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Abstract: In this study, ultra-fine spherical particles of silica fume and reactive ultra-fine fly ash
were added to a mixture of commercial ultra-high-performance grout (UHPG) with the aim of
enhancing the rheological properties, compressive strength, compactness, and permeability. This
commercial UHPG study was conducted in collaboration with Triaxis Corporation (Changsha city,
Hunan province, China). A water-to-binder ratio of 0.21 and a binder-to-fine aggregates ratio
of 1.17 were used as fixed parameters, and the binders were a combination of type-II Portland
cement, sulphoaluminate cement, silica fume, and reactive ultra-fine fly ash (RUFA). Polycarboxylate
superplasticizer powder was used to control the rheology. The results revealed excellent compressive
strength, volume stability, and resistance to chloride penetration. Mercury intrusion porosimetry
and scanning electron microscopy tests revealed that the medium-sized RUFA particles with small
silica fume particles completely filled the spaces between large cement particles to achieve optimal
densification. This mixture also produced dense hydration and calcium-silicate-hydrates colloids,
which filled the microstructures of the UHPG resulting in excellent engineering properties and
durability. This commercially available UHPG mix responded to excellent compressive strengths
approaching 120 MPa and exhibited good workability with a loss of slump-flow rate up to 33% after
60 min. It also exhibited very low abrasion resistance (0.5%), stable shrinkage and expansion rates
(stabilization over 10 days), very low chloride diffusion coefficient (less than 0.1 × 10−14 m2/s) with
a denser microstructure. This commercial UHPG (UHPG-120) has been developed to meet the needs
of the market.

Keywords: silica fume; reactive ultra-fine fly ash; chloride diffusion coefficient; microscopic proper-
ties; cement-based grout

1. Introduction

Ultra-high-performance concrete (UHPC) is an innovative cement-based material with
a minimum specified compressive strength of 120 MPa [1–4]. UHPC, also known as reactive
powder concrete, is formulated by combining Portland cement, supplementary cementitious
materials, and reactive powders or fibers [5,6]. The matrix of UHPC is dense and has a minimal
disconnected pore structure resulting in low permeability, superior durability, and compressive
strength [7,8]. The inclusion of fibers in UHPC facilitates higher bond strength to enhance tensile
and ductile behavior [8–10]. UHPC is used in precast components for construction, bridge
components, and other special construction projects. In recent years, UHPC has increasingly
been used in road and bridge engineering, repair and rehabilitation, and surface decoration in a
variety of engineering fields. However, this material is relatively new (less than 30 years) and has
been applied to a relatively small proportion of cement grouting composites. Cement grouting
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has been used in various areas of civil engineering, such as prefabricated structures, structural
rehabilitation, expansion joint filling, and soil stabilization. The strength and workability of the
grout are essential to the formation of prefabricated structures [11–13]. Ultra-high-performance
grout (UHPG) materials are an ideal use of UHPC for use in precast construction, structural
rehabilitation, soil stabilization, crack injection, and filling holes in concrete structures [14,15].
UHPG meets the needs of the market and the specificity of construction engineering while
providing good mechanical properties and low emissions. These research and engineering
applications imply a bright future for UHPG.

UHPG with a low water-to-binder ratio (w/b) requires superplasticizers to obtain the
desired rheology to flow through joints and cracks (i.e., adequate flowability). Polycar-
boxylate superplasticizer (PS) powders are meant to improve the rheology of UHPG by
improving the particle dispersion and improving flowability without significantly reducing
the strength [16–18]. Attaining high-strength requirements requires the use of supplemen-
tary cementitious materials that are finer than cement particles [19–21]. Silica fume is highly
efficient in improving the strength of grout and cement-based composites. The particle size
of silica fume (0.1 to 0.2 µm) is approximately 100 to 200 times smaller than that of cement
particles (1.5 to 160 µm) [22,23]. Silica fume is useful to improve early strength, as well as
the mechanical properties and durability of cement-based materials. The disadvantage of
silica fume is that it significantly reduces workability and flowability [24,25].

