Vortex Laser Based on a Plasmonic Ring Cavity
Abstract
:1. Introduction
2. Principle and Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Bozinovic, N.; Yue, Y.; Ren, Y.; Tur, M.; Kristensen, P.; Huang, H.; Willner, A.E.; Ramachandran, S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013, 340, 1545–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolas, A.; Veissier, L.; Giner, L.; Giacobino, E.; Maxein, D.; Laurat, J. A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics 2014, 8, 234–238. [Google Scholar] [CrossRef] [Green Version]
- Maiman, T.H. Stimulated Optical Radiation in Ruby Masers. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Khajavikhan, M.; Simic, A.; Katz, M.; Lee, J.H.; Slutsky, B.; Mizrahi, A.; Lomakin, V.; Fainman, Y. Thresholdless nanoscale coaxial lasers. Nature 2012, 482, 204–207. [Google Scholar] [CrossRef]
- Lubatsch, A.; Frank, R. A Self-Consistent Quantum Field Theory for Random Lasing. Appl. Sci. 2019, 9, 2477. [Google Scholar] [CrossRef] [Green Version]
- Lubatsch, A.; Frank, R. Quantum Many-Body Theory for Exciton-Polaritons in Semiconductor Mie Resonators in the Non-Equilibrium. Appl. Sci. 2020, 10, 1836. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, T.; Mori, M. Random Laser Action in Dye-Doped Polymer Media with Inhomogeneously Distributed Particles and Gain. Appl. Sci. 2019, 9, 3499. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.X.; Xie, X.; Hao, H.M.; Dang, J.C.; Xiao, S.; Shi, S.S.; Ni, H.Q.; Niu, Z.C.; Wang, C.; Jin, K.J.; et al. Low-threshold topological nanolasers based on the second-order corner state. Light Sci. Appl. 2020, 9, 109. [Google Scholar] [CrossRef]
- Schneider, C.; Rahimi-Iman, A.; Kim, N.Y.; Fischer, J.; Savenko, I.G.; Amthor, M.; Lermer, M.; Wolf, A.; Worschech, L.; Kulakovskii, V.D.; et al. An electrically pumped polariton laser. Nature 2013, 497, 348–352. [Google Scholar] [CrossRef]
- Ye, Z.Y.; Su, M.; Li, J.N.; Jing, C.N.; Xu, S.B.; Liu, L.Q.; Ren, G.C.; Wang, X.L. Laser nano-technology of light materials: Precision and opportunity. Opt. Laser Technol. 2021, 139, 106988. [Google Scholar] [CrossRef]
- Al-Shibaany, Z.Y.A.; Penchev, P.; Hedley, J.; Dimov, S. Laser Micromachining of Lithium Niobate-Based Resonant Sensors towards Medical Devices Applications. Sensors 2020, 20, 2206. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Wang, X.J.; Xie, Z.W.; Min, C.J.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X.C. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Li, L.; Yang, X.; Gao, J. Generating and separating twisted light by gradient–rotation split-ring antenna metasurfaces. Nano Lett. 2016, 16, 3101–3108. [Google Scholar] [CrossRef]
- Zeng, J.; Gao, J.; Luk, T.S.; Litchinitser, N.M.; Yang, X. Structuring light by concentric-ring patterned magnetic metamaterial cavities. Nano Lett. 2015, 15, 5363–5368. [Google Scholar] [CrossRef] [PubMed]
- Kotlyar, V.V.; Almazov, A.A.; Khonina, S.N.; Soifer, V.A.; Elfstrom, H.; Turunen, J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. J. Opt. Soc. Am. A 2005, 5, 849–861. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Podlipnov, V.V.; Karpeev, S.V.; Ustinov, A.V.; Volotovsky, S.G.; Ganchevskaya, S.V. Spectral control of the orbital angular momentum of a laser beam based on 3D properties of spiral phase plates fabricated for an infrared wavelength. Opt. Express 2020, 12, 18407–18417. [Google Scholar] [CrossRef]
- Li, H.L.; Phillips, D.B.; Wang, X.Y.; Ho, Y.-L.D.; Chen, L.; Zhou, X.Q.; Zhu, J.B.; Yu, S.Y.; Cai, X.L. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica 2015, 2, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Padgett, M.; Courtial, J.; Allen, L. Light’s orbital angular momentum. Phys. Today 2004, 57, 35–40. [Google Scholar] [CrossRef]
