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Abstract: Supercapacitors (SCs) have generated a great deal of interest regarding their prospects for
application in energy storage due to their advantages such as long life cycles and high-power density.
Graphene is an excellent electrode material for SCs due to its high electric conductivity and highly
specific surface area. Conductive polymers (CPs) could potentially become the next-generation
SC electrodes because of their low cost, facile synthesis methods, and high pseudocapacitance.
Graphene/CP composites show conspicuous electrochemical performance when used as electrode
materials for SCs. In this article, we present and summarize the synthesis and electrochemical
performance of graphene/CP composites for SCs. Additionally, the method for synthesizing electrode
materials for better electrochemical performance is discussed.

Keywords: graphene; conductive polymers; supercapacitor; conductive polymers; binary composites;
ternary composites; quaternary composites

1. Introduction

Since its discovery in 2004, graphene has attracted extensive interest, and much re-
search has been carried out to study its physical and chemical properties and explore its
applications [1–3]. The peculiar optical, mechanical, and electrical properties of graphene
make it promising in many fields, such as material science [3], biomedicine [4,5], environ-
mental treatment [6,7], and energy [8,9]. In particular, graphene plays an important role in
the fight against COVID-19, and it has recently inspired novel technologies to defeat the
pandemic [10,11]. Graphene is considered one of the most promising electrode materials
for SCs due to its large specific surface area (SSA), outstanding electrical conductivity,
flexibility, and excellent chemical stability [12–14].

Based on their storage mechanism, SCs can be divided into electrochemical double-
layer capacitors (EDLCs) [15] and pseudocapacitors [16]. EDLCs keep energy through
charge accumulation at the electrode/electrolyte interface [17]. Specifically, reversible
electrostatic attraction occurs between the ions from electrolytes and the oppositely charged
electrode surfaces during the charging progress [18]. By contrast, ions leave the electrode’s
surface and move back in the electrolyte during the discharging progress. Since no charge
transfer takes place during the process, EDLCs exhibit a fast charge/discharge rate and
superior power performance compared to conventional capacitors. The SSA and porosity of
the electrode are key factors affecting the capacitance of EDLCs [19]; theoretically, the larger
the SSA of the electrode material, the higher the capacitance value of the EDLC. Using
carbon as the electrode material is the primary method for manufacturing EDLCs, such as
carbon nano-onions [20], activated carbon (AC) [21], and carbon nanotubes (CNTs) [22].
The theoretical SSA of graphene is up to 2630 m2 g−1 [23], making it one of the most
promising electrode materials for the manufacture of EDLCs.
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The graphene family can be classified into three types: graphene, graphene oxide
(GO), and reduced graphene oxide (RGO) [24]. Graphene is a two-dimensional material
comprised of sp2-hybridized carbon atoms. GO is synthesized via a proverbial modified
Hummers method [25]. The introduction of oxygenated functional groups (carboxyl,
hydroxyl, carbonyl, and epoxy) leads to negative charges on the surface of GO [26]. Due to
the sp3 hybridization of carbon atoms, GO is a non-conductive but hydrophilic material [27]
that is different from graphene. RGO can be obtained by reducing GO through chemical,
thermal, or electrochemical treatment [28]. After the reduction process of GO, RGO still
retains limited oxygenated functional groups and defects, and thus possesses high electric
conductivity [29].

However, graphite (flake) is a typical layered compound with strong van der Waals
interactions, which can be regarded as the-restacking of single-layer graphene. After the
process of exfoliation on graphite, graphene sheets still maintain some layered structures,
which are able to hinder the diffusion and mass transfer of electrolytes [30,31]. For example,
through scanning electron microscope (SEM) images, Stoller et al. [32] found that agglom-
erate particles approximately 15–25 µm in diameter were formed during reduction, and
the surface of the chemically modified graphene (CMG) agglomerate was only 705 m2·g−1

under the condition that both sides of the individual sheets at the surface of the agglom-
erate were exposed to the electrolyte. Moreover, in aqueous and organic electrolytes, the
specific capacitances of CMG were only 135 and 99 F·g−1, respectively.

