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Abstract: High entropy oxides (HEOx) are novel materials, which increase the potential applica-
tion in the fields of energy and catalysis. However, a series of HEOx is too novel to evaluate the
synthesis properties, including formation and fundamental properties. Combining first-principles
calculations with machine learning (ML) techniques, we predict the lattice constants and formation
energies of spinel-structured photocatalytic HEOx, (Co,Cr,Fe,Mn,Ni)3O4, for stoichiometric and
non-stoichiometric structures. The effects of site occupation by different metal cations in the spinel
structure are obtained through first-principles calculations and ML predictions. Our predicted re-
sults show that the lattice constants of these spinel-structured oxides are composition-dependent
and that the formation energies of those oxides containing Cr atoms are low. The computing time
and computing energy can be greatly economized through the tandem approach of first-principles
calculations and ML.
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1. Introduction

Recently, high entropy materials (HEMs) have been gradually getting more and more
attention due to their novel and particular properties. Functional materials are found a
brand new direction for developing via the discovery of HEMs [1]. HEOx is intensively
and widely investigated in the fields of energy storage or catalysts for the environment,
such as lithium-ion batteries [2–5], oxygen evolution reactions (OERs) [6,7], and catalyst
activity [8–11].

The first HEOx, a (Co,Cu,Mg,Ni,Zn)O equimolar single-phase (
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1. Introduction 
Recently, high entropy materials (HEMs) have been gradually getting more and 

more attention due to their novel and particular properties. Functional materials are 
found a brand new direction for developing via the discovery of HEMs [1]. HEOx is 
intensively and widely investigated in the fields of energy storage or catalysts for the 
environment, such as lithium-ion batteries [2–5], oxygen evolution reactions (OERs) [6,7], 
and catalyst activity [8–11]. 

The first HEOx, a (Co,Cu,Mg,Ni,Zn)O equimolar single-phase ( Fm3̅m ) rock-salt 
structure, was synthesized by Rost et al. [12]. in 2015 and further studied by Bérardan et 
al [13]. The spinel-type structure of HEOx is firstly synthesized and researched [14]. The 
physical properties of (Co,Cu,Mg,Ni,Zn)O powders, such as the dielectric constants [15] 
and magnetic properties [16], were also addressed. These HEOx compounds are attractive 
because they have high ionic conductivity in an alkali-doped compound, which is utilized 
in Li-ion [17,18] and Li-S batteries [19] for energy storage. In addition to the rock-salt 
HEOx, other crystal structures, such as perovskite [20], fluorite [21,22], and spinel 
[14,23,24] HEOx have been successfully synthesized and developed recently [25]. The 
typical spinels [26] are described as AB2O4, where metal cations at A sites occupy the 
center of the tetrahedral position, metal cations at B sites occupy the center of the 
octahedral position, and anions locate at the vertexes of the polyhedron. According to the 
distribution of cations, spinel can be divided into normal spinel [27,28] and inverse spinel 
[28–30]. For the multi-component spinels, a complicated local structure is expected to 
persist. Spinel-structured HEOx were firstly synthesized and studied for many fantastic 
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) rock-salt struc-
ture, was synthesized by Rost et al. [12]. in 2015 and further studied by Bérardan et al [13].
The spinel-type structure of HEOx is firstly synthesized and researched [14]. The physi-
cal properties of (Co,Cu,Mg,Ni,Zn)O powders, such as the dielectric constants [15] and
magnetic properties [16], were also addressed. These HEOx compounds are attractive
because they have high ionic conductivity in an alkali-doped compound, which is utilized
in Li-ion [17,18] and Li-S batteries [19] for energy storage. In addition to the rock-salt HEOx,
other crystal structures, such as perovskite [20], fluorite [21,22], and spinel [14,23,24] HEOx
have been successfully synthesized and developed recently [25]. The typical spinels [26]
are described as AB2O4, where metal cations at A sites occupy the center of the tetrahedral
position, metal cations at B sites occupy the center of the octahedral position, and anions
locate at the vertexes of the polyhedron. According to the distribution of cations, spinel can
be divided into normal spinel [27,28] and inverse spinel [28–30]. For the multi-component
spinels, a complicated local structure is expected to persist. Spinel-structured HEOx were
firstly synthesized and studied for many fantastic properties [14,23,24,31–34]. A single-
phase (
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properties [14,23,24,31–34]. A single-phase (Fd3̅m) spinel-structured HEOx, 
(Co,Cr,Fe,Mn,Ni)3O4, was synthesized [14] in 2018. The defect structures and chemical 
diffusion in spinel-structured (Co,Cr,Fe,Mn,Ni)3O4 were further proposed [24], the 
findings of which indicated the complexity of the defect structure in these high-entropy 
spinels. 

