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Abstract: The amount of orientation difference of crystallites, i.e., the texture in a metallic polycrystal
governs, plastic anisotropy, electrical and magnetic properties of the material. For simulating the
microstructure and texture evolution during forming processes, representative volume elements
(RVEs) often generated based on experimental measurements are commonly used. While the grain
size and morphology of polycrystals are often determined via light-optical microscopy, their texture is
conventionally analyzed through diffraction experiments. Data from these different experiments must
be correlated such that a representative set of sampled orientations is assigned to the grains in the
RVE. Here, the concept Texture Sampling through Orientation Optimization (TSOO) is introduced,
where based on the intensity the required number of orientations is first assigned to the grains
of the RVE directly. Then the Bunge–Euler angles of all orientations are optimized in turn with
respect to the experimental measurements. As orientations are assigned to grains of variable size
during optimization, the compatibility between inhomogeneity in the microstructure and texture is
inherently addressed. This method was tested for different microstructures of non-oriented electrical
steels and showed good accuracy for homogenous and inhomogeneous grain size distributions.

Keywords: texture sampling; microstructure inhomogeneity; ODF; RVE; CP-FEM; NO electrical steel

1. Introduction and State of the Art

Many properties of polycrystalline materials such as elastic and plastic response,
electrical conductivity, magnetic permeability, etc., depend upon the crystallographic
texture, i.e., the orientation of individual crystallites with respect to the bulk material
geometry [1]. These crystallite orientations are commonly represented by an orientation
distribution function (ODF) [2]. Experimentally, an ODF is constructed by measuring
orientations in diffraction experiments like electron backscatter diffraction (EBSD) or X-ray
diffraction (XRD). Typically, from these experiments, thousands to millions of data points
are obtained for the construction of the ODF. The ODF f (g) signifies the probability of
a volume fraction (dV/V) in the total polycrystal taken by the crystallites of orientations
between g and dg,

dV
V

= f (g)dg (1)

where an orientation g is defined with a set of Euler angles g = {ϕ1, φ, ϕ2} within the Euler
space {[0, 2π], [0, π], [0, 2π]}.

Nowadays, numerical simulation tools such as crystal plasticity finite element meth-
ods (CP-FEM) [3] or visco-plastic self-consistent methods (VPSC) [4] have become popular
and powerful tools in microstructure modeling and to predict mechanical properties during
deformation. However, only CP-FEM simulations can take into account microstructure
and interactions on the local grain level, for example for tracking geometrically necessary
dislocation densities during deformation [5]. Similarly, only CP-FEM simulations can pre-
dict certain material properties, e.g., magnetic properties of electrical steels [6] that, along
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with texture, also depend on microstructure features as grain size and grain morphology.
Consequently, the current study is restricted to CP-FEM for microstructure modeling.

As CP-FEM is computationally expensive, modeling the microstructure of the entire
sample is infeasible. The representative volume element (RVE) replicating the initial state
of the material is used instead. RVEs are reference cubes, that are smaller than the original
sample, and where the typical morphological properties, i.e., grain size, texture, etc., are
statically represented, and at the same time, the volume average of stress, and strain are
identical to the original sample [7]. As the stress–strain response of the RVE is dependent
on the morphological properties, these quantities must be precisely represented in the RVE.
Grain size and texture are considered two of the most important influencing factors [8].

As mentioned, one of the methods to measure texture is EBSD. So-called Kikuchi
patterns, generated from this diffraction experiment are transformed to easily readable
formats such as orientation maps where every crystal direction is color-coded. Points on
the orientation map with the same color correspond to a similar crystal normal direction
and individual grains are identified as regions of the sample that have the same orientation
within a small tolerance. From this orientation data, kernel density estimate [9] methods
are used where bell-shaped functions are superimposed on the orientations and a uniquely
defined continuous ODF function is extracted. Thus, in EBSD, the grain size data, and
orientation information can be obtained from a single experiment. These orientation maps
can be directly transferred to a 2D RVE. However, since these orientation maps in EBSD
are 2-D, constructing a 3-D RVE with this data is infeasible. Data from different layers of
the sample would therefore be required, obtainable only via abrasive sample polishing
which is a very tedious process. Alternatively, 3-D RVEs are reconstructed from EBSD
data based on statistical data drawn from the grain size distribution and the orientation
map [10]. As the grains in the RVE only statistically represent the measured data, in this
case, the orientations measured in EBSD cannot be directly used. A smaller number of
orientations must be chosen and assigned to the grains in the RVE, while the RVE must
still statistically represent the ODF obtained from measurements.

Alternatively, a commonly used and less expensive method of measuring texture is
through XRD. The intensities in the diffraction figures obtained from these experiments
correspond to the volume fraction of the grains. Diffraction figures corresponding to
different lattice planes can then be interpreted to obtain the volume fraction of the specimen
corresponding to an orientation. These are called pole figures in the literature [11]. Pole
figures from different lattice planes are then complied to an ODF by pole figure inversion
methods [12]. In contrast to EBSD, here, no spatial information of the grains is available,
and therefore additional light optical microscopy is necessary to obtain grain size data.
Again, for RVE orientations corresponding to the individual grains are required and a co-
relationship between them must be established.

Therefore, for both experimental methods, the first challenge is to select orientations
for the RVE grains. As mentioned, this orientation selection must be carefully performed
so that the ODF of the RVE also statistically represents the measured ODF. Since intensities
in the ODF represents the volume fraction corresponding to an orientation, a second
challenge arises when assigning the orientations to the grains. Hence, the assignment
must also consider the grain size distribution in the RVE, which is especially important for
deformation microstructure developing during forming processes. These processes often
induce inhomogeneous grain size due to a temperature profile in the workpiece during
forming. The process of this selection and assignment is referred to in the literature as
“texture sampling” [13]. Available literature for this sampling can be categorized into two
types and these are summarized below.