Therefore, researchers have used various methods, such as chemical activation [33] and
physical modification [34], to eliminate the agglomeration of graphene sheets to produce
graphene materials with a high SSA. For example, by activation with Ni(NO3)2·6H2O,
Li and his co-workers [35] reported the synthesis of the novel porous reduced graphene
oxide (p-RGO) with exfoliated sheets, fabricated through means of hydrothermal assembly
calcination. Additionally, the SSA of p-RGO-5 (5 was the mass ratio of Ni to GO applied)
(SMicro = 99.8 m2·g−1, SBET = 462.7 m2·g−1, SLangmuir = 647.3 m2·g−1) was higher than RGO
(SMicro = 63.7 m2·g−1, SBET = 291.3 m2·g−1, SLangmuir = 407.8 m2·g−1), while the p-RGO-5
presented a large specific capacitance of 253.8 F·g−1 at 1.0 A·g−1. Wang et al. [36] created a
type of covalent organic framework (COF) in which the rich mesopores blocked the reunion
of reduced graphene oxide (RGO). The influence of COF content on the specific capacitance
of the COF/RGO hybrid was also studied by Wang and his co-workers. They found
that the optimized RGO/COF-20 hybrid (20 wt% COF) afforded a gravimetric specific
capacitance of 321 F·g−1 and a volumetric specific capacitance of 237 F·cm−3. Although
the SSA of graphene electrode material has been improved, both chemical and physical
methods undermine chemical stability and electrical conductivity, causing a reduction in
cycle life and power density [37].

Another type of SC is the pseudocapacitor, which can mimic the behavior of EDLCs
with energy storing and releasing through multiple fast and highly reversible processes
of Faradic redox reactions on the electrode surface. The capacitive property relies on the
porosity of the materials and insertion and desertion of ions at the electrode/electrolyte
interface [38,39]. Compared with an EDLC, the specific capacitance of pseudocapacitors is
higher; however, the cycling stability is lower because of volumetric change in the process
of charging and discharging. Conductive polymers (CPs), metal sulfides, metal oxides,
metal carbides, and metal nitrides are the most common pseudocapacitive materials, and
CPs are representative electrode materials for pseudocapacitors. Among them, CPs are
perhaps the most representative, exhibiting an excellent pseudocapacitive performance by a
fast and reversible redox reaction [40]. However, this type of SC also has several limitations.
For example, the most notable drawback is the rapid decayed cycle stability when it is
charged and discharged; this is due primarily to considerable mechanical degradation (e.g.,
expanding and shrinking) and irreversible structural changes [41]. Meanwhile, due to their
dense structure, CPs, which only contact the electrolyte in a limited nature, suffer from a
poor power density.
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In order to overcome the drawbacks of EDCLs and pseudocapacitors, many stud-
ies have managed to fabricate new types of hybrid SCs by combining the above elec-
trode materials (both carbonaceous materials and pseudocapacitive materials). In recent
years, many CPs have been explored and used to manufacture CP/graphene compos-
ites in combination with graphene. The application of CP/graphene composites, such
as SCs [42,43], solar cells [44], fuel cells [45], sensing platforms [46], etc., has also been
investigated, and the application in SCs has aroused great interest among researchers due
to the excellent electrochemical property of CP/graphene composites. These CP/graphene
SC electrodes, which are supposed to combine the advantages of both CPs and graphene,
show significant improvements on their capacitance performance and cyclic stability. Thus,
the disadvantage of CP-only electrodes is effectively ameliorated.

Several reviews [18,47] concerning the synthesis methods and capacitive performance
of graphene/CP hybrid SCs are available in the literature; however, most of these papers
only focus on the relatively simple binary composites of graphene (and its derivatives)
and CPs. In this review, apart from the widely considered binary CP/graphene composite
electrodes for SCs, the most recent research progress of more sophisticated ternary and even
quaternary composites from the past 5 years is also presented, offering valuable instruction
for the selection and combination of promising electrode materials. Specifically, the content
is divided into five sections. Section 1 introduces the properties of graphene and CPs and their
application in the field of SCs. Section 2 discusses binary graphene/CP composites (PANI, PPy,
and Pind) used for electrodes. Section 3 discusses ternary composites synthesized by combining
graphene/CP composites with another material. In Section 4, the synthesis strategies and
performance of quaternary composites are discussed. Finally, in Section 5, future perspectives
on SC electrodes based on CP/graphene composites are also proposed.

2. Binary Composites

Binary composite refers to a material composed of two elements, parts, or divisions,
including metal materials, non-metal materials, organic materials, polymer composite
materials, etc. Binary composites, which are composed of CPs and graphene, exhibit higher
stability and higher electrical conductivity than individual components due to the positive
synergistic affection between CPs and graphene [47].