- Marrucci, L.; Manzo, C.; Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 2006, 96, 163905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.; Genevet, P.; Kats, M.; Aieta, F.; Tetienne, J.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, W.; Moitra, P.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 2014, 14, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
- Heckenberg, N.R.; McDuff, R.; Smith, C.P.; White, A.G. Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 1992, 17, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Senatsky, Y.; Bisson, J.; Li, J.; Shirakawa, A.; Thirugnanasambandam, M.; Ueda, K. Laguerre-Gaussian modes selection in diode-pumped solid-state lasers. Opt. Rev. 2012, 19, 201–221. [Google Scholar] [CrossRef]
- Oron, R.; Davidson, N.; Friesem, A.A.; Hasman, E. Efficient formation of pure helical laser beams. Opt. Commun. 2000, 182, 205–208. [Google Scholar] [CrossRef]
- Oron, R.; Danziger, Y.; Davidson, N.; Friesem, A.A.; Hasman, E. Laser mode discrimination with intra-cavity spiral phase elements. Opt. Commun. 1999, 169, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Bisson, J.-F.; Senatsky, Y.; Ueda, K. Generation of Laguerre-Gaussian modes in Nd: YAG laser using diffractive optical pumping. Laser Phys. Lett. 2005, 2, 327–333. [Google Scholar] [CrossRef]
- Okida, M.; Omatsu, T.; Itoh, M.; Yatagai, T. Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd: YVO 4 1.3-μm bounce laser. Opt. Express 2007, 15, 7616–7622. [Google Scholar] [CrossRef]
- Caley, A.J.; Thomson, M.J.; Liu, J.; Waddie, A.J.; Taghizadeh, M.R. Diffractive optical elements for high gain lasers with arbitrary output beam profiles. Opt. Express 2007, 15, 10699–10704. [Google Scholar] [CrossRef]
- Ito, A.; Kozawa, Y.; Sato, S. Generation of hollow scalar and vector beams using a spot-defect mirror. J. Opt. Soc. Am. A 2010, 27, 2072–2077. [Google Scholar] [CrossRef] [PubMed]
- Kano, K.; Kozawa, Y.; Sato, S. Generation of purely single transverse mode vortex beam from a He-Ne laser cavity with a spot-defect mirror. Int. J. Opt. 2011, 2012, 359141. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, D.; Roux, F.S.; Dudley, A.; Litvin, I.; Piccirillo, B.; Marrucci, L.; Forbes, A. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photon. 2016, 10, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Al-Attili, A.Z.; Burt, D.; Li, Z.; Higashitarumizu, N.; Gardes, F.Y.; Oda, K.; Ishikawa, Y.; Saito, S. Germanium vertically light-emitting micro-gears generating orbital angular momentum. Opt. Express 2018, 26, 34675–34688. [Google Scholar] [CrossRef] [PubMed]
- Miao, P.; Zhang, Z.; Sun, J.; Walasik, W.; Longhi, S.; Litchinitser, N.M.; Feng, L. Orbital angular momentum microlaser. Science 2016, 353, 464–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, L.; Ayache, M.; Huang, J.; Xu, Y.-L.; Lu, M.-H.; Chen, Y.-F.; Fainman, Y.; Scherer, A. Nonreciprocal light propagation in a silicon photonic circuit. Science 2011, 333, 729–733. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Hu, X.; Zhai, T. Vortex Laser Based on a Plasmonic Ring Cavity. Crystals 2021, 11, 901. https://doi.org/10.3390/cryst11080901
Wang X, Hu X, Zhai T. Vortex Laser Based on a Plasmonic Ring Cavity. Crystals. 2021; 11(8):901. https://doi.org/10.3390/cryst11080901
Chicago/Turabian StyleWang, Xingyuan, Xiaoyong Hu, and Tianrui Zhai. 2021. "Vortex Laser Based on a Plasmonic Ring Cavity" Crystals 11, no. 8: 901. https://doi.org/10.3390/cryst11080901
APA StyleWang, X., Hu, X., & Zhai, T. (2021). Vortex Laser Based on a Plasmonic Ring Cavity. Crystals, 11(8), 901. https://doi.org/10.3390/cryst11080901