Reactive ultra-fine fly ash (RUFA) is a novel industrial by-product originating from
thermal power plants (which burn coal at temperatures up to 1500 ◦C) [26–28]. Its chemical
composition is similar to that of fly ash; however, it provides a high specific surface area
and a particle size (0.5 to 5 µm) approximately 10 to 20 times smaller than that of cement
particles [26,27]. As a partial replacement for cement, RUFA has been shown to enhance
the workability, mechanical properties, and durability of cement-based materials [26].
The ultra-fine spherical particles of RUFA provide efficient rheology. When mixed with
cement and silica fume, RUFA can fill the gaps between the larger particles to optimize
particle packing effects [26]. Therefore, a combination of cement, silica fume, and RUFA
in appropriate amounts is expected to improve the rheology, mechanical properties, and
durability of UHPG.

The UHPG mix (UHPG-120) presented in this study is a commercial product devel-
oped by our research team in collaboration with Triaxis Corporation (Changsha city, Hunan
province, China) and is now commercially available in the general construction materials
market. Due to commercial confidentiality considerations, this study is only an in-depth
academic study of the commercially available product mixture and is intended as a refer-
ence for industry and academia. UHPG’s general acceptance criteria for commercialization
are based on workability and compressive strength, without in-depth investigation of the
related mechanical properties, durability, and other engineering characteristics. In this
study, an in-depth academic investigation of the product was carried out. A comparison
was made with other studies published in the last few years on UHPC or UHPG to un-
derstand the strengths and weaknesses of the UHPG mixture. The aim of this study was
to develop an eco-friendly hybrid composition for UHPG (comprising RUFA, silica fume,
and cement) capable of providing reasonable strength and workability. This study also
investigated the rheological behavior through a slump-flow test, volume stability through
expansion and shrinkage tests, mechanical properties included compressive strength, flex-
ural strength, and abrasion tests, as well as permeability through chloride migration and
permeability tests of the hybrid UHPG. Scanning electron microscope (SEM) and mercury
intrusion porosimetry (MIP) tests were then used to verify the microstructural behavior of
the UHPG. Finally, we present practical engineering examples to verify the feasibility of
this formulation for future commercial development.
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2. Materials and Methods
2.1. Materials

The binders used in this study consisted of four materials: ordinary Portland cement,
rapid hardening sulphoaluminate cement, silica fume, and RUFA, all sourced from Triaxis
Corporation(Triaxis, Changsha, China). Type-II Portland cement had a specific gravity
of 3.15 and fineness of 3660 cm2/g. Sulphoaluminate cement had a specific gravity of
2.98 and fineness of 4570 cm2/g. Silica fume had a specific gravity of 2.20 and fineness
of 225,000 cm2/g. RUFA had a specific gravity of 2.61 and fineness of 22,400 cm2/g. The
chemical composition of the four cementitious materials is shown in Table 1. The fine
aggregate was natural river sand with saturated surface dry specific gravity of 2.77, absorp-
tion of 2.28%, and fineness modulus of 2.55. PS powders produced by Triaxis Corporation
with a high water-reducing rate were used as an admixture to control workability. The
water content, active component, and bulk density of the PS powders were 3%, 90%, and
450 kg/m3, respectively.

Table 1. The chemical composition of Portland cement, sulphoaluminate cement, silica fume, and
RUFA.

