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Abstract: Extruded Mg-Gd-Y alloy tubes were obtained by using cast ingot and extruded bar billets.
Microstructure and mechanical properties were also studied with two different cooling methods: air
cooling and water cooling. The result shows that by using an extruded bar as billet extruded tubes
achieves higher elongation comparing to using cast ingots due to favored texture for the activation of
basal slip. Using the water-cooling method, extruded tubes achieve a higher yield strength compared
to the air cooling method due to their fine grain size. Using cast ingot billets and the water-cooling
method, the elongation is only 6% due to large unrecrystallized grains caused by inhomogeneous
deformation and unfavored texture for the activation of basal slip. Using the extruded bar billet and
the water-cooling method, the tube has uniformed small grains and much more randomized texture
caused by the inhibition of preferred grain growth process. The highest texture intensity is only 1.852
in this kind of tube. Both high yield strength (195.3 MPa) and high elongation (23.9%) are achieved
in this tube.
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1. Introduction

Wrought magnesium alloys attract significant interest in fields such as automobiles,
aircraft and space machinery due to their high strength properties combined with quite
low density [1,2]. Magnesium extrusions, especially hollow sections, could further offer
attractive mass-saving opportunities for automotive light weighting with potential applica-
tions in instrument panel beams, seat frames, roof frames, bumper beams, radiator support,
engine cradles and subframes [3]. It is, therefore, meaningful to produce high-strength
magnesium alloy tubes as an alternative to aluminum and steel. However, significant
challenges remain in magnesium extrusions, such as their limited formability, which is
related to their low ductility at room temperature [4-7].

Research to date suggests that texture modification and grain refinement are the most
promising approaches for improving the ductility of wrought magnesium alloys. Earlier
research suggested that magnesium alloys containing yttrium (Y) [8-10], neodymium
(Nd) [11-13], Cerium (Ce) [14,15] and Gadolinium (Gd) [16,17] developed a more random
texture during extrusion. Recent work also confirmed that small additions of rare earth
elements can improve the mechanical properties of magnesium extrusions and sheets via
grain refinement and weakening of texture [16]. Our recent work reported a significant
increase in elongation in pure magnesium due to the addition of only 1% Gd in rolling
sheets, and attributed this increase to a change in the texture that favors basal slips [16].

Although the RE addition could alter the texture and improve the ductility, the Mg-RE
alloy with a low content of the RE element appears low yield strength, such as ZE10
(135 MPa) [18,19] and Mg-1Gd (130 MPa) [16]. The strength of the Mg-Zn-Ce and Mg-Zn-Y
system alloys are still not enough for the automotive application, such as for door beams.
The hardening with other element addition and heat treatment should be involved to
achieve the precipitate strengthening.
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Mg-8%Gd-3%Y alloy (GW83) is a potential alloy with a random texture and precipita-
tion, and the alloy shows good strength and better yield symmetry in our previous study.
The formability and the final mechanical properties of the alloy tube are dependent on the
initial microstructure and processing parameters. In this study, Mg-8%Gd-3%Y (GW83)
alloy square tubes with internal stiffener were prepared by extrusion. Additionally, the
effect of the initial microstructure and cooling rate after extrusion on the microstructure
evolution and mechanical properties was investigated. The aim is to develop the process
for high-performance tubes in automobiles.

2. Experiment

The material employed in the present work is Mg-8Gd-3Y alloy. There are two groups
of initial billets used in this extrusion, which are as-cast billets and extruded bars. The
as-cast billets with cylinder shapes of 100 mm diameter and 250 mm length are from
continuous casting. The extruded bar with the same size was extruded by using a cast
billet with diameter of 180 mm. Homogenization was performed before the extrusion
process at 400 °C for 1h. Additionally, thereafter, the cast ingot billets and the extruded
bars are used as the initial materials for extrusion of the square tubes with internal stiffener.
Figure 1 shows the designed dimensions of the final extrusion tube. In addition, different
cooling methods (air cooling and water cooling) and extruded temperature were utilized
in the extrusion of the square tubes. In this study, the tube using cast ingot billets and air
cooling is named CA, the tube using cast ingot billets and water cooling is named CW, the
tube using extruded bars and air cooling is named EA and the tube using extruded bars
and water cooling is named EW. Table 1 shows the samples with the according extrusion
parameters. The appearance of the extruded tube is shown in Figure 1b. It can be seen that
the appearance of these tubes is quite good, and the dimension is fit for the designed value.
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Figure 1. (a) Designed dimensions of extrusion tube, (b) outline quality of the extruded tubes.

Table 1. Extrusion parameters of experimental alloys.