The defect structure and chemical diffusion in HEMs can be addressed by using first-
principles calculations. For example, the formation and migration of intrinsic defects in 
CrCoFeNi high-entropy alloys (HEAs) were studied [35]. Furthermore, the formation 
energy was used to determine how favorable the structure is to form a particular phase as 
compared with the pure stable phases. Navrotsky studied a series of experimental 
enthalpy of formation measurements of binary or ternary spinels [36–39]. The relative 
crystal stability of HEMs can be determined by the formation energy. 

The physical properties of crystal structures, such as lattice constants and formation 
energy, can be calculated and determined from the first principles. Various crystal 
structures have been discussed and demonstrated [40–43]. In the case of HEMs, there are 
more elemental species, and the occupation situations of multi-element in lattice positions 
become numerous. Hence, the calculation demand for HEMs is heavy and complicated. 
The interest and curiosity in calculating stoichiometric compounds (i.e., compounds with 
an integer ratio of the number of atoms) and non-stoichiometric compounds [44–46] have 
been provoked along with the development of HEMs. Both equimolar and non-equimolar 
HEOx are considered to be worthy of exploration. 

The interactions in HEOx are very complicated due to the random distribution of 
ions with different electronic configurations. Therefore, the calculation loading to 
determine the formation energy and lattice constant for HEOx is heavy. The first-
principles calculations of the spinel-structured HEOx are thus still limited so far. 
However, ML has been used to study HEMs because it can be used to quickly and 
efficiently infer the properties of materials, such as hardness [47] and phase selection [48]. 
These studies show that ML describes the correlation between material characteristics. ML 
can accurately predict the properties of HEMs. 

First-principles calculations based on the density functional theory (DFT) [49,50] are 
widely used in physics, chemistry, and material sciences, for which the concept involved 
is a quantum mechanical modeling method. Their computational loads are heavy whether 
computing time or computing power are considered. However, the DFT can be combined 
with ML to reduce such loads, where ML utilizes computer algorithms to automatically 
predict the physics, chemistry, and material properties through DFT experiences. 

Here, we use DFT-based first-principles calculations to calculate the spinel-
structured multi-element compounds to determine their lattice constants and formation 
energies with various element species and different occupying positions. Furthermore, in 
the case of the non-stoichiometric HEOx compounds, ML is used to build mathematical 
models based on the training data to avoid the huge computational load caused by their 
superlattice structures. Two arithmetic methods of ML, back-propagation network (BPN) 
and genetic algorithm neural network (GANN), are used and compared. We also compare 
the computing time and the accuracy of two different approaches, DFT calculations and 
ML. The combination of the first principles and ML approaches used to explore a non-
stoichiometric compound computation model is demonstrated to predict the existence of 
HEOx crystal structures. Figure 1 shows the schematic of the main concept. 

) spinel-structured HEOx, (Co,Cr,Fe,Mn,Ni)3O4, was synthesized [14] in 2018.
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The defect structures and chemical diffusion in spinel-structured (Co,Cr,Fe,Mn,Ni)3O4
were further proposed [24], the findings of which indicated the complexity of the defect
structure in these high-entropy spinels.

The defect structure and chemical diffusion in HEMs can be addressed by using
first-principles calculations. For example, the formation and migration of intrinsic defects
in CrCoFeNi high-entropy alloys (HEAs) were studied [35]. Furthermore, the formation
energy was used to determine how favorable the structure is to form a particular phase
as compared with the pure stable phases. Navrotsky studied a series of experimental
enthalpy of formation measurements of binary or ternary spinels [36–39]. The relative
crystal stability of HEMs can be determined by the formation energy.