Chemical
Composites

Portland
Cement

Sulphoaluminate
Cement Silica Fume RUFA

Content (wt. %)

SiO2 20.47 8.75 94.40 44.66
Al2O3 4.54 33.80 0.53 24.83
Fe2O3 3.28 1.76 0.14 6.18
CaO 63.47 42.95 1.35 12.47
MgO 2.18 1.91 0.48 4.22
SO3 2.36 8.11 1.02 0.18

others 3.70 2.72 2.08 7.46

2.2. Mix Design and Testing Methods

A low w/b of 0.21 was used in the UHPG mixture. The binder-to-fine aggregates
mass ratio was 1:1.17. Table 2 lists the mix design of UHPG. To create homogeneous mortar
specimens, the binders and fine aggregate were mixed using a mixing machine in three
phases, as follows:

• 180 s at low speed (136 rpm);
• 90 s at intermediate speed (281 rpm);
• 45 s at high speed (550 rpm).

Table 2. The mix design of the commercial UHPG (kg/m3).

Water Portland Type
II Cement

Sulphoaluminate
Cement Silica Fume RUFA PS Fine

Aggregates

224 880 40 70 80 10 920

Casting into metal molds began immediately after mixing was complete. After de-
molding (6 h), the specimens were air- and/or water-cured until the relevant testing age
was reached. Table 3 presents details related to the tests performed, the dimensions of the
specimens, curing conditions, and the standards used in this study. The results of each test
were averaged from five specimens.
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Table 3. Test methods.

Test Target Specimen
Dimensions (mm)

Referenced
Standard

Testing Age
(Days)

Curing
Conditions

Fresh properties Slump-flow test – ASTM C1437 – –

Mechanical
properties

Compressive
strength test 50 × 50 × 50 ASTM C109 1, 3, 7, 14, 28 Air and water

Flexural strength 40 × 40 × 160 ASTM C348 7, 28 Air and water

Expansion test φ 50 × 100 - 1~28 Air

Abrasion test 300 × 300 × 100 ASTM C779 28 Air

Drying shrinkage
test 285 × 25 × 25 ASTM C596 2~28 Air

Permeability

Non-Steady-state
chloride migration

test
φ 100 × 50 NT Build 492 7, 28 Water

RCPT φ 100 × 50 ASTM C1202 7, 28 Water

Microstructure
observations

SEM observation 10 × 10 × 3 ASTM C1723 28 Water

MIP test 10 × 10 × 3 ASTM D4404 28 Water

The slump-flow test was carried out using a flow table manufactured by Chung
Yenn Corporation in Taiwan. The paste was mixed and pounded into two layers to fill
the flow mold. Without vibrating the flow table, the mold was pulled up vertically to
allow the paste to flow freely for 60 s and then five slump-flow diameters were recorded
and averaged. Compressive and flexural tests were carried out using a universal testing
machine (SHIMADZU UH-1000KN) (Sanpany, Taipei, Taiwan) manufactured by Sanpany
Corporation in Taiwan. For water curing specimens, the specimens were taken out of
the curing tank before the test and kept to Saturated-surface-dry condition before the test.
For air curing specimens, the test was carried out directly. After the specimen had been
loaded to failure, the machine automatically recorded the maximum failure load and then
calculated the test results according to the corresponding American Society for Testing and
Material (ASTM) specification.

The shrinkage test equipment was purchased from Chung Yenn Corporation. After
demolding, the specimen was placed on a test frame to measure the initial value (the test time
was set to 0 days), then the test time was recorded continuously for 1–11 days, 18 days, and
25 days, and the corresponding changes were recorded. The expansion test was a self-made test
device. The expansion test involved filling a cylindrical steel mold with a specimen to simulate
the specimen being restrained around and at the bottom. A 2 mm-thick plastic plate was placed
on top of the specimen, on which a micrometer was mounted to measure the expansion at
the top edge of the specimen (as shown in Figure 1). After the installation of the test device,
the expansion was measured, and the test time was set to 0 h. The test time was recorded
continuously for 1–6 h and 1–28 days, and the corresponding changes were recorded.