In the first category of methods, the sampling of orientations is performed assuming
that the grains in the microstructure are homogenous and therefore every orientation in
the sampling is given equal weight. Therefore, orientation assignment is independent of
the grain sizes, i.e., sampled orientations are assigned to any grain in the RVE because
they all have the same equal volume fraction. Eisenlohr et al. [13] proposed a “Hybrid
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Integer Approximation method” (Hybrid IA) which was developed as a combination of
a probabilistic sampling method developed by Toth et al. [14], and a deterministic “Integer
Approximation (IA)” method proposed by Leffers et al. [15]. This method shows good
reconstruction quality for strong, intermediate, and random textures. A very similar
method was proposed recently by Biswas et al. [16]. As mentioned, these methods were
developed for microstructures where the grain size distribution is homogeneous, e.g.,
annealed microstructures. In contrast, for typical inhomogeneous microstructures that
developed due to the temperature profile in forming processes, the grain size data must
also be respected during the assignment. When equally weighted orientations are assigned
to a microstructure with inhomogeneous grains, the contribution of the texture intensity of
the bigger grains in the RVE is much larger compared to the smaller grains. This then leads
to an ODF with an unreasonably strong texture.

In the second category, orientation sampling is performed considering the inhomo-
geneity in the grain structure. Here, both orientation selection and sampling have to be
performed in sync. Helming et al. [17] proposed a fitting procedure by dividing the Euler
space into equal-distant grids. Weights on the grid centers are optimized by comparing the
reconstructed ODF with the experimental ODF. Then, weights below a certain threshold
are dropped to obtain the required number of orientations for the RVE. Schaeben et al. [18]
also used a very similar approach. They used two different types of kernel functions in
the density estimates, namely de la Valle´e Poussin kernels and Dirichlet kernel for fitting
the weights. Lopez et al. [8] proposed an extended ODF, named grain size orientation
distribution function (GSODF) which is a combination of grain size distribution and ODF.
Firstly, grains (obtained from EBSD) are grouped according to their size, and an individual
ODF for each group is calculated. Secondly, the grains in the RVE are grouped in a similar
way. Finally, orientations are assigned to grains in each group by only selecting orientations
from the corresponding ODF group at random. This method is particularly precise when
considering a large number of grains (~15,000) in the RVE but is dependent on EBSD
data where the orientation of each grain is known. In the method proposed by Melchior
et al. [19], firstly equal weight orientations greater than the number of grains in the RVE
are extracted using a probabilistic sampling method proposed by Toth et al. [14]. Then,
these orientations are grouped into smaller clusters, where the mean orientation of each
cluster is assigned to a grain in the RVE. The clusters are generated by a sorting procedure
that also considers the grain size.

The current paper focuses on the second category of texture sampling methods, where
the grain size inhomogeneity is considered. Here, a simple method is proposed named
“texture sampling through orientation optimization (TSOO)” where initially through a de-
terministic approach a small set of orientations is obtained and directly assigned to the
grains in the RVE taking into account their size. The orientations originally assigned to
the grains are then optimized until they match the experimental ODF. Since the initial
assignment of orientations in the RVE is based on grain size, an inhomogeneous microstruc-
ture can be inherently considered in this sampling method. The optimization procedure
is implemented in Matlab 2018b, and for the generation of the ODFs from the sampled
orientations the code is coupled with MTEX [20].

This paper is structured as follows: Section 2 describes the material and experimental
framework. The texture sampling method (TSOO) is tested and validated using different
non-oriented electrical steel samples. This material is first introduced and the details
about the material characterization are given. Then, the actual texture sampling method is
introduced where through an optimization approach the initial orientations are adjusted in
order to match the experimental ODF. In Section 3, the results of the optimization procedure
for homogenous and inhomogeneous microstructures are shown and the robustness of the
method is tested. In Section 4, the sensitivity of the optimization approach to fluctuations in
the initial state is analyzed by introducing noise to one of the use cases. Then, CP-FEM sim-
ulations are performed to analyze how the initial ODFs perform in numerical simulations
of texture evolution. Finally, all the results are summarized and critically discussed.
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2. Materials and Methods
2.1. Materials and Materials Characterization

In this paper, ferritic (BCC) high silicon non-oriented (NO) electrical steel is chosen as
a material for the investigation of texture sampling through TSOO. The excellent magnetic
properties of such steels make it an ideal material for the core of electric motors and
generators. However, these properties are highly dependent on both the grain size and
grain morphology as well as the texture [6]. As this paper focuses on capturing both grain
size distribution and texture in RVEs this material serves as an ideal example.

The typical steps during the processing of electrical steel sheets are hot rolling, cold or
warm rolling, and then final annealing heat treatment. This paper samples microstructure
and texture for both a 2.4 wt.% Si hot strip (hot rolled at 1030 ◦C) prior to warm rolling and
a 3.2 wt.% Si annealed strip after hot rolling (at 1030 ◦C with subsequent furnace cooling),
cold rolling (1 mm to 0.5 mm in six passes), and full recrystallization heat treatment
(1000 ◦C for 60 s). The hot strip enables the assessment of the novel sampling method
proposed in this paper under inhomogeneous conditions. Compared to the hot rolled strip
the annealed strip possesses a relatively homogenous grain size, especially at its center.
Therefore, it enables a comparison of the proposed sampling method with established
sampling methods for homogenous grain size distributions. The full chemical composition
of both strips is given in Table 1.

Table 1. Chemical composition of the annealed and hot strip.

Chemical
Element Si Al Mn P S C Fe

Annealed strip
weight-% 3.16 0.89 0.17 0.012 0.001 0.002 balance

Hot strip
weight-% 2.4 0.39 0.30 0.021 0.003 0.002 balance

To analyze the center region, all strips were first ground to half their thickness. The
micrographs and the grain size measurements of the hot strip were obtained at the Institute
of Metal Forming (IMF), TU Bergakademie Freiberg, Germany while the micrographs
and the grain size measurements of the annealed strip were obtained at the Institute of
Physical Metallurgy and Metal Physics (IMM), RWTH Aachen University, Germany. The
line-intercept method is used to determine the grain sizes in the RD-TD plane. Here, a set
of parallel line segments are placed on the micrograph, and the number of times each
line segment intercepts a grain boundary is counted and considered as the grain size.
A minimum of 300 grains is measured for each sample.