The physical properties of crystal structures, such as lattice constants and formation
energy, can be calculated and determined from the first principles. Various crystal structures
have been discussed and demonstrated [40–43]. In the case of HEMs, there are more
elemental species, and the occupation situations of multi-element in lattice positions
become numerous. Hence, the calculation demand for HEMs is heavy and complicated.
The interest and curiosity in calculating stoichiometric compounds (i.e., compounds with
an integer ratio of the number of atoms) and non-stoichiometric compounds [44–46] have
been provoked along with the development of HEMs. Both equimolar and non-equimolar
HEOx are considered to be worthy of exploration.

The interactions in HEOx are very complicated due to the random distribution of ions
with different electronic configurations. Therefore, the calculation loading to determine the
formation energy and lattice constant for HEOx is heavy. The first-principles calculations
of the spinel-structured HEOx are thus still limited so far. However, ML has been used
to study HEMs because it can be used to quickly and efficiently infer the properties of
materials, such as hardness [47] and phase selection [48]. These studies show that ML
describes the correlation between material characteristics. ML can accurately predict the
properties of HEMs.

First-principles calculations based on the density functional theory (DFT) [49,50] are
widely used in physics, chemistry, and material sciences, for which the concept involved is
a quantum mechanical modeling method. Their computational loads are heavy whether
computing time or computing power are considered. However, the DFT can be combined
with ML to reduce such loads, where ML utilizes computer algorithms to automatically
predict the physics, chemistry, and material properties through DFT experiences.

Here, we use DFT-based first-principles calculations to calculate the spinel-structured
multi-element compounds to determine their lattice constants and formation energies
with various element species and different occupying positions. Furthermore, in the
case of the non-stoichiometric HEOx compounds, ML is used to build mathematical
models based on the training data to avoid the huge computational load caused by their
superlattice structures. Two arithmetic methods of ML, back-propagation network (BPN)
and genetic algorithm neural network (GANN), are used and compared. We also compare
the computing time and the accuracy of two different approaches, DFT calculations and
ML. The combination of the first principles and ML approaches used to explore a non-
stoichiometric compound computation model is demonstrated to predict the existence of
HEOx crystal structures. Figure 1 shows the schematic of the main concept.
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Figure 1. A schematic of the main concepts of the experiment. The blue region indicates that the
physical properties of the binary and ternary spinel compounds are calculated by using the DFT
calculations. The green area indicates that the non-stoichiometric compound to be calculated requires
the creation of a stoichiometric compound first; thus, the computational load is heavy. The red region
indicates that the calculated physical properties of binary and ternary spinel compounds are used as
machine learning input files, and then the predicted physical properties of the non-stoichiometric
compound are obtained by using machine learning.

2. Methods
2.1. First-Principles Calculations

These calculations, based on the DFT, were performed using the Vienna Ab-initio sim-
ulation software package (VASP) [51,52], with the projector augmented wave (PAW) [52,53]
pseudopotential and the generalized gradient approximation (GGA) used to determine
the exchange-correlation energy in the form of Perdew–Becke–Ernzehof [54,55]. Spin-
polarization effects were also considered.

Calculations were carried out by using face-centered cubic (FCC) supercells containing
56 atoms, body-centered tetragonal (BCT) supercells containing 28 atoms, and face-centered
orthorhombic (FCO) supercells containing 28 atoms. We expected that using simple scripts
describing Co, Co, Fe, Mn, and Ni were randomly assigned to the lattice sites to produce
similar results to the special quasi-random structure (SQS) [56] method. The initial lattice
parameters for FCC structures (
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) with 8.150 Å and BCT structures (I41/amd) with
a = 5.903 Å and c = 8.348 Å and FCO structures (Imma) with a = 6.002 Å, b = 6.017 Å,
and c = 8.301 Å were set. A 520 eV plane wave cutoff and the 3 × 3 × 3, 4 × 4 × 3,
and 4 × 4 × 3 Monkhorst-Pack k-point grid were used for the calculations. Structure cards
for VASP were shown in the Supplementary Information.