2.1. Graphene/PANI Composites

Polyaniline (PANI) is a promising conductive polymer that exhibits excellent elec-
trochemical activity, environmental stability, and fast Faraday reactivity [48,49]. Many
synthesis methods of PANI have been developed in recent decades, such as electrochemical
polymerization and oxidative polymerization [50,51]. Apart from the level and type of
dopant used, it is well known that the synthesis method adopted also has a significant
effect on the electrochemical properties and the electrical conductivity of PANI [52].

PANI/graphene nanocomposites can be synthesized via different procedures such as
interfacial polymerization [53], chemical polymerization techniques [51,54], and electro-
chemical polymerization [55]. In the process of synthesis, graphene can create a suitable
environment for PANI growth. Zhao et al. [54] reported the synthesis of PANI/graphene
nanocomposites fabricated through in situ high gravity chemical oxidative polymeriza-
tion means in a rotating packed bed (RPB). Meanwhile, they found that the ammonium
persulfate/aniline mole ratio, graphene dosage, reactor type, and aniline concentration
play important roles in their morphology and electrochemical performance. A simple in
situ chemical oxidative pathway was used to synthesize nanocomposites of PANI with
GO in an acidic environment of aqueous sulfuric acid, while dodecylbenzene sulfonic
acid (DBSA) was used as a surfactant and dopant [56]. The GO was synthesized from
graphite through a modified Hummers method. Gul et al. [56] also studied the influence of
different GO concentrations on the composite morphologies (as shown in Figure 1). It can
clearly be observed from these images that GO is introduced into composites due to the
changes in morphology, and extremely porous nanostructures with distributed nanofibers
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are developed at 6% of GO (Figure 1e). DBSA is helpful for the constant growth of PANI
on the surface of GO sheets during polymerization. As the GO concentration increases, the
specific capacitance of the composite increases, reaching a maximum of 658 F g−1 at 6%
of GO; it then decreases further (PANI: 158 F·g−1, PANI–GO-1: 323 F·g−1, PANI–GO-2:
345 F·g−1, PANI–GO-4: 417 F·g−1, PANI–GO-6: 658 F·g−1, PANI–GO-8: 387 F·g−1, PANI–
GO-10: 355 F·g−1). The largest average pore volume (0.037 cc·g−1) and BET surface area
(m2·g−1), as well as the smallest pore radius (14.561 Å), of PANI–GO-6 seem to be the
reasons for the highest specific capacitance.
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(c) PANI–GO-1, (d) PANI–GO-4, (e) PANI–GO-6, (f) PANI–GO-8, and (g) PANI–GO-10, and
(h) particle size distribution histogram of PANI–GO-10 (Reprinted from ref. [56]).

Many studies have been conducted in recent years using RGO to replace GO as the
electrode material of SCs due to the former’s greater conductivity [57,58]. In general, RGO
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is obtained from GO and then used to compound with PANI. The capacitance properties of
RGO/PANI nanocomposites are greatly affected by changing the sequence of compositing
or reducing GO and the electrolytes. Moyseowicz et al. [59] synthesized GO from graphite
by a modified Hummers method. Then, the GO was reduced via hydrothermal treatment at
180 ◦C for 12 h in a stainless-steel autoclave while adding PANI into GO compared with the
absence of PANI. The specific capacitance values of PANI, RGO-HT (RGO by hydrothermal
treatment), and PANI/RGO-HT were 440, 236, and 420 F·g−1, respectively, at a current
density of 0.2 A·g−1. The specific capacitance value of PANI/RGO-HT was 239 F·g−1,
while PANI was 84 F·g−1 at a current density of 20 A·g−1. Meanwhile, the composite cyclic
stability of PANI/RGO-HT was greatly improved, and the capacity retention rate remained
at 80% after 6000 cycles compared with 46% of PANI after just 1000 cycles at a current
density of 2 A·g−1.