The micrographs of the hot rolled and annealed strip as well as the corresponding grain
size distribution are shown in Figure 1. The average grain size and standard deviation
of the annealed strip is 33.2 µm and 18.76 µm, respectively, while it is 78.43 µm and
48.79 µm, respectively, for the hot strip, confirming the greater inhomogeneity in the hot
strip compared to the annealed strip.

Texture measurements on the ground strips in the TD-RD plane were performed on
the X-ray diffractometer “D8 Advance” (manufactured by Bruker Corporation, Billerica,
MA, USA) at the IMM. The experimental ODF of the annealed and hot strip obtained via
XRD is shown in Figure 2a. Due to the BCC crystal lattice structure and sample symmetry
during rolling the ODF can be represented in the reduced Euler space 0◦ < (ϕ1, φ, ϕ2) < 90◦

and all the significant rolling texture components can be observed in the ϕ2 = 45◦ section.
A clear difference in the ODF plots for the two strips can be observed, where the dominating
intensity of the annealed strip is concentrated around ϕ1 = 20◦, φ = 35◦, ϕ2 = 45◦, while the
maximum intensity of the hot strip is along the α-fiber (<110>//RD).
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Figure 1. (a) Measured micrograph and the extracted grain size distribution of the annealed strip,
(b) Measured micrograph and the extracted grain size distribution of the hot strip.

Figure 2. (a) Experimental ODF of the annealed and hot strips, (b) Flow curves of the hot strip for three strain rates.

Finally, flow curves of the hot strip were determined through stack layer compression
tests on the servo-hydraulic testing machine “Servotest” (manufactured by Servotest
Testing Systems Ltd, Surrey, UK) at the Institute of Metal Forming (IBF), RWTH Aachen
University, Germany and are shown in Figure 2b. The material exhibits a very low strain
rate sensitivity at 400 ◦C. These flow curves are later used to model the warm rolling
process of the hot strip and to simulate the microstructure and texture evolution.

2.2. ODF Sampling

As discussed earlier, the texture sampling method can be broadly classified into
orientation selection and orientation assignment and the base of this sampling is an RVE
constructed from experimental data. RVE can be generated using different polycrystal
generation toolboxes, e.g., Neper [21]. The input to such software is the intended number
of grains in the RVE (Ñ) and measured grain size distribution. The number of grains is
chosen such that measured grain size data is reflected in the RVE and at the same time the
computational effort to perform numerical simulations is minimal. Neper version 3.5.0 is
used in this paper for the RVE creation.
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The second step is the creation of ODF. For EBSD measurements the ODF creation
is straightforward where kernel density estimations can be used. But in the current
paper, the texture is measured using XRD measurements. From XRD measurements,
pole density functions (PDF) are generated, which represent the relative frequency of the
lattice orientations (normal vectors) within the specimen by volume. Pole figure data is
a 2-D representation of texture and in order to uniquely convert this data to a 3-D ODF
a combination of pole figures for different lattice planes must be used. This conversion is
referred to in the literature as “pole figure inversion” [12]. The MTEX toolbox version 5.7.0
is used here for this conversion.

From the ODF generation, the aim is now to sample a small set of Ñ orientations
g̃i, i = 1 . . . Ñ. Each sampled orientation is assigned to a single grain in the pre-constructed
RVE and the ODF generated from the Ñ must statistically represent the experimental ODF.
In order to obtain this statistical representation, an optimization procedure is proposed in
this paper. Both steps are detailed in individual subsections below.

2.2.1. Initial Sampling

First, an initial set of Ñ orientations for the RVE needs to be generated. For this,
the experimental ODF is discretized using an equidistant grid in Euler space. Then, the
orientation corresponding to the center of each grid box and its corresponding weight is
exported using MTEX [20]. These orientations are subsequently sorted in descending order
based on the weights. The top Ñ orientations (g̃i, i = 1 . . . Ñ) with the highest weights are
considered for assignment to the RVE grains. At the same time, from the RVE constructed
from the experimental grain size distribution, the size of the individual grains is extracted.
The grains are then sorted in descending order of their size. Now, the sorted grains and the
orientations are one-to-one mapped, such that the biggest grain is assigned the orientation
with the highest weight and vice versa. This mapping procedure is also illustrated in
Figure 3.

Figure 3. Flow diagram illustrating the initial orientation sampling.

Now, the ODF corresponding to the RVE must be generated. For this, the RVE is first
meshed using the meshing functionality in Neper. Every grain now consists of a group
of elements, and therefore, each element is assigned an orientation based on the grain it
belongs to. Hence, after this assignment, the number of orientations in the reconstructed
ODF is equal to the number of elements in the RVE. With all these orientations, using the
kernel density estimation in MTEX [9], an ODF ( f (g̃)) is determined. However, since some
orientations from the experimental orientation set with small weight are lost, some signifi-
cant statistical data is lost and therefore this RVE ODF is expected to have a strong texture
compared to the experimental ODF. An example of an ODF reconstructed by the initial sam-
pling is shown in Figure 3. It is obvious that adjustments to the orientations are required
next in order to replicate the experimental ODF. As long as the statistical distribution of the
experimental ODF is respected in the process, such adjustments are permissible.
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Do note that the RVE is initially meshed and then orientations are assigned to each
element in the RVE for the construction of the ODF. In principle, an ODF can also be
constructed by reassigning a weight to each orientation, where the weight is proportional
to the size of the grain in the RVE. The former method is chosen in this paper because the
RVE is later used in CP-FEM simulations, where the ODF is reconstructed by assigning the
same orientation to all elements in the FE mesh that make up a given grain.

