and
overlap in the internal space of the concrete, so the fibers can form a dense mesh structure
together. The value θ reflects the inclination degree of the fibers, and the larger the
angle, the more inclined the fibers are, and the more they tend to be distributed in a
horizontal direction.

The fiber spatial distribution angles are represented in polar coordinates in the form
of polar angles and polar diameters using the statistics of the two angles θ and ϕ in the
model of fiber distribution, as shown in Figure 10. In Figure 10, the polar diameter is
represented as θ and the polar angle as ϕ. By observing the density of the distribution of
the points in the concentric circles, the uniformity of the distribution of the fibers on the
horizontal plane can be obtained. The more uniform the distribution of the points in the
concentric circles, the better the denseness of the mesh structure formed by the fibers. By
observing the dispersion of the points inside the sector, the vertical distribution of the fibers
can be obtained. The corresponding larger pole diameter indicates that the distribution
state of fiber tends to be of a more horizontal distribution. From the distribution of points
in Figure 10a,b, the fibers under both doping levels can form a dense mesh structure
inside the concrete, and most of the fibers in the two groups of specimens correspond to θ
greater than 45◦, indicating that most of the fibers inside the concrete are distributed in
an approximately horizontal direction. Second, the distribution of all points in the two
figures within each concentric circle area is not obviously missing, indicating that the basalt
fibers are distributed in all areas inside the concrete. When the fiber dosage changed from
3 kg/m3 to 6 kg/m3, the distribution of points in Figure 10b appeared concentrated in
some areas, which may cause the phenomenon of fiber agglomeration and crossover inside
the concrete due to the increase of fiber dosage.
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3.2. The Uniaxial Compressive Strength

The uniaxial compression experiments were conducted on three groups of cylindrical
specimens, and the damage morphology of the specimens is shown in Figure 11. By
comparing the morphology of the three groups of specimens after being damaged, it can
be seen that the crack distribution of the cylindrical specimens after being damaged is
related to the level of fiber dosage. For the plain concrete, the surface peeling phenomenon
is obvious when the specimens are damaged, and there are more cracks. At the same time,
the crack distribution is usually concentrated on the interior of the peeling part, as shown
in Figure 11a. However, the specimens mixed with basalt fibers are damaged and there are
less cracks. The peeling phenomenon is not obvious. This performance is related to the
level of fiber dosage, and the best effect is achieved at the fiber dosage of 3 kg/m3, where
only short cracks appear on the surface of the specimens after destruction, as shown in
Figure 11b,c [18].
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Figure 11. Experimental failure mode of compressive strength of test blocks with different fiber content.

The uniaxial compression experiments reveal that the strength of plain concrete could
reach 32.736 MPa, and the strength would increase with the addition of basalt fibers, and
the increase is related to the fiber dosage amount. The highest strength of 43.168 MPa
(31.9% increase) was achieved at 3 kg/m3 and the lower strength of 35.648 MPa (8.9%
increase) was achieved at 6 kg/m3.

3.3. The Tensile Strength

During the experiment, it was found that the cracks tend to appear near the middle
line of the upper surface of plain concrete and split into two parts along a straight crack
after being destroyed, showing brittle failure, and there are many bending cracks in the
splitting failure of concrete mixed with basalt fiber. The main reason for this is that the
basalt fiber disperses the tensile stress trend inside the concrete, reduces the intensity
of crack cracking, and causes the cracks to distribute themselves in a curved direction.
Through the comparison of three groups of 28 d splitting tensile strength in Figure 12, it
was found that two kinds of fiber content can improve the splitting tensile performance
of concrete, and the improvement effect of tensile strength is related to the fiber content.
When the fiber content is 3 kg/m3, the improvement rate is the largest and can reach 23.7%.
When the fiber content increases to 6 kg/m3, the tensile performance of the basalt fiber
concrete decreases, but it is still higher than that of plain concrete. The research results are
similar to those of B. Ramesh et al. B. Ramesh et al. carried out the splitting tensile strength
experiment of basalt fiber reinforced concrete cylinder blocks with different fiber content
(0–2.0%) and found that the four groups of fiber content all enhanced the splitting tensile
strength and that the best content was 1.5% [12].
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3.4. The Function Mechanism of Fiber

Taking the reconstructed area in the 3 kg/m3 specimen as an example, the distribution
of pores and cracks and basalt fibers is reconstructed, as shown in Figure 9. It is clear
from the Figure 13 that in the areas where the distribution of pores and cracks is more
concentrated, the fiber spacing is smaller, and some of the fibers will cross the pores and
cracks. When the concrete is subjected to the expansion of the cracks, the excellent tensile
properties of the basalt fibers can be brought fully into play, and the fibers can effectively
prevent the further development and expansion of the pores and cracks under this effect.

Crystals 2021, 11, x FOR PEER REVIEW 12 of 14 
 

 

 

Figure 13. The distribution of crack and basalt fiber. 