The abrasion test, non-steady-state chloride migration test, and rapid chloride perme-
ability test (RCPT) were designed regarding the test specifications and were also self-made
test devices. The abrasion test was carried out using Procedure A of ASTM C779 (Chung-
Yenn, New Taipei City, Taiwan), with three abrasive discs attached to the surface of the
specimens. The abrasive discs were rotated at 280 rpm when the machine was started, and
each disc produced a uniform load of 22 N. The test time was 30 min. At the end of the
test, the surface was cleaned of dust, and the amount of wear was measured. Before the
RCPT, the lateral surface of the specimen was coated with epoxy and placed in the vacuum
desiccator with the pressure of 1 mm Hg (133 MPa) for 6 h, followed by immersion in
deionized water for 24 h before testing. The volume of the two test cells was 250 mL, and
the power supply was applied with 60 V direct current to the test. The anode cell was filled
with 0.3 N NaOH solution, and the cathode cell was filled with 3% NaCl solution. The
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current was recorded every 30 min during the 6-hour test. The total charge-passed was
obtained by integrating the current with the time of the voltage application according to
the ASTM standard formula. The specimens of the non-steady-state chloride migration
test were prepared in the same way as that of RCPT. The volume of the cathode cell with a
10% NaCl solution was 12 L, and the anode cell with a 0.3 N NaOH solution was 300 mL.
The initial direct current voltage of the test equipment is 30 V. Following the initial voltage
corresponding to the output initial current, the test voltage and the test duration were then
corrected by reference to the requirements of the NT Build 492. After completion of the
test, the specimen was split longitudinally, and a 0.1 M silver nitrate solution was sprayed
onto the surface of the specimens. The depth of the penetration was determined by the
change in color. The average penetration depth (averaged over 10 points) was then used to
calculate the chloride diffusion coefficient by referring to Fick’s second law (see NT Build
492 for details).
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Figure 1. The expansion test instrument.

The microscopic tests included MIP measurements and SEM observations. The MIP
instrument (AutoPore IV 9500) (Micromeritics, Downers Grove, Illinois, America) was
manufactured by Micromeritics Corporation in America, and the maximum pressure of
33,000 psi can be exerted. The pore size using the MIP instrument ranged from 3 nm to
100,000 nm. Specimens were dried and left in the desiccator until the MIP test. The SEM
instrument (JSM-IT100) (JEOL, Tokyo, Japan) was manufactured by JEOL Corporation in
Japan. After drying for 24 h, the specimens were vacuumed, and Au ion-sputtered for SEM
observation and different magnifications (×1000, 3000 and 5000) were used to observe the
surface condition of the microstructures of the UHPG.

3. Results and Discussion
3.1. Slump-Flow Test

Slump testing was performed to verify the workability and flowability of UHPG.
The mortar was poured into a copper ring in accordance with ASTM C1437 specifications
and then pulled up vertically to measure the slump-flow diameter of the mortar. The
mortar was then left to stand for 15, 30, 45, and 60 min, during which the corresponding
slump-flow diameters were measured. These values were used to measure the loss of
slump-flow over a period of 60 min for use as a reference. Test results are listed in Table 4,
and photographs of the slump-flow at 0, 15, 30, 45, and 60 min are presented in Figure 2.
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Table 4. Slump-flow test results.

Time (min)
Slump-Flow (mm) 1

1 2 3 4 5 Average Standard
Deviation

0 323 318 313 320 316 318 3.41
15 265 257 257 257 260 259 3.12
30 246 244 244 246 245 245 0.89
45 228 225 224 227 226 226 1.41
60 216 213 213 218 213 215 2.06

1 Testing room temperature was 18.6 ◦C, and mixing water temperature was 15.3 ◦C.
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Figure 2. Photographs of slump-flow test results: (a) 0 min; (b) 15 min; (c) 30 min; (d) 45 min;
(e) 60 min.