2.2.2. Optimization Step

An optimization procedure is introduced in this subsection to adjust the initially
selected Ñ orientation. The cost function for the optimization is the L2 error [18] between
the reconstructed ODF and the experimental ODF. The L2 error gives an estimate of the
difference between the volume fraction of orientations with respect to the experimental
ODF ( f (g)) and the sampled ODF ( f (g̃) over the whole Euler space.

J =
∫
‖ f (g̃)− f (g)‖2 (2)

The non-linear gradient-based fmincon function in the MATLAB version 2018b opti-
mization toolbox is used here to optimize the Euler angles for each grain and this program
is coupled with the MTEX toolbox to obtain the reconstructed ODF. The optimization
process is shown for one grain (g̃i) in Figure 4. This process starts from the orientation with
the highest weight (or the biggest grain) g̃1. An ODF with the Ñ orientations is optimized
with respect to the experimental ODF by modifying the Euler angles in g̃1. A new set of
Euler angles g̃′1 is thus obtained after optimization. Then the orientation g̃1 is replaced
with g̃′1 in the initial set. Using this new orientation set, the orientation corresponding
to the next biggest grain is optimized. This process continues until the last orientation
that corresponds to the lowest weight (or the smallest grain) is optimized. The final set of
orientations (g̃′i , i = 1 . . . Ñ) is then used for initializing the RVE for numerical simulations.
An example of an ODF sampled via this TSOO method can be seen in Figure 4. As expected,
after adjusting the initial set of orientations, the texture weakened. Although several rounds
of optimization would be possible, the procedure is restricted to one optimization for each
grain to minimize computational effort.

Figure 4. Flow chart illustrating the optimization process for each grain. All grains are optimized once starting from the biggest.
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2.2.3. Sensitivity of Initial Sample Selection

As mentioned, the grain size distribution and texture corresponding to the RVE only
statistically represent the experimental measurements. The starting orientations used in
the optimization will influence the resulting ODF and might even lead to diverging results
in the gradient-based nonlinear optimization procedure. Therefore, in order to study
the robustness of the initial sampling, perturbations are imposed on the orientations to
generate different initial ODFs. These are then optimized, and the results are analyzed.

In order to introduce these perturbations, firstly orientations are selected using the
initial sampling procedure described in Section 2.2.1. Then, for every Euler angle (ϕ1, φ, ϕ2)
in the Ñ orientation, a random angle is either added or subtracted. The range of the
random angles is chosen beforehand e.g., between 0–5◦. This then generates a new set of Ñ
orientations, which are assigned to the elements of the corresponding grains. The new ODF
thus deviates from the ODF generated with the original Ñ orientations and this deviation
is stronger if the random angle is larger. The optimization results of the perturbed ODF
will be compared to the TSOO sampled original ODF without perturbations (or noise) to
assess robustness.

2.3. CP-FEM Simulations

The main applications of sampled textures are in numerical modeling of microstruc-
ture and texture evolution during deformation. Since, in this paper, the original orientations
extracted from the experimental ODF are modified via optimization it is essential to validate
the performance of the reconstructed ODF in numerical modeling.

Thereby, the reconstructed ODF is used to predict the texture evolution in warm
rolling of a NO electrical steel hot strip with an initial thickness of 1 mm to a final thickness
of 0.5 mm at 400 ◦C in three passes via CP-FEM. The corresponding experiments were
conducted on the rolling mill “Walze 86” at the IBF. The rolling setup and the process param-
eters can be obtained from [22]. The performance of the novel sampling method TSOO will
be compared to the performance of an ODF sampled via the method for inhomogeneous
grain size distributions by Melchior et al. [19].

The numerical texture evolution modeling is divided into two parts: Firstly, a 3-pass
macro-scale 2D plane strain rolling simulation is performed with a coupled temperature
displacement plasticity model in Abaqus Standard. Then, the nodal history at the center
of the strip thickness is extracted from the simulation and converted into a deformation
gradient. More details of the macro model and the deformation gradient are detailed
in [23].

Secondly, the deformation gradient corresponding to the center of the strip generated
from the macro-model is imposed onto the RVE. The initial state of the RVE needs to
represent the experimental grain size distribution and the texture. The RVE deforms under
periodic boundary conditions (PBC). A phenomenological material model implemented
in the CP-FEM open-source code DAMASK [3] is used in this study to predict the texture
evolution. Temperature-dependent material data is not available for this material model,
and therefore isothermal conditions are assumed. As the temperature change in the strip
center is small, this does not pose a problem. The phenomenological constitutive equations
are briefly described below. The constitutive model is based on the assumption that plastic
slip γ occurs on a slip system α once the resolved shear stress τα exceeds a critical value τc

α .
So, the shear rate

.
γα on a slip system α is defined by the resolved shear stress τα and the

critical resolved shear stress τc
α , using the equation

.
γα =

.
γ0

∣∣∣∣τα

τc
α

∣∣∣∣nsgn(τα) (3)
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.
γ0 is the reference shear rate and n is the strain rate sensitivity corresponding to the
slip system α. The critical resolved shear stress is then calculated by considering the
micromechanical interactions between different slip systems, using the equation

τc
α =

N

∑
β=1

qαβ

[
h0

(
1−

τc
β

τs

)a]∣∣∣ .
γβ

∣∣∣ (4)

where h0, a, τs are the slip hardening parameters. qαβ takes into account the effects of
self-hardening α = β, and latent hardening α 6= β. These values are taken as 1 for coplanar
slip and 1.4 otherwise. The other material parameters fitted for this material are shown
in Table 2 and the flow curves used for the fitting procedure are shown in Figure 1a. The
fitting procedure is described in detail in [24].

Table 2. DAMASK Phenopower law parameters used in the CP-FEM simulation.