2.2. Graphene/PPy Composites

Polypyrrole (PPy) is another important CP with a high theoretical capacitance of
620 F·g−1 [60]. Due to its appealing characteristics, such as excellent flexibility, low cost,
sizeable energy density [61,62], high cycling stability [63], and quick charge/discharge
process [64], PPy can be used to manufacture flexible electronic devices, such as wearable
sensors [65], smart textiles [66], and roll-up displays [67]. Therefore, the important role
of PPy in energy storage devices and electronic applications has attracted great attention
from researchers. However, as with PANI, PPy also has poor cyclic stability. To alleviate
this deficiency, researchers have synthesized graphene/PPy composites electrochemically
or by polymerization.

Recently, Jia et al. [68] synthesized various PPy/GO films with different mass ratios
by the confined polymerization inside the ice method. A prepared frozen pyrrole/GO
layer and a mixture of adipic acid and ammonium were added into the mold, where the
compound of deionized water and alcohol persulfate was initially added at a temperature
of −20 ◦C. The reaction was carried out at −20 ◦C for 24 h. Additionally, the PPy/GO
film was then obtained after thawing, washing, and drying. FSC-1, FSC-2, FSC-3, FSC-4,
and FSC-5 were the flexible symmetrical SCs made of PPy, PPy/GO-1.0, PPy/GO-1.5,
PPy/GO-2.0, and PPy/GO-2.5. Figure 2 shows that the CV curves of FSC devices (FSC-
1, FSC-2, FSC-3, FSC-4, FSC-5) at different scan rates are closer to rectangles and are
more symmetrical; the area of CV curves of FSC-5 is the largest, and FSC-5 exhibits a
comparatively low ESR of 4.12 Ω (FSC-1: 22.4 Ω, FSC-2: 15.23 Ω, FSC-3: 11.11 Ω, FSC-4:
8.84 Ω). This study showed that, with the increase in GO content, the capacitance and
electrical conductivity of SCs increased.

Using hexadecylpyridinium chloride (CPC) as a modifier of GO, Feng et al. [69]
synthesized polypyrrole/modified graphite oxide (PPy/MGO) composites via in situ
polymerization. CPC contains hydrophobic groups (pyridine rings), which combine with
PPy chains and then interact on the surface of GO via π–π stacking. As a result, the
specific capacitance of PPy/MGO (202 F·g−1) was higher than PPy/GO (137 F·g−1), and
the capacitance utilization of PPy in PPy/MGO (183 F·g−1) was also higher than PPy/GO
(129 F·g−1), indicating that the modification of GO could improve the performance of
PPy/GO composites.

Ghanbari et al. [70] put GO powder into a microwave oven to exfoliate and reduce
graphene oxide by microwave irradiation (MRGO), and then in situ polymerized pyrrole
onto it. The specific capacitance of the reduced-graphene oxide/polypyrrole nanofiber
(RGO/PPy-Nf) nanocomposite was 277 F·g−1 at a 1 A·−1 current density in a solution
electrolyte containing 1 M H2SO4. The study showed that both mechanisms of EDLCs and
faradaic reactions played an important role in the RGO/PPy-Nf nanocomposite.



Crystals 2021, 11, 947 6 of 16Crystals 2021, 11, 947 6 of 16 
 

 

  
Figure 2. The CV behaviors of solid-state SCs at different scan rates: (a) FSC-1, (b) FSC-2, (c) FSC-3, 
(d) FSC-4, and (e) FSC-5. (f) Nyquist plots of the FSC devices (Reprinted from ref. [68]). 

2.3. Graphene/Pind Composites 
Recently, some researchers have demonstrated that polyindole (Pind) is a promising CP 

for the manufacture of SCs. The properties of Pind are similar to poly (paraphenylene) and 
PPy due to its special molecular structure containing a six-membered benzene ring fused in a 
five-membered pyrrole ring [71]. The synthesis methods of Pind are put into practice via var-
ious polymerization routes, such as electrochemical polymerization and chemical oxidative 
polymerization [72,73]. Pind shows a competitive redox potential compared to PPy and a 
slower hydrolytic degradation than PANI [74]. However, the conductivity of Pind is much 
lower than PPy and PANI (two orders of magnitude) [75]. In recent years, the application of 
Pind in electrode materials combined with graphene for SCs has attracted much attention. 