In combination with the uniaxial compression strength of the cylindrical concrete 

specimens, the uniaxial compression strength is greatest at the fiber dosage of 3 kg/m3. 

According to the statistics of the number of initial pores and cracks and related parame-

ters in Table 2, the initial imperfections inside the concrete are significantly improved, 

the distribution of basalt fibers is also more uniform, and the spatial mesh structure form 

around the pores and crack is better. As such, the uniaxial compressive strength is effec-

tively improved. When the fiber dosage is 6 kg/m3, the number of pores and cracks are 

only slightly reduced compared to plain concrete, and the initial imperfections inside are 

still high. Furthermore, due to the increase in the number of fibers and the decrease in 

the fiber spacing, the basalt fibers are missing in space, which affects the effect of the 

spatial mesh structure and creates the increase in uniaxial compressive strength. 

4. Conclusions 

(1) When the fiber content is 3 and 6 kg/m3, basalt fiber can enhance the uniaxial com-

pressive strength and the splitting tensile strength of the concrete. The reinforce-

ment degree is related to the fiber content. The best fiber content is 3 kg/m3, and the 

increase rate of uniaxial compressive strength and splitting tensile strength is 23.7% 

and 31.9%, respectively; 

(2) Based on the BFRC two dimensional CT slices of three fiber content groups, the fine 

structure reconstruction is realized by combining digital image processing technol-

ogy. It was found that the initial defects of the plain concrete and basalt the fiber 

concrete were all in the form of pores. After adding fiber into concrete, the fiber re-

duced the number of pores and destroyed the original pore size and present situa-

tion, which is by the average surface area and average volume of pores decreasing 

and the average spherical degree increasing; 

(3) Basalt fiber is distributed in the concrete mesh. From the statistical fiber distribution 

angle, it was found that when the fiber content is 3 kg/m3, the density of the net-

work structure was stronger than when the fiber content was 6 kg/m3. In the areas 

with dense pore distribution, the amount of fiber distribution was higher. When the 

adjacent pores go through the sample, the fiber network structure can effectively 

avoid the concrete from breaking. 

Author Contributions: Conceptualization, F.C. and H.J.; methodology, Z.R.; software, B.X. and 

L.Y.; validation, H.J., X.C., and Z.L.; formal analysis, B.X.; investigation, J.L.; data curation, L.Y.; 

writing—review and editing, F.C. and B.X. All authors have read and agreed to the published ver-

sion of the manuscript. 

Figure 13. The distribution of crack and basalt fiber.

In addition, as a whole, the fibers form a spatially distinct mesh structure around the
cracks, especially in the upper part of Figure 13, where a large number of pores and cracks
are distributed, and the corresponding fibers are distributed more densely, with the fibers
interlocking with each other. Therefore, when the concrete is subjected to load and a crack
is developed, the fibers running through the crack can prevent the further development
of that crack. Additionally, the mesh structure formed by the other fibers can prevent the
concrete from shedding the internal aggregates and other materials, ensuring the structural
integrity of the concrete after the expansion of the pores and cracks.

In combination with the uniaxial compression strength of the cylindrical concrete
specimens, the uniaxial compression strength is greatest at the fiber dosage of 3 kg/m3.
According to the statistics of the number of initial pores and cracks and related parameters
in Table 2, the initial imperfections inside the concrete are significantly improved, the dis-
tribution of basalt fibers is also more uniform, and the spatial mesh structure form around
the pores and crack is better. As such, the uniaxial compressive strength is effectively
improved. When the fiber dosage is 6 kg/m3, the number of pores and cracks are only
slightly reduced compared to plain concrete, and the initial imperfections inside are still
high. Furthermore, due to the increase in the number of fibers and the decrease in the fiber
spacing, the basalt fibers are missing in space, which affects the effect of the spatial mesh
structure and creates the increase in uniaxial compressive strength.

4. Conclusions

(1) When the fiber content is 3 and 6 kg/m3, basalt fiber can enhance the uniaxial com-
pressive strength and the splitting tensile strength of the concrete. The reinforcement
degree is related to the fiber content. The best fiber content is 3 kg/m3, and the
increase rate of uniaxial compressive strength and splitting tensile strength is 23.7%
and 31.9%, respectively;
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(2) Based on the BFRC two dimensional CT slices of three fiber content groups, the fine
structure reconstruction is realized by combining digital image processing technology.
It was found that the initial defects of the plain concrete and basalt the fiber concrete
were all in the form of pores. After adding fiber into concrete, the fiber reduced the
number of pores and destroyed the original pore size and present situation, which is
by the average surface area and average volume of pores decreasing and the average
spherical degree increasing;

(3) Basalt fiber is distributed in the concrete mesh. From the statistical fiber distribution
angle, it was found that when the fiber content is 3 kg/m3, the density of the network
structure was stronger than when the fiber content was 6 kg/m3. In the areas with
dense pore distribution, the amount of fiber distribution was higher. When the
adjacent pores go through the sample, the fiber network structure can effectively
avoid the concrete from breaking.
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