Elastic Parameters

C11 C12 C24

232.2 GPa 135.6 GPa 117.0 GPa

Plastic Parameters
.
γ0 n τc

0 τs h0 a

<111> {110} 0.01 s−1 77 145.05 MPa 314.60 MPa 2.77 × 109 2.12

<111> {211} 0.01 s−1 77 140.30 MPa 323.16 MPa 2.77 × 109 2.12

2.4. RVE Construction for Texture Sampling

Generally, an RVE must replicate the macroscopic stress-strain response as well as
statistically represent the grain morphology and texture of a sample. The number and size
of grain must be chosen accurately so that all the above characteristics are satisfied. Thus,
in this subsection, RVEs with a varying number of grains are considered for the hot strip
microstructure, and the average stress-strain response under compression is extracted and
compared to an experimental flow curve. Furthermore, the texture sampling quality of
these RVEs is assessed.

RVEs with 50, 150, and 300 grains are chosen. CP-FEM simulations were performed
using all these RVEs, where a uniaxial compressive load is applied in the ND direction at
a rate of 0.1 s−1. The microscopic flow curve is then extracted from the RVEs, and compared
to the experimental macroscopic flow curve at 0.1 s−1. The results are shown in Figure 5a.
The flow curves of the RVE with 150 grains deviate from the experimental flow curve,
whereas the flow curves for 50 and 300 grains are in close agreement with the experiment.

Texture sampling is analyzed via ODFs generated for the RVEs using the TSOO
method discussed in Section 2.2. The resulting textures are shown in Figure 5b. The ODFs
with 50 and 150 grains have a higher intensity along the α-fiber (<110>//RD), whereas for
the ODF with 300 grains the intensities are closer to the experimental ODF. Additionally,
intensities along the γ-fiber (<111>//ND) are very weak for the 50 and 150 grains RVE.
The texture index and the maximum intensity of the RVE with 300 grains are very close to
the experimental ODF. The TI is also calculated using MTEX.

Since only the RVE with 300 grains satisfies the characteristics defined above, i.e., it
replicates the macroscopic stress-strain response as well as the experimental ODF, 300 grains
were chosen for all the RVEs that are considered in this paper. RVEs with an even greater
number of grains that might further improve texture quality were not considered as they
are very computationally expensive.
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Figure 5. (a) Homogenized flow stress extracted from RVEs with a varying number of grains,
(b) Results of the TSOO method for RVEs with a varying number of grains.

3. Results

In this section, various aspects of the texture sampling method TSOO put forward in
the preceding sections will be trialed: Firstly, the capabilities of TSOO are verified by recon-
structing ODFs in RVEs of artificial microstructure with an increasing degree of grain size
inhomogeneity. Secondly, the method is applied to RVEs of real microstructures obtained
from micrographs and XRD experiments. Two examples are considered, an annealed mi-
crostructure with a homogenous grain size distribution and a deformation microstructure
with an inhomogeneous grain size distribution.

3.1. Texture Representation in Artificial Microstructures with Varying Homogenity (Case 1)

In the first case, the robustness of the TSOO method is tested with different RVEs
having approximately the same average grain size but a varying grain size distribution.
The goal of this investigation is to fit the same experimental texture to each of the grain
size distributions. This helps analyze the adaptability and robustness of the TSOO method
for different grain size distributions.

Four different cases 1(a)–1(d), with an ascending order of inhomogeneity, are con-
sidered. The grain size distribution and the corresponding RVEs are shown in Figure 6.
The average grain size in all the cases is approx. 77.01 µm and the standard deviations
are 2.74 µm, 10.61 µm, 20.35 µm, and 50.10 µm, respectively. The RVEs are generated
using Neper [21], assuming the grain sizes follow a lognormal distribution. As discussed
above a fixed number of 300 grains was considered and this is considered the lowest
viable number of orientations to match the experimental ODF. The RVEs are meshed with
hexahedral elements in a way that there are at least five elements per grain. The total
number of elements for Cases 1(a)–1(c) is 17,576 and for Case (d) is 65,184. Case (d) requires
more elements to properly represent the very small grains (0–10 µm) in the meshed RVE.

For all cases, the optimization is performed with respect to the ODF of the experimental
NO electrical steel hot strip. All initial ODFs and sampled ODFs via TSOO are shown
in Figure 7 together with the experimental ODF. As explained earlier, it can be seen
that the initial ODFs are stronger in all the cases. The maximum intensity along the α-
fiber (<110>//RD) increases substantially with increasing inhomogeneity in grain size.
Additionally, a weakening of the γ-fiber (<111>//ND) is observed and this fiber is fully
invisible in the cases 1(c) and 1(d) for the initial ODF. Do note that the intensity legend is
fixed at 15 so that the sampled ODFs can be easily compared. Additionally, the maximum
intensity is specified for all ODFs as well. In all ODFs sampled via TSOO, the high
intensities along the α-fiber are reduced and the ODFs are much closer to the experimental
reference. While the general agreement is very good, in direct comparison the TI and the
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maximum intensity in the homogenous RVEs is closer to the experimental ODF than in the
inhomogeneous RVEs. This is also evident in the error ODF which is plotted as the absolute
difference between the intensities of the experimental ODF and TSOO ODF. Especially, the
error intensities along the α-fiber increase as the grain size inhomogeneity increases.

Figure 6. (a) Grain size distributions with varying inhomogeneity investigated in this study, (b) Cor-
responding RVEs created for each grain size distribution.

Figure 7. Experimental ODF of the hot strip along with the initial ODF and sampled ODF via TSOO
for different artificially generated grain size distributions along with the absolute error ODF.

3.2. Texture Representation in the Annealed Microstructure (Case 2)

Having investigated the robustness of TSOO for different artificial grain size distri-
butions, real microstructures are considered next. First, the annealed NO electrical steel
strip microstructure with a rather homogeneous grain size distribution is considered. As
mentioned in Section 2.1, the measured grain size standard deviation is only 18.76 µm. The
grain sizes in the RVE are fitted assuming the experimental grain sizes are equiaxed, i.e.,
the diameters along the normal, rolling, and transverse direction are near identical as well
as follow a lognormal distribution. Furthermore, the grains diameter in 2D is assumed
to represent the diameter in 3D, i.e., d2D = d3D. The experimental and RVE grain size
distributions are shown in Figure 8a, while the resulting cubic RVE consisting of 300 grains
is depicted in Figure 8b. Again, the RVE is meshed with at least five cubic hexahedral
elements per grain totaling to 21952 elements for the whole RVE.
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Figure 8. (a) Comparison of the grain size distribution from experiment and RVE for an annealed
microstructure; (b) RVE created to replicate the experimental microstructure.