Temperature (°C)

Bill Cooling Method
llet Mould Billet &
CA Cast ingot 400 390 Air
CcwW Cast ingot 400 390 Water
EA Extruded bar 400 390 Air
EW Extruded bar 400 390 Water

The initial microstructure and texture were examined by optical microscopy (OM),
scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). Addition-
ally, the sampling location of EBSD scanning is also shown in Figure 1. Radial direction
(RD) and tangential direction (TD) are defined in Figure 1a. OM and SEM samples were
etched in the Acetic—Picral solution (10 mL acetic acid, 4.2 g picric acid, 10 mL distilled
water, and 70 mL ethanol (96%)) for 15 s. EBSD samples were mechanically polished and
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chemically etched in a solution of 5 mL nitric acid, 15 mL acetic acid, 20 mL water and
60 mL ethanol for 2 s to remove the surface residual stress. The EBSD analysis was carried
using a Quanta 250 SEM equipped with a TSL™ EBSD camera and an OIM software
package. The EBSD scanning process was carried out at a step size of 1 um with the voltage
of 20 kV and current of 107 nA.

The texture was analyzed by the TSL OIM data acquisition and analysis software
package. Uniaxial tension tests on Mg-Gd-Y alloy tubes were conducted on the ZWICK
mechanical testing machine at an ambient temperature along the extrusion direction (ED).
To ensure the repeatability of stress—strain tests, three samples were tested, and the average
values and standard deviations of the tensile properties are shown in Figure 6.

3. Results
3.1. Microstructure

The microstructures of initial billets are shown in Figure 2 and show homogeneous
distribution in grain size, but the cast ingot billet shows a big grain size about 200 um and
the extruded bar shows a fine grain size about 25 pm.

(b)

Figure 2. Microstructure of the billets (a) cast ingot (b) extruded bar.

Microstructures of the extruded tubes in four extrusion process are shown in Figure 3.
Fully recrystallized grains can be found in most tubes except the CW tube. A large fraction
of unrecrystallized grains is shown in the CW tube with different morphologies. Some
grains are formed in long strips and some are formed in a square shape with a large grain
size. This indicates that the extrusion process is not homogeneous at the grain size level.
Distribution of grains with different grain size can also be seen in the EA and EW tubes
(Figure 3c,d) but these grains are all recrystallized grains due to the fine grain size of the
initial extrusion billets.

Grain size is different in these tubes (shown in Table 2). CA and EA tubes using air
cooling show a grain size of 26 pm. CW and EW tubes using water cooling show a grain
size of 8 pm and 6.3 um, respectively. Therefore, grain refinement is effective by using the
water-cooling method after the extrusion process.

In addition, a few small cuboidal particles with a mean size of about 1-2 um can be
observed along the extrusion direction (ED) (Figure 4a) and the composition of the particle
detected by EDS is shown in Figure 4b. It is a kind of typical particle precipitated during
the extrusion process in Mg-Gd-Y alloys and the total volume fraction of particles is quite
small in each tube.
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Figure 3. Microstructure of the extruded tubes (RD-ED section), (a) CA tube, (b) CW tube, (c) EA
tube, (d) EW tube.

Table 2. Grain size of different extrusion tubes.

Grain Size (um)

CA 26
CwW 8

EA 26
EW 6.3

(b) Elment  Weight % Atomic %

Mg 60.93 87.95
Y 18.81 742
Gd 19.61 4.38
Zr 0.65 0.25
Totals 100 100

Towm v Elechon Image 1

Figure 4. (a) Microstructure of the second phase in the extruded tube, (b) EDS analysis of the
second phase.

3.2. Mechanical Property

Stress—strain curves of all tubes are shown in Figure 5 and comparisons of yield stress
and elongation are shown in Figure 6. CW and EW tubes using water cooling show higher
yield stress than tubes using air cooling. This is due to the fine grain size in CW and
EW tubes.
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Figure 5. Stress—strain curves of different tubes (tension along ED).
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Figure 6. Comparison of mechanical property in different tubes, (a) yield stress, (b) elongation.

EA and EW tubes using the extruded bar as billet show higher elongation than tubes
using cast ingots as billet. The elongations of EA and EW tubes are 28.2% and 23.9%,
respectively. The CW tube shows the lowest elongation of 6%, which may be caused by the
unrecrystallized grains with a large grain size.

3.3. Texture

The PF maps of all tubes are shown in Figure 7. The texture intensity of all tubes is
weakened compared to traditional extruded magnesium alloys with obvious fiber texture.
The highest texture intensity is 3.898 shown in EA tube. The lowest texture intensity
is 1.825 shown in the EW tube. In typical fiber textures, the c-axis is approximately
perpendicular to the extrusion direction. In the extruded Mg-Gd-Y alloy shown in this
work, peaks on the (0001) pole figure shows an obvious deflection from the RD component.
The peak intensity point in PF maps shows tilt from RD to ED at different degrees.

Inverse Pole Figures of different tubes are shown in Figure 8. Tubes produced by the
water-cooling method show a peak around the <10-10> component which is caused by
the deformation process. Tubes produced by the air-cooling method show a peak at the
<2-1-10> component which is caused by the slow cooling rate and annealing effect.
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Figure 7. Pole Figures (PF) of different tubes: (a) CA tube, (b) CW tube, (c) EA tube, (d) EW tube.
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Figure 8. Inverse Pole Figures of different tubes: (a) CA tube, (b) CW tube, (c) EA tube, (d) EW tube.
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4. Discussion
4.1. Effect of Extrusion Process on Texture

Texture will be weakened with RE addition [20-22], but the texture is still dependent
on the processing parameters [23]. Firstly, deformation temperature is an important factor
for the weakening of texture. The dynamic strain-aging (DSA) effect in a narrow window of
temperature was proposed by Jiang [23], which indicated that the formation of RE texture
components is enhanced by extruding under DSA conditions. This range depends on the
type of solute and its concentration, as well as on the combination of extrusion temperature
and mean strain rate employed. In this study, the extrusion temperature is selected at
400 °C, which falls in the window of DSA.