All structures were relaxed. The total energies and lattice constants were analyzed.
The formation energy was used to determine a particular phase compared with the pure
stable phases. The ground state formation energy is estimated using the following equation:

E f orm = EAB2O4 − ∑ ciEi (1)

where EAB2O4 is the total energies of spinel structure (AB2O4), Ei is the total energies of
each element i in its stable phase, and Ci is the concentration of each element.
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2.2. Machine Learning (ML) Algorithms

The Super PCNeuron 5.0 (SPCN 5.0) package [57] was used. The BPN model consists
of three steps: Create the input file for training, learning, and outputting data. First, the
metal elements of (Co,Cr,Fe,Mn,Ni)3O4 in A or B sites were set as the independent variables,
X, and the lattice constants and formation energy of the spinels from DFT calculations were
set as the dependent variables, Y, as an input file. Next, the hidden layers were used to
capture the characteristics of the training data and reflect on the relevant parameters. The
number of hidden layers was set to 2, and the number of neurons in each layer was set
to 20 based on the decreasing mean square error in the trial and error process. Lastly, the
output layer was used to represent the output variables of the network. High training and
testing accuracy was achieved by modifying the training and parameters.

The GANN combines the characteristics of artificial neural networks (ANN) with the
genetic algorithm (GA). The input parameters included the type and proportion of metal
elements in the A or B sites of the spinel structure, as well as the DFT calculations of the
lattice constants and formation energies. The number of learning cycles was set to 1 million
based on the decreasing mean square err in the trial-and-error process. The three main
operators of GANN are reproduction, crossover, and mutation. The crossover probability
and mutation probability were 0.75 and 0.01, respectively. Furthermore, 3 hidden layers
were used, and the number of neurons in each layer was set to 20, 15, and 25, respectively.

3. Results and Discussion
3.1. Decision Flow

Supplementary Materials Figure S1 shows the workflow of the HEOx investigation.
The model building method and ML simulation of machine learning models are discussed.
The results of BPN and GANN models are compared to evaluate the way we build the
models. First, we set the metal elements in the A and B sites of the spinel structure as the
independent variables. The lattice constants and formation energies obtained from DFT
results shown in Supplementary Table S1 are set as the dependent variables. The above
data are then used as the ML input training data. In order to choose a useful machine
learning model, we use a low data test to compare the widely used BPN with GANN
models for complicated cases. Root mean square error (RMSE) values and scatter plots
are used to determine and choose a suitable model. The prediction of the new spinel
structure is then performed using the lower RMSE model. Finally, the ML results of the
new spinel-structured HEOx are compared with the DFT results.

3.2. ML-Model Selection and Performance

To construct the machine-learning potential for this research, we first generate a DFT
dataset to fit the physical properties of the spinel-structured HEOx. The initial training low
data set includes 18 currently reported configurations of the major spinels [58], as shown
in Supplementary Table S2. These configurations are in the ground states obtained from
the DFT calculations (see the “Methods” section for details). Supplementary Figure S2a,b
shows the lattice constants and formation energies of those major spinels in the low data
test, respectively. The metal elements Co, Cr, Fe, Mn, and Ni in the A and B sites of
the spinel structure are represented in the X-axis and Y-axis, respectively. The colors
represented the lattice constants and formation energies obtained from ML. Supplementary
Figure S2a shows that the value of lattice constants a, b, and c of these spinel oxides
(in Supplementary Table S2) can be different. Supplementary Figure S2b shows that the
formation energies of all spinel oxides are negative, suggesting that they are in stable states.
Cr included structures have lower formation energies, about −1800 kJ/mole, as compared
to the other compounds.

Supplementary Figure S3a,b show the RMSE values of the lattice constants and

formation energies, respectively. The RMSE values =
√

1
n ∑n

i = 1(yi − ŷi)
2, where yi and

ŷi are the real and predicted values, respectively. The number of learning cycles is set to
1 million to ensure that the RMSE has a good convergence. The RMSE values of the lattice
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constants obtained from the BPN and GANN models decrease as the training progresses
and finally converge to 0.0394 and 0.0071, respectively. The RMSE values of the formation
energies obtained from the BPN and GANN models also decrease as the training progresses
and converge to 0.0831 and 0.0182, respectively. The latter model, GANN, thus is better than
the BPN model. The scatter plots of the lattice constants, a, b, and c obtained from the BPN
and GANN models are shown in Supplementary Figure S3c,d, respectively. Supplementary
Figure S3e,f are the scatter plots of the formation energies obtained from the BPN and
GANN models, respectively. The data from the latter model is closer to the regression line
than that of the former one, which means the GANN model has higher accuracy in this
case. Therefore, we use the GANN model as the ML method in the following studies.