The corresponding texture measured using XRD is shown in Figure 9a. The experi-
mental texture is observed to have a dominant orientation ϕ1 = 20◦, φ = 35◦, ϕ2 = 45◦ which
is typical for recrystallized sheets.

Figure 9. (a) Experimental texture measured for the annealed strip with XRD; (b) ODF generated
with Hybrid IA [13]; (c) ODF sampled using TSOO.

Figure 9b shows the reconstructed ODF generated using the hybrid IA method pro-
posed by Eisenlohr et al. [13]. This method can be considered a reference for microstructures
with homogeneous grain size as it is integrated into the DAMASK [3] CP-FEM toolbox.
The ODF reconstructed via Hybrid IA picks up the dominant orientations observed in
the experiment. In addition, the TI is captured but the maximum intensity has a slight
deviation with respect to the experimental ODF.

The ODF sampled via TSOO is shown in Figure 9c. The TSOO method predicts
all dominant orientations observed in the experimental ODF. The maximum intensity is
closer to the experimental ODF when compared to Hybrid IA but is still a bit too low.
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Additionally, the error along the α-fiber is slightly higher in the Hybrid IA case compared
to TSOO.

To better assess the results intensities along three significant fibers namely, α-fiber,
γ-fiber and ND-fiber were extracted from all ODFs and are shown in Figure 10. For the
experimental ODF, the intensity of the α-fiber is nearly constant until Φ = 45◦ and then
decreases. For the ODF generated with Hybrid IA, the intensity of the α-fiber between
10◦ and 50◦ is much lower than the experimental ODF. For the TSOO ODF, the intensity
is closer to the experimental ODF and the tendency is also similar. The intensities along
the γ-fiber are almost constant in the experimental ODF. The intensities of the sampled
ODF’s slightly deviate, but in general, their trend is similar to the experimental ODF. The
ND fiber intensity of the experimental ODF is the highest at ϕ1 = 0◦ and 90◦ and the
lowest at ϕ1 = 45◦. This trend is mostly met by the sampled ODF’s but the intensity of the
Hybrid IA is low compared to the experimental ODF, while the intensity of the TSOO is
slightly higher.

Figure 10. Comparison of ODF intensities along relevant fibers for the investigated sampling methods in the annealed strip.

To quantify these findings the error between the intensities of the experimental ODF
and the sampled ODF along these fibers is calculated. The absolute mean error and
the absolute maximum error over the whole fiber are considered and these results are
summarized in Table 3. For the ODF sampled with Hybrid IA, the highest mean and max
error is in the α-fiber. The lowest mean and max error is in the γ-fiber with 0.48 and 0.90,
respectively. For the ODF sampled with TSOO, the highest mean and max error values of
0.49 and 1.35 are in the ND fiber, and the lowest are found in the γ-fiber with 0.24 and 0.61,
respectively. For all three fibers, the absolute mean and the maximum intensity error is
lower when using TSOO compared to Hybrid IA.

Table 3. Summary of the absolute mean and maximum error of the relevant fibers with respect to the experimental ODF.

α-Fiber γ-Fiber ND-Fiber
Mean Error Max Error Mean Error Max Error Mean Error Max Error

Experimental vs. Hybrid IA 1.06 1.84 0.48 0.90 0.79 1.83
Experimental vs. TSOO 0.40 0.99 0.24 0.61 0.49 1.35

It must be noted that, since the grains in the microstructure are relatively homogenous
(standard deviation of 18.76 µm), the advantage of the TSOO sampling method is minor in
this case. A more inhomogeneous microstructure will be assessed next.

3.3. Texture Representation in the Deformation Microstructure (Case 3)

Finally, the NO electrical steel hot strip deformation microstructure with a high degree
of inhomogeneity is considered. As mentioned in Section 2.1, the grain size standard
deviation is 48.79 µm and thus much greater than in the annealed sheet. Similar to
the annealed strip, the grains in the hot strip were assumed equiaxed and the diameter
measured in the 2D micrograph is used for the creation of the 3D RVE. The RVE with
300 grains is constructed based on the experimental grain size distribution shown in
Figure 11a by assuming that it follows a log-normal distribution. The resulting RVE grain
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size distribution is also shown in Figure 11a. Finally, RVE with at least five elements per
grain consists of 59,319 elements post meshing and is shown in Figure 11b.

Figure 11. (a) Comparison of the grain size distribution from experiment and RVE for a hot rolled
microstructure; (b) the RVE created to replicate the experimental microstructure.

The experimental texture is shown in Figure 12a. The texture represents a predominant
α-fiber (<110>//RD) and γ-fiber (<111>//ND) that is typically observed after hot rolling.
Since the Hybrid IA method was developed for homogenous grain sizes, the sampling
method by Melchior et al. [19] is used as a reference for the inhomogeneous microstructure
instead. The ODF reconstructed via Melchior et al. is depicted in Figure 12b. It is observed
that the dominant intensities along the α-fiber are well captured but the maximum intensity
and TI are slightly higher compared to the experimental ODF. This is also observed in the
error ODF, where the absolute error along the α-fiber is high.

Figure 12. (a) Experimental texture for the hot strip measured with XRD; (b) ODF generated using
the method by Melchior et al. [19]; (c) ODF sampled via TSOO.

The ODF sampled using TSOO is shown in Figure 12c. The maximum intensity and
the TI are similar to the experimental ODF of the hot strip. The intensities along the α-fiber
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and γ-fiber are well replicated and the error along the α-fiber is lower compared to the
sampling via Melchior et al.