The initial slump-flow was 318 mm. When left to stand for 60 min, the UHPG retained
a slump-flow of 215 mm, which is significantly better than UHPC or cement grout (initial
slump-flow is between 180–200 mm) [29]. It was evident that the UHPG mixture developed
in this study has excellent flow properties. Previous studies have shown that the inclusion
of silica fume tends to reduce flowability, while the inclusion of RUFA tends to increase
flowability [30]. The spherical particles of fly ash and silica fume contributed to the flow
behavior of the pastes, as shown in Figure 3. The ultra-fine particles of both materials have
limited benefits in terms of improving flowability. As a result, PS plays an important role in
the flow behavior of UHPG. As mentioned in previous studies [17,18,31], the PS exhibited
better fluidity properties and delayed the process of hydration. The addition of PS allowed
UHPG to maintain a slump-flow of 215 mm with only about 33% loss of slump-flow after
60 min. The results confirmed that UHPG outperformed the initial slump-flow of other
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UHPCs [17,18,29–31]. The best rheological behavior was achieved with a PS dosage of
0.93% of the binders in this study.
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3.2. Compressive Strength

Figure 4 presents compressive strength histograms of UHPG specimens under water
and air curing. Overall, the compressive strength increased with curing age, and specimens
that underwent water curing achieved strength values higher than those obtained under
air curing. In the first curing stage (i.e., 1 day), the compressive strength of the water-cured
specimens was approximately 19% higher than that of the air-cured specimens. Water
curing resulted in one-day strength of more than 60 MPa, which represents good early-
strength development. The packing density of silica fume particles and RUFA is crucial
to the high-strength requirements of UHPG. Ultra-fine silica fume and RUFA contributed
to the formation of calcium-silicate-hydrates (C-S-H) colloids, resulting in an excellent
compressive strength of close to 120 MPa at 28 days [32]. The optimal UHPG mixture
comprised 6.5% silica fume and 7.4% RUFA as a replacement for cement in this study.
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From the perspective of density, the optimal particle packing effects were achieved
using large cement particles with medium RUFA particles and small silica fume particles
as cementitious materials. The RUFA and silica fume particles were shown to fill the gaps
between the cement particles, resulting in a denser paste microstructure and excellent
compressive strength. John confirmed that the addition of nanoparticles to concrete can im-
prove the compressive strength and the density of microstructures [33]. Several researchers
have reported that the degree of cement hydration and the particle packing density of
the matrix play important roles in the strength development of UHPC [26,34,35]. Our
results confirmed that ultra-fine spherical particles can enhance the compressive strength
of UHPG [34–37].

3.3. Flexural Strength and Abrasion Resistance

Figure 5 presents flexural strength histograms of UHPG specimens under water and
air curing at 7 and 28 days. The flexural strength of UHPG was lower than the compressive
strength and the flexural resistance of general UHPC. In this study, the mixture of UHPG
without fibers or coarse aggregates resulted in poor flexural strength. Flexural strength
appeared to follow the same trend as compressive strength under both curing conditions.
UHPG specimens exhibited flexural strength lower than that of typical cement grouting
materials (approximately 4 MPa at 28 days) [32].
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Table 5 lists the abrasion test results obtained at 7 and 28 days. The abrasion rate of UHPG
was controlled to less than 0.5%, and the depth of abrasion was low (around 0.2–0.4 mm). The
abrasion resistance of UHPG was superior to that of ordinary cement grouting materials, and
the abrasion properties were similar to those of UHPC with fibers [32]. This confirmed that the
ultra-fine particles had a significant effect on compressive strength and abrasive resistivity but
not on flexural strength. The small particles of RUFA filled spaces among the cement grains,
silica fume particles, and fine aggregate, resulting in surface microstructures of higher density
and strength. It appears that a suitable quantity of fine particles functioning as cement filler can
achieve the same abrasion resistance as UHPC with coarse aggregates and fibers [38–40].
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Table 5. Abrasion test results.