3.3. Prediction of the New Spinel Structure

The predicted lattice constants and formation energies of the spinel-structured HEOx
and the new spinel structures are plotted in Figures 2–5. In order to study the influence
of the composition of HEOx on lattice constants and formation energies in more detail,
we divide (Co,Cr,Fe,Mn,Ni)3O4 into two categories according to different metal cations
in the A and B sites (Figures 2 and 4), and the different proportion of metal cations in the
A and B sites (Figures 3 and 5) in the same composition. Figure 2 shows the predicted
lattice constants, where the metal elements in the A and B sites of the spinel structure can
be a single metal element or multiple metal elements. The colors represented the lattice
constants a, b, and c are predicted from the GANN model. Lattice constants a, b, and c
have different but similar values.
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Because the spinel structure consists of various proportions of the elements, the
proportion of one metal element in the A (B) site of the spinel structure is set as x (y), where
x (y) increases from 0 to 1 by an interval of 0.1. The total proportion of the other metal
elements in (Co,Cr,Fe,Mn,Ni)3O4 is set as 1 − x (y), as shown in Supplementary Table S3.
The colors shown in Figure 3 represented the lattice constants a, b, and c are predicted from
the GANN model. The results show that the lattice constants a, b, and c have different but
similar values.

The predicted formation energies of the spinel-structured HEOx or new spinel struc-
ture oxides are presented in Figures 4 and 5. The colors in Figure 4 indicate that the
formation energies predicted by the GANN model are negative. Compared with other
structures, the formation energies for the Cr-included structures are lower, which is con-
sistent with the results obtained in the low data test. The colors shown in Figure 5 are
corresponding to the formation energies predicted by the GANN model, which are de-
termined by the proportions of different metal elements in both A and B sites. However,
the B-site dependence of the formation energy is stronger than the A-site dependence.
The smaller the y-value of the metal elements in B sites becomes, the lower the formation
energy of the spinel structure is. In contrast, the formation energy of the spinel structures
with Cr in the B sites follows the opposite tendency.

3.4. Comparison of the Calculated and Predicted Results

Verifying the accuracy of the predicted results is also critical for the ML. To compare
and verify the calculated and predicted results from the ML model, we design some spinel-
structured HEOx with different compositions shown in Supplementary Table S1. The
structures are composed of metal elements in all of the various situations, as shown in
Supplementary Table S4. The lattice constants and formation energies of the new spinel
structures obtained via the DFT calculations and ML methods are shown in Figure 6a and b,
respectively. Figure 6a shows that the lattice constants predicted by the GANN model
match well with the calculations. The average lattice parameters of the label from I to
IV are predicted respectively to be 8.324, 8.294, 8.302, and 8.317 Å (the variations are
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calculated to be ±0.024, ±0.032, ±0.007, and ±0.009 Å), which are within a 2% deviation
for the DFT calculations. As shown in Figure 6b, each supercell has different predicted
formation energy: Labels I to IV are −849.81, −763.00, −921.86, and −978.91 kJ/mole,
respectively. The formation energy of labels I to IV calculated by using DFT are −851.37,
−762.93, −921.70, and −977.02 kJ/mole, respectively. The predicted results are within a 1%
deviation for the DFT results. Thus, both the lattice constants and the formation energy of
the new spinel structure HEOx from the ML methods concur well with the results from the
DFT calculations. The results of DFT calculations and ML methods of a big-size supercell
of spinel-structured HEOx are also shown in Supplementary Table S1.
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The spinel-typed structure of HEOx was firstly synthesized and researched for fantasy
properties in recent years. If the compounds have a crystal structure following the stoichio-
metric chemical formula, the structure and electronic structure can be simulated through
the calculation based on the first principles, and the properties can be determined. When
the composition comes to a non-stoichiometric chemical formula, a big-size supercell is
necessary for the DFT calculation, and thus, a more complicated approach is required to
reduce computing time and save electric power energy. The unit cell of the materials is
thus replicated until the composition integrates into a stoichiometric superlattice. After
the non-stoichiometric compound converts into a huge crystal structure, a stoichiometric
superlattice, the calculation can progress to the first-principles calculations. That is to
say, the calculation of the non-stoichiometric compound in DFT is necessary through a
setup of a heavy-loading supercell structure, which is limited by computing performance
and results in energy consumption. A comparison of the computing results of the spinel
structures using DFT and ML is shown in Supplementary Table S1.