Mudila et al. [76] synthesized various polyindole/graphene oxide (GO) nanocompo-
sites (PINCs) with different concentrations of GO via a dilute solution polymerization 
method with the assistance of cetyltrimethylammonium bromide. This study showed that, 
with the increase in GO content, the thermal stability and the specific capacitance of PINCs 
increased regularly. For example, at a scan rate of 0.001 V/s, the specific capacitance of 
pure polyindole was 21.89 F·g−1 compared to 399.97 F·g−1 PINCs with 20% w/w GO. In [77], 

Figure 2. The CV behaviors of solid-state SCs at different scan rates: (a) FSC-1, (b) FSC-2, (c) FSC-3,
(d) FSC-4, and (e) FSC-5. (f) Nyquist plots of the FSC devices (Reprinted from ref. [68]).

2.3. Graphene/Pind Composites

Recently, some researchers have demonstrated that polyindole (Pind) is a promising
CP for the manufacture of SCs. The properties of Pind are similar to poly (paraphenylene)
and PPy due to its special molecular structure containing a six-membered benzene ring
fused in a five-membered pyrrole ring [71]. The synthesis methods of Pind are put into
practice via various polymerization routes, such as electrochemical polymerization and
chemical oxidative polymerization [72,73]. Pind shows a competitive redox potential
compared to PPy and a slower hydrolytic degradation than PANI [74]. However, the
conductivity of Pind is much lower than PPy and PANI (two orders of magnitude) [75]. In
recent years, the application of Pind in electrode materials combined with graphene for
SCs has attracted much attention.

Mudila et al. [76] synthesized various polyindole/graphene oxide (GO) nanocom-
posites (PINCs) with different concentrations of GO via a dilute solution polymerization
method with the assistance of cetyltrimethylammonium bromide. This study showed that,
with the increase in GO content, the thermal stability and the specific capacitance of PINCs
increased regularly. For example, at a scan rate of 0.001 V/s, the specific capacitance of pure
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polyindole was 21.89 F·g−1 compared to 399.97 F·g−1 PINCs with 20% w/w GO. In [77],
the Pind/RGO nanocomposites, synthesized through a typical in situ chemical oxidative
polymerization method, presented a high specific capacitance of 322.8 F·g−1 at 1.0 A·g−1,
and the cyclic stability decreased by only 5.5% after 1000 cycles. The above research pro-
vides evidence that the combination of Pind and graphene can improve the electrochemical
utilization of Pind and the structural stability of graphene/Pind composites in the process
of charging and discharging; therefore, specific capacitance and cycle stability have both
been improved.

2.4. Comparison and Summary

PANI, PPy, and Pind are perceived as highly promising conductive polymers for
hybrid SCs due to their large energy density, high conductivity, and eco-friendly and cheap
features. There is little difference in environmental and electrochemical stability between
these CPs (PANI, PPy, and Pind); however, the conductivity comparison of them follows
the order of PPy > PANI > Pind [75,78].

The recent development of graphene and CP (PANI, PPy, and Pind) composites for
SCs is summarized in Table 1. The electrochemical properties (i.e., charge/discharge speed,
specific capacitance, and cycling stability) of graphene/CP composites are affected by many
factors, such as concentrations of graphene and its derivatives, properties of individual
CPs, and polymerization methods. Moreover, the combination of CPs and graphene greatly
enhances the electrochemical properties of graphene/CP composites, showing excellent
synergy between CPs and graphene and its derivatives [79].

Table 1. Performance of the SCs based on graphene/CP composites.

Materials Electrolyte Testing Capacitance Capacitance Retention Year References

PANI PVA/H3PO4 Two-electrode
283 F g−1 at 0.5 A g−1 - 2013 [80]

PANI/graphene 1 M H2SO4 408 F g−1 at 5 mV s−1 84% after 40 cycles 2009 [81]
PANI/GO 0.5 M H2SO4 Three-electrode 448 F g−1 at 0.5 A g−1 81% after 5000 cycles 2014 [82]

PANI/RGO-
HT 1 M H2SO4 Three-electrode 420 F g−1 at 0.2 A g−1 80% after 6000 cycles 2018 [59]

PANI/GO 1.1 M H2SO4 Three-electrode 658 F g−1 at 10 A g−1 84.09% after 2000 cycles 2019 [56]
PPy PVA/H3PO4 Two-electrode

170 F g−1 at 0.5 A g−1 - 2014 [83]
PPy/graphene 1 M NaCl 165 F g−1 at 1 A g−1 - 2010 [84]

PPy/GO PVA/H3PO4 Three-electrode 97.3 mF cm−2 at 1 mA cm−2 94% after 1000 cycles 2020 [68]
PPy/MGO 2 M NaNO3 Three-electrode 202 F g−1 at 1 A g−1 83.8% after 1000 cycles 2013 [69]
PPy/GO 2 M NaNO3 Three-electrode 137 F g−1 at 1 A g−1 - 2013 [69]