Again, an in-depth analysis is performed by plotting the intensities along the signifi-
cant fibers (see Figure 13). In the case of the experimental ODF, the intensity of the α-fiber
is maximum at approximately φ = 45◦, and the intensity is the lowest at φ = 90◦. The
intensities along the γ-fiber fluctuate between 1.8 and 3.2, with the maximum at ϕ1 = 60◦.
For the ND fiber, the maximum intensities are at the beginning and end, i.e., ϕ1 = 0◦

and ϕ1 = 90◦, while at ϕ1 = 45◦ the intensity is the lowest. In the case of the initial ODF
reconstructed via Melchior et al., the maximum intensity along the α-fiber is at φ = 20◦ and
the intensity drops progressively along the fiber, with a second lower peak at φ = 45◦. For
the γ-fiber, the intensities fluctuate but in general, the tendency of the experimental ODF
is not well captured. For the ND fiber, the intensities between ϕ1 = 20◦ and ϕ1 = 70◦ are
higher than the experimental ODF. For the initial ODF sampled with TSSO, the tendency,
as well as the maximum intensity along the α-fiber, is well captured. The intensities along
the γ-fiber are generally lower than in the experimental ODF, but except between ϕ1 = 20◦

and ϕ1 = 40◦ the tendency is captured. The ND fiber is well-replicated throughout.

Figure 13. Comparison of ODF intensities along relevant fibers for the investigated sampling methods in the hot strip prior
to warm rolling.

To quantify the results the difference between the intensities along the fibers is again
calculated and summarized in Table 4. For the ODF sampled via Melchior et al., the
highest mean and maximum error is found in the α-fiber, with values of 1.52 and 5.53,
respectively, and the lowest mean and max error is in the γ-fiber, with values of 0.77 and
1.16, respectively. For the ODF sampled with TSOO, the highest mean and maximum error
is in the γ-fiber, with values of 0.86 and 1.41, respectively, and the lowest mean and max
error is in the ND-fiber, with values of 0.29 and 0.50, respectively. In summary, the absolute
mean and max error is lower for TSOO in both the α- and ND-fiber and on par in the
γ-fiber.

Table 4. Summary of the absolute mean and maximum error of the relevant fibers with respect to the experimental ODF.

α-Fiber γ-Fiber ND-Fiber
Mean Error Max Error Mean Error Max Error Mean Error Max Error

Experimental vs. Melchior 1.52 5.53 0.77 1.16 1.09 2.54
Experimental vs. TSOO 0.67 1.47 0.86 1.41 0.29 0.50

4. Discussion

In the previous section, the results of the TSOO orientation sampling method have
been presented. Next, the characteristics of the TSOO sampling method are analyzed
further. Therefore, noise is introduced in an arbitrary use case prior to optimization, and
an ODF is reconstructed to check the robustness of the optimization with regard to varying
initial states. Finally, the texture evolution during forming is simulated in CP-FEM based on
an ODF reconstructed via the Melchior et al. method and via TSOO for further validation.
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4.1. Sensitivity of Resulting Texture on the Orientations Used in the Initial Sampling

As discussed earlier, in order to assess the dependence of the TSOO optimization
process on the initial state, noise is introduced into one of the sampled ODFs prior to the
optimization step via perturbations. The RVE of case 1(a) (shown in Figure 6b) is used
for this study. The procedure for introducing the perturbation is detailed in Section 2.2.3.
Three different ranges of the random angle are chosen, 0–5◦, 0–10◦, 0–15◦, respectively.
Again, the optimization was performed with respect to the experimental texture of the
NO electrical steel hot strip. The initial ODFs with perturbations and the corresponding
ODFs after optimization are shown in Figure 14. The original ODFs for case 1(a), without
noise, are also shown for easier comparison. In the ODFs with noise prior to optimization,
the texture randomness increases with an increasing random angle value as expected.
In addition, the intensities along the α-fiber substantially drop with more noise. After
optimization, the significant α-fiber and γ-fiber reappear, and the maximum intensity and
TI are close to the experimental ODF. Although the quality of the ODFs sampled via TSOO
decreases with increasing noise levels, the error plots reveal that the orientations along
significant fibers are least affected by noise. Thus, the TSOO method seems to be mostly
resilient towards small deviations in the initial orientations. However, the optimization
time increases nearly twofold for the highest degrees of noise when compared to the
original case without noise. Therefore, it seems best to use the most prominent orientations
for the creation of the initial state as proposed in Section 2.2.1.

Figure 14. Initial ODFs and optimized ODFs generated by TSOO for case 1(a) with different artificial
noise levels.

4.2. Assessment of Texture Evolution Prediction Based on CP-FEM Simulations

One of the main applications of texture sampling methods, in general, is the numerical
modeling of microstructure evolution during deformation. Hence, the RVE shown in
Figure 11b and the ODFs shown in Figure 12 sampled via the Melchior et al. method and
via TSOO are used in CP-FEM simulations to analyze the quality of the initial texture. As
discussed in Section 2, a three-pass warm rolling process is simulated as a benchmark case.

The experimental and CP-FEM texture evolution for both sampling methods is shown
in Figure 15. In the experimental texture, the maximum intensity is along the α-fiber, and
this intensity gradually increases during rolling. Additionally, the TI increases during
rolling. For the initial ODF sampled via Melchior et al., the maximum intensity is higher
than in the experimental ODF. During deformation, the maximum intensity shifts to the
orientation ϕ1 = 0◦, φ = 25◦, ϕ2 = 45◦, and this intensity strongly increases in the first
pass and then decreases again in the second and third passes. The TI also increases in
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the first pass and remains nearly constant in the second and third passes. For the initial
ODF sampled with TSOO, the dominant intensity is along the α-fiber, which is similar to
the experiment. During deformation, the maximum intensity and TI decreases up to the
second pass and increases slightly in the final pass. Here, the maximum intensity is always
along the α-fiber, i.e., at ϕ1 = 0◦, φ = 45◦, ϕ2 = 45◦, like in the experiment.