The spinel structure, AB2O4, including cubic, tetragonal, and orthorhombic structures
are taken into consideration, and they have 56, 28, and 28 atoms in a unit cell, respectively.
The cubic, tetragonal, and orthorhombic structures of stoichiometry/non-stoichiometry
AB2O4 are also considered by installing a single cell and a supercell. The computing time
required for DFT calculations differs from the degrees of difficulty in the self-consistent
calculation of the electronic density matrix. The lattice constants and formation energies
of stoichiometry/non-stoichiometry AB2O4 predicted using ML are consistent with those
calculated using DFT directly. ML also has the technological advance to deal with the
crystallographic in a non-stoichiometric form. Thus, computing time and power can be
saved, and the process is more efficient.

Since the fabrication and character simulation of HEOx is in a state of urgency, the
prediction of the possible HEOx crystal structure is very important and the priority. The
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calculation and modeling of spinel-typed crystal structures are carried out, demonstrated,
compared, and discussed by using the combination of first principles and the ML method in
this research. This can potentially greatly accelerate the development of functional HEMs.

4. Conclusions

We propose an efficient ML method by which to obtain the lattice constants and
formation energies of photocatalytic spinel-structured HEOx and multi-element oxides.
We assign Cr, Co, Fe, Mn, and Ni in the lattice sites and capture the electronic configuration
well by using a random population of supercells. After the DFT calculations, the lattice
constants of the spinels are given, and the formation energies of the equilibrium lattice
structures are negative, which are chosen as training data for ML modeling. Our results
show that the occupation of different metal cations in the A and B sites in the spinel-
structured HEOx influence the lattice constants and formation energies. Furthermore, the
formation energy of the structure is inversely proportional to the amount of Cr, and the ML
predictions are consistent with the DFT calculations (within a 2% and 1% deviation for the
lattice constants and formation energies, respectively), which suggests that the process and
design used in this study are feasible. This work is provided with a new alternative way to
obtain the physical properties of spinel-structured HEOx and can also be extended to other
structured HEOx materials to predict their properties efficiently following a combination
of DFT calculations and model building using the ML arithmetic method.

Furthermore, we provide a database of calculated lattice constants and formation
energies for spinel structures. This database can be used to understand the properties of
spinel-structured high-entropy materials and other spinel-structured oxides. The database
is provided with opportunities for data-intensive materials science and the calculation of
the properties of a near-infinite variety of spinel-structured materials with Co, Cr, Fe, Mn,
and Ni metals. The application of ML techniques led to the identification of structural
features that are the key to the spinels. This work thus not only enhances the theoretical
understanding of spinel-structures oxides but also accelerates the discovery of stable
spinel-structured HEOx or other spinel-structured oxides.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst11091035/s1, Figure S1: Workflow of the HEOx investigation; Figure S2: Input data of the
low data test: (a) lattice constants and (b) formation energies. The metal elements on A and B sites
are represented in X-axis and Y-axis, respectively. The a, b, and c in Fig. (a) show the lattice constants
of the structures. The color is related to the length and magnitude; Figure S3: Root Mean-Squared
Errors of (a) the lattice constants and (b) formation energies. The DFT calculated versus ML predicted
lattice constants from the (c) BPN and (d) GANN models, and formation energies from the (e) BPN
and (f) GANN models. Table S1: Comparison of the computational results for the AB2O4 structures
using DFT and ML. Table S2: Reported Major Spinels (AB2O4)42. Table S3: The HEOx compositions
of each condition. Table S4 HEOx model for prediction and calculation.
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