EG-RGO/PPy 1 M H2SO4 Three-electrode 420 F g−1 at 0.5 A g−1

240 F g−1 at 5 A g−1
93% after 200 cycles at 1 A

g−1 2013 [85]

RGO/PPy-Nf 1 M H2SO4 Two-electrode 277 F g−1 at 1 A g−1 95% after 1000 cycles 2021 [70]

Pind 1 M H2SO4 Three-electrode 112 F g−1 at 1 A g−1 82.3% after 5000 cycles at 10
A g−1 2017 [86]

Pind/GO 1 M KOH Three-electrode 399.97 F g−1 at 1 mV S−1 99% after 50 cycles at 0.1 V
S−1 2015 [76]

Pind/RGO 1 M H2SO4 Three-electrode 322.8 F g−1 at 1 A g−1 94.5% after 1000 cycles 2016 [77]
Pind/RGO 1 M HClO4 Three-electrode 214 F g−1 at 5 A g−1 62% after 5000 cycles 2020 [87]

3. Ternary Composites

The binary composites of CPs with graphene and its derivatives have proved to have
higher electrochemical properties than their individual components. Inspired by this,
researchers have conducted plenty of work to improve the electrochemical performance of
graphene/CP composites used in SCs by combining them with another material, such as
metal sulfides, metal oxides, and nonmetal oxides, to form a ternary composite material.

Wang and his co-workers [88] fabricated a ternary composite SiO2/graphene/PANI
(SGP) as the SC electrode material. In the study, hydrophilic SiO2 was used as an inor-
ganic porous framework layer to bridge PANI and graphene, which not only inhibited the
accumulation between graphene and PANI and graphene layers, but also improved ion
exchanges and the interactions at the electrolyte/electrode interface. Although the conduc-
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tivity of SiO2 is poor, the excellent synergy between SiO2, graphene, and PANI improved
the specific capacitance of SGP-1 composites (727.0 F·g−1) compared with SiO2/graphene
(88.8 F·g−1), graphene (108.0 F·g−1), and graphene/PANI (302.1 F·g−1); meanwhile, the
capacitance retention rate of SGP-4 was 90% after 3500 cycles.

Xu et al. [89] synthesized ZnS/RGO/CP composites by doping with the same mass
ratio of CPs (PANI, PPy, polythiophene (PTh), poly 3,4-ethylenedioxythiophene (PEDOT))
on the surface of a ZnS/RGO composite through an in situ polymerization method. Mean-
while, in comparison with other ZnS/RGO/CP composites (PPy, PTh, PEDOT), the ca-
pacitance performance and cycle stability of ZnS/RGO/PANI were the best. The specific
capacitance of ZnS/RGO/PANI was 722.0 and 1045.3 F·g−1 at 1 A·g−1 in a two-electrode
and three-electrode system, higher than 613.8 and 787 F·g−1 of ZnS/RGO/PPy, and the cy-
cle stability of ZnS/RGO/PANI was 76.1% and 160% in a two-electrode and three-electrode
system after 1000 loops, which was also higher than 50% and 149% of ZnS/RGO/PPy.

Ramesh et al. [90] synthesized Co3O4@NGO/Pind composites by hydrothermal treat-
ment after ultrasonication, and the synthesis process is shown in Figure 3. Figure 4 shows
that the electrochemical performances of Co3O4@NGO/Pind composites were researched
through galvanostatic charge–discharge (GCD), cyclic voltammetry (CV), and an electro-
chemical impedance spectroscopy analysis (EIS) method. The study indicated that the
specific capacitance of Co3O4@NGO/Pind was ~680 F·g−1 at 0.5 A·g−1, and the capaci-
tance retention rate was 96% after 3000 cycles. Despite the fact that Co3O4@NGO/Pind
exhibited great electrochemical performance, it was unable to represent the ideal capacitive
behavior due to the unsymmetrical profiles on CV and non-triangular shapes on GCD.
These could be attributed to the addition of multiple compounds and compatibility dif-
ference. Hence, further research is necessary to overcome such drawbacks to improve the
capacitor properties.
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The recent development of ternary composites (graphene and its derivatives, CPs,
and other materials) for SCs is summarized in Table 2. Compared with binary composites,
ternary composites exhibit better electrochemical performance; this is due not only to
the synergy between CPs, graphene and its derivatives, and other materials, but also to
the increase in SSA that results in a reduction in diffusive path length [91]. In addition,
ternary composites of graphene, metal oxides, and CPs can prevent the detachment of
metal oxide nanoparticles and improve cycling stability [92]. Ternary composite metals and
metal oxides, or sulfides, are the commonly used materials in graphene/CP composites
to form ternary composites due to their superior conductivity and pseudocapacitance.
Therefore, the improvement in electrochemical performance by adding nonmetallic ma-
terial (poor conductivity) into graphene/CP composites primarily promotes interfacial
interactions [88].
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Table 2. Electrochemical performance of some previously reported ternary composites.