Figure 15. Experimental and simulated texture at the start and end of each rolling pass.

In general, the CP-FEM simulations used were not also to predict the tendencies
observed in the experimental ODF well irrespective of the sampling method. One possible
reason for this is that, during warm rolling at 400 ◦C, in-grain shear bands were observed
in the microstructure [22], which were responsible for the high intensity along the α-fiber.
A simple phenomenological material model cannot predict the texture evolution due to the
formation of these shear bands. The texture modeling due to the shear band formation in
DAMASK is only possible when using a physics-based crystal plasticity material model,
e.g., the dislocation density model [3]. Furthermore, using a thermo-mechanically coupled
solution scheme not only for the macro but also the RVE simulations might further improve
the results.

Again, for easier analysis, intensities along the significant fibers after the final rolling
pass are plotted in Figure 16. A similar analysis for the initial ODFs was presented in
Figure 13. Compared to the initial ODF, intensities along the α-fiber are substantially higher
and the highest intensity is now at φ = 40◦. The tendency along the γ-fiber is similar to
the initial state but there is a slight increase in intensity. There is no significant difference
between the ND fiber before and after rolling. For the ODF generated after rolling with
Melchior et al. along the α-fiber, except between φ = 15◦ and φ = 30◦ the intensity is lower
than the experimental ODF. The intensity initially increases until φ = 25◦, then decreases.
Around φ = 45◦, the intensity is constant and then decreases again until φ = 90◦. Although
the intensity along the γ-fiber is higher than the experimental ODF, the tendency along the
fiber is similar. At the beginning and end of the ND fiber, the intensity is lower compared to
the experimental ODF, but between ϕ1 = 20◦ and ϕ1 = 70◦ the value is higher. For the ODF
resulting from TSOO after rolling, the intensities along the α-fiber are lower compared to
the experimental ODF, but the tendency mostly matches the experiments. For the γ-fiber,
although the intensities were lower than in the experimental ODF initially, after rolling the
intensities are higher than the experimental ODF and on the same level as the Melchior et al.
results. The general tendency is captured but diverges towards lower values between
ϕ1 = 0◦ and 10◦ and ϕ1 = 50◦ and 70◦. For the ND fiber, the intensities before ϕ1 = 20◦ and
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after ϕ1 = 70◦ are lower than the experimental ODF while between ϕ1 = 30◦ and ϕ1 = 60◦

the intensity is similar to the experimental ODF and the general trend is in close proximity.

Figure 16. Comparison of ODF intensities along relevant fibers for the investigated sampling methods after warm rolling.

The summary of the absolute mean and maximum error of the three fibers is shown in
Table 5. For the ODF sampled via Melchior et al., the absolute mean error is highest for the
γ-fiber with a value of 1.53 and lowest for the ND-fiber. The highest absolute maximum
error corresponds to the α-fiber and the lowest absolute error corresponds to the γ-fiber.
For the ODF sampled with TSOO, the highest absolute mean error is for the α-fiber and
the lowest is for the γ-fiber. The highest and the lowest maximum absolute error is also for
the α-fiber and γ-fiber respectively. In general, the error in the intensities along the fibers
for both methods in the same range. The TSOO method’s prediction error is lower along
the γ-fiber, whereas the Melchior method’s prediction error is lower along the α-fiber and
ND fibers.

Table 5. Summary of the absolute mean and maximum error of relevant fibers with respect to the experimental ODF.

α-Fiber γ-Fiber ND-Fiber
Mean Error Max Error Mean Error Max Error Mean Error Max Error

Experimental vs. Melchior 1.43 5.53 1.53 2.00 0.65 4.83
Experimental vs. TSOO 1.99 5.87 0.87 1.36 0.92 3.21

5. Conclusions

In order to perform microstructural simulations computationally efficiently, experi-
mental texture data consisting of thousands of data points must be represented in an RVE
that typically only contains a few hundred grains. This statistical representation is espe-
cially challenging for deformation microstructures due to the high degree of grain size
inhomogeneity. In this paper, a novel approach for texture sampling using optimization
(TSOO) is proposed. An initial guess for the required orientations is first extracted directly
from an ODF generated from XRD pole figure data. As this initial guess produces a very
strong texture further processing is necessary. Therefore, the orientations are assigned
to grains in an RVE and optimized to capture both the underlying texture based on the
sampled ODF and the microstructure inhomogeneity.

Different use cases with a varying degree of microstructural inhomogeneity were
considered in this paper. The results suggest that the TSOO texture sampling method pro-
posed in this paper can be universally applied to both homogeneous and inhomogeneous
microstructures. This was verified based on two practical examples for NO electrical steels,
with annealed homogenous and deformed inhomogeneous microstructures. The sensitivity
of the method with respect to different initial states was trialed based on artificial noise. The
influence of the initial state on prediction quality was minor, suggesting high robustness.
However, computational efficiency suffered from a noisy initial state. In summary, this
novel method for texture sampling can be used to correlate grain size measurements and
texture data and to generate RVEs for CP-FEM simulations.

Despite these promising first results, a conclusive assessment of the TSOO perfor-
mance is not yet possible. For this, the CP-FEM simulation used must be further improved,
e.g., by choosing a more sophisticated physics-based material model so that the experimen-
tal texture evolution can be better reproduced.
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Additionally, some extensions to the TSOO concept could be trialed in the future:
Currently, the TSOO optimization is performed such that the Euler angles of every grain
are adjusted. Multiple cycles of optimizations can be incorporated into TSOO in order
to improve the quality of the texture sampling. In addition, to reduce the computational
costs of the method, other combinations, e.g., optimizing multiple grains together could
be investigated. Finally, the misorientation information measured, e.g., from EBSD can
be incorporated into the RVE to further improve the sampling quality. For this, the cost
function must be modified so that the morphology of the RVE can also be adjusted so that
the misorientation distribution is reflected in the RVE.
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