Secondly, the cooling rate after deformation would have a significant effect on the
formation of texture. Without rapid cooling, a process of static annealing would go through
with the residual heat after extrusion. According to previous studies, the process of pre-
ferred grain growth is discovered by Wu [16]: in the Mg-1Gd alloy, a gradual strengthening
of the <2-1-11> RE-texture component at the expense of the <10-10> component during
the recrystallization annealing process. Additionally, the driving force for the preferred
grain growth is the difference in stored energy between the <2-1-11> grains and the <10-
10> grains. While in the AZ31 alloy, the <2-1-10> component prefers to grow during the
recrystallization process. Additionally, the preferred grain growth would be inhibited by
the water-cooling method.

In our work, tubes using cast ingots as billet show a higher degree of deflection of
peaks on the (0001) pole figure from the deformation axis (also ED). Especially in the CW
tube, the peak texture intensity point shows a deflection of 90° from ED. That is because
the deformed, unrecrystallized grains in CW tube have the c-axes almost all perpendicular
to ED.

As the comparison between air cooling and water cooling (Figure 7), the EA tube
shows an obvious texture peak about 60° inclined to ED and the EW tube shows an almost
random texture. This is because the preferred grain growth process is inhibited in EW tube
during water cooling process.

4.2. Effect of Texture on Mechanical Properties

(0001) The basal slip system has the lowest critical resolved shear stress (CRSS) in
magnesium, as pervious reported [24,25]. Therefore, the mechanical property depends
largely on the grain orientation whether the basal slip is favored or not. In pervious
works [26-28], magnesium alloy produced by equal channel angular pressing shows
texture with a 45° deflection from the deformation axis, which favors the activation of
the basal slip and a good elongation in tension test. In our work, in the EA tube, the
peak texture intensity point shows a deflection around 60° from the deformation axis (also
ED). In the CA tube, the peak texture intensity point shows a deflection of 80° from ED.
Therefore, the activation of the basal slip is much more difficult in the CA tube than in EA
during tension along ED, and the CW tube shows a much lower elongation but a higher
yield stress (shown in Figure 6).

If texture favors the activation of the basal slip, the tube will achieve a higher elonga-
tion. If texture does not favor the activation of the basal slip, the tube will achieve higher
yield stress. The result shown in Figure 6 indicated that the EA tube has a higher elongation
than the EW tube. It is hard to clarify which tube favors more for the activation of the basal
slip. Therefore, Schmid factor analysis is shown in Figure 9. The average Schmid factors
of the basal slip system are 0.308 for the CA tube, 0.290 for the CW tube, 0.321 for the EA
tube and 0.318 for the EW tube. A high value of Schmid factor distribution can be found in
EA, which indicated that activation of the basal slip is more favored in the EA tube during
tension tests. Therefore, high elongation was achieved in this tube. A low value of Schmid
factor can be found in the CW tube, which indicated that activation of the basal slip is
less favored in the CW tube during tension tests. Therefore, low elongation but high yield
strength were achieved in this tube. Other factors can also affect mechanical properties,
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such as grain size. The EW tube shows a higher average Schmid factor and elongation
than the CA tube, which means activation of the basal slip is easier in the EW tube during
tension test. However, the yield strength of the EW tube is also higher and this should be
caused by a much finer grain size in the EW tube (6.3 um) than that of the CA tube (26 pm).
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Figure 9. Schmid factor of basal slip system in (a) CA tube and (b) CW tube; (c) EA tube and (d) EW tube.

5. Conclusions

In this work, microstructure and mechanical properties of extruded tubes by using

traditional extrusion processes and secondary extrusion processes were studied along with
different cooling methods. The conclusions of this work are shown as:

@

)

®)

4)

A tube using cast ingots as billet and the water-cooling method has a large fraction
of unrecrystallized grain with large grain size, which is due to the inhomogeneous
deformation during extrusion. Secondary extrusion processes would achieve a fully
recrystallized microstructure due to the fine initial grain size.

Tubes using the water-cooling method achieve higher yield stress at around 200 MPa
with both cast ingots and extruded bars as billets. This is caused by the fine grain size
of these tubes.

Tubes using secondary extrusion processes achieve higher elongation at 28.2% and
23.9% with air-cooling processes and water-cooling processes. This is caused by the
extruded texture that favors the activation of the basal slip system.

By using both secondary extrusion processes and the water-cooling method, the
extruded texture is almost randomized with the texture intensity of 1.852. This is
due to the activation of a more non-basal slip during the extrusion process and the
inhibition of preferred grain growth process during the water-cooling process. Both
high yield strength (195.3 MPa) and high elongation (23.9%) are achieved in this tube.
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