Materials Electrolyte Testing Capacitance Capacitance Retention Year References

GO/Pt/DBSA-
PANI 1 M H2SO4 Three-electrode 227.2 F g−1 at 0.9 mV

S−1 96% after 1500 cycles 2019 [93]

ZnS/RGO/PANI 6 M KOH Two-electrode 722 F g−1 at
1 A g−1 76.1% after 1000 cycles 2020 [89]

ZnS/RGO/PPy 6 M KOH Two-electrode 613.8 F g−1 at
1 A g−1 50% after 1000 cycles 2020 [89]

NiO/Gr/PPy 6 M KOH Three-electrode 970.85 F g−1 at 1 A g−1 - 2020 [94]
RGO/Pind/gammer-

Al2O3
1.0 M HClO4 Three-electrode 308 F g−1 at

5 A g−1 83% after 5000 cycles 2020 [87]

Co3O4@NGO/polyindole 2 M KOH Three-electrode ~680 F g−1 at 0.5 A g−1 96% after 3000 cycles 2020 [90]
TiO2@PPy/rGO 2 M KOH Three-electrode 462.1 F g−1 at 0.5 A g−1 70% after 1500 cycles 2021 [95]

SiO2/graphene/PANI 1 M H2SO4 Three-electrode 727 F g−1 90% after 3500 cycles 2021 [88]

4. Quaternary Composites

Based on the above research, it is clear that multiple components can make up for
respective deficiencies and improve their comprehensive performance in relation to elec-
trochemistry; quaternary composites of CPs with graphene are supposed to exhibit su-
perior capacity and service life. A recent study showed that, by way of reduction in
platinum nanoparticles into a modified PANI with carbon nanotubes (CNTs) and graphene
nanosheets (GNS), a quaternary composite of PANI/GNS/CNT/Pt was synthesized [96].
The advantages of four materials—excellent electrical conductivity of GNS and CNTs,
large surface area and conductivity of Pt nanoparticles, and high redox activity of PANI—
were well presented in the quaternary electrode of PANI/GNS/CNT/Pt, which showed
excellent synergy between PANI, GNS, CNTs, and Pt.

Gottam et al. [97] synthesized a quaternary composite of MoO3–MC–SiO2–PANI
through a chemical process using molybdenum oxide (MoO3), mesoporous carbon (MC),
silicon dioxide (SiO2), and PANI materials. The study showed that the specific capacitance
of the carbon substrate could be improved by adding SiO2 into it to form MC–SiO2, and
the combination of the two materials of PANI and MoO3 could form a dual charge storage
redox action, which had the potential for excellent capacitive performance (see Figure 5).

Table 3 shows that the specific capacitance and cycle stability of the quaternary com-
posite (PANI/GNS/CNT/Pt) were higher than the ternary composites (PANI/GNS/CNT,
PANI/GNT/Pt, and PANI/GNS/Pt) in [96], and the specific capacitance of the quaternary
composite (MoO3–MC–SiO2–PANI) was higher than that of ternary composites (MC–
SiO2–PANI and MoO3–MC–SiO2) in [97]. However, few studies have been performed
on quaternary electrodes in recent years, and the study on the mechanism of quaternary
composites is unclear, as quaternary composites involve four components. Therefore, more
research on quaternary composites is needed to study their synthesis, electrochemical prop-
erties, and mechanism, which will provide the possibility for the creation of next-generation
energy storage systems.
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Table 3. Electrochemical performance of the two quaternary composites.

Materials Electrolyte Testing Capacitance Capacitance
Retention Year References

PANI/GNS/CNT/Pt 1 M H2SO4 Two-electrode 3450 C g−1 at
4.0 µA S−1

84.8% after 1000
cycles 2017 [96]

PANI/GNS/CNT 1 M H2SO4 Two-electrode 952 C g−1 at
4.0 µA S−1

63% after 1000
cycles 2017 [96]

PANI/GNT/Pt 1 M H2SO4 Two-electrode 366 C g−1 at
4.0 µA S−1

38.9% after 1000
cycles 2017 [96]

PANI/GNS/Pt 1 M H2SO4 Two-electrode 1123 C g−1 at
4.0 µA S−1

36.3% after 1000
cycles 2017 [96]

MoO3–MC–SiO2–
PANI 1 M H2SO4 Two-electrode 535 F g−1 at

1 mV S−1

57% after
250,000 cycles
at 16.6 A g−1

2021 [97]

MC–SiO2–PANI 1 M H2SO4 Two-electrode 410 F g−1 at
1 mV S−1 - 2021 [97]

MoO3–MC–SiO2 1 M H2SO4 Two-electrode 80 F g−1 at 1 mV S−1 - 2021 [97]
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5. Summary and Outlook

Carbon materials, metal oxides, and CPs are three generally studied electrode materi-
als for SCs. Metal oxides have a higher specific capacity, but their low conductivity, high
cost, and pollution to the environment are limitations for their application in SCs. Graphene
is one of the ideal SC materials due to its superior electrochemical properties (such as high
electrical conductivity) and highly specific surface area. However, because of the effect
of van der Waals interaction, the accumulation of graphene sheets decreased the specific
capacitance of graphene electrodes [30,31]. CPs could probably become next-generation
SC electrode materials due to their low cost and high pseudocapacitance. However, pure
CP electrodes expand and shrink during charging and discharging, resulting in low cycle
stability [41]. Nevertheless, with the combination of graphene and CPs, the newly formed
graphene/CP composites have the advantages of high specific capacitance and excellent
cycle stability, making them a more promising candidate for SC electrode materials.

In this review, we have discussed several graphene/CP composites (PANI, PPy, and
Pind) and their potential applications in SCs. The methods of synthesis for electrode materi-
als, including the one-pot synthesis route [56], hydrothermal-assisted synthesis method [59],
and ice-interface assisted synthesis method [68], are discussed in this article. Meanwhile,
the electrochemical performances of pure, binary, ternary, and quaternary composites have
been discussed and compared. EDLCs and pseudocapacitors composed of pure electrode
materials have the disadvantage of poor cyclic stability or low specific capacitance, while
hybrid SCs composed of binary, ternary, and quaternary composites store energy through
Faradic redox reactions and charge accumulation at the electrode/electrolyte interface. The
factors affecting SCs are as follows: the interfacial interaction between graphene and CPs,
the properties of CPs, the microstructure of composites, etc. [98]. Therefore, researchers
have conducted many studies to improve the interfacial interaction between graphene and
CPs and the microstructure of composites by adding one more material to form ternary
composite electrode materials, and even quaternary composite electrode materials, to
further enhance this effect.

In conclusion, graphene/CP composites are superior materials in the application of
SCs. Great progress has been achieved with the unremitting efforts of researchers for better
electrochemical performance of electrode materials. However, the following questions
remain to be addressed by researchers in this field.

First, compared with other carbon materials, such as coconut-shell-activated carbon,
the cost of graphene is still high. New techniques for the synthesis of graphene with
a low cost and high quality still need to be developed. At present, the electrochemical
performance of CPs cannot meet the requirement of large-scale commercial applications,
and the synthesis of new CPs also requires development by researchers.

Second, during the processes of synthesizing graphene/CP composites, the high SSA
of graphene should be maintained. New techniques for uniformly mixing graphene into
CPs need to developed to prevent the restacking of graphene.

Third, the application of binary composites, ternary composites, and quaternary com-
posites of graphene/CP in SCs has proven to be very successful; however, the mechanisms
used to explain the synergy between CPs, graphene, and other materials are not clear. Thus,
more mechanisms need to be studied to optimize the compositions and morphologies of
graphene/CP composites. We believe that graphene/CP composites with higher electro-
chemical performance can be found thanks to the pursuit of researchers who might finally
realize their application in commercial fields.
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