Age Abrasion Rate Standard Deviation

7 days 0.506% 0.002%
28 days 0.512% 0.005%

3.4. Volumetric Stability

We expected that dosing UHPG with ultra-fine silica fume and RUFA particles (i.e., a
large specific surface area) would accelerate hydration when exposed to water. Expansion
tests and dry shrinkage tests were used to observe the volumetric stability of the specimens.
The results of volumetric stability were expressed as the average of the five sets of test
measurements with a coefficient of variation of less than 5%.

The expansion test was performed in two parts. We first observed the expansion between
casting and final setting (every hour over a period of 6 h) and then made daily observations
over a period of 28 days. The results of the first stage are shown in Figure 6. We can see that
expansion increased significantly with setting time, eventually reaching 364 × 10−6 at 6 h. This
result may have been due to the inclusion of sulphoaluminate cement, which is characterized
by rapid setting (final setting time was four hours). Researchers have proposed the use of
sulphoaluminate cement in combination with ordinary Portland cement to improve early
strength development [41,42]; however, the formation of ettringite tended to enhance expansion.
The inclusion of silica fume in the UHPG mixture should also promote rapid hydration due to
the reaction of silica with calcium to form C-S-H gel, leading to significant initial expansion.
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Figure 6. Expansion curve (prior to hardening).

Figure 7 presents the expansion curve for 1 to 28 days. Overall, the rate of expansion
decreased with time. By 10 days, the specimen presented a steady expansion of roughly
338 × 10−6. Previous studies have noted the effects of fine silica fume particles on the
hydration of C3A in UHPC [43–46]. The inclusion of RUFA reduced the heat of the hydration
reaction, resulting in slower expansion [24,47]. The increased shrinkage caused by the
addition of silica fume was counteracted by the expansion behavior, resulting in a tendency
towards stabilization [46]. Figure 8 presents the results of shrinkage tests performed in
accordance with ASTM C596 standards. Shrinkage increased with time but stabilized within
10 days (approx. 150–160 × 10−6). The results of shrinkage testing presented trends similar
to those of the expansion test [48]. The UHPG specimens exhibited significantly lower
shrinkage compared to previous results obtained from UHPC [49,50]. The shrinkage of
the UHPG specimens was close to that of UHPC specimens containing shrinkage-reducing
admixtures (approx. 200 × 10−6) [49–52]. As a result, the shrinkage of the UHPG mixed
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with RUFA and silica fume was very low (i.e., good volume stability). Figure 9 presents a
UHPG plate measuring 1.2 m in length, 2.4 m in width, and 13 mm in thickness (cast over a
period of 90 days). The complete lack of surface cracking confirmed the volumetric stability
of the UHPG.
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Figure 9. UHPG plate measuring 1.2 m × 2.4 m × 13 mm.

3.5. Permeability

The permeability of UHPG was assessed in terms of chloride migration and the
RCPT, as shown in Figure 10. Both tests revealed low chloride permeability. According
to ASTM C1202, penetration of between 100 and 1000 coulombs is classified as ‘very low’
permeability, and below 100 coulombs is classified as ‘negligible’ [53]. Thus, the 7-day
value (759 coulombs) indicated very low permeability, and the 28-day value (69 coulombs)
implied a negligible permeability. The RCPT results were much lower than those reported
by previous studies [54,55]. Specifically, our results matched those of Tai, which were also
below 100 coulombs [56]. These results confirmed that the ultra-fine particles contributed
significantly to reducing the permeability of chlorine ions.
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According to Teng’s assessment criteria for diffusion coefficient resistance to chlo-
ride [57], a 28-day diffusion coefficient of less than 2.5 × 10−12 m2/s can be classified
as extremely high in terms of resistance to chloride ingress. In our study, the diffusion
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coefficients of 0.41 × 10−14 m2/s and 0.08 × 10−14 m2/s for 7 and 28 days were significantly
lower than in the study by Teng [57]. They were also significantly lower than those of
UHPC [54,58]. It appears the fine RUFA and silica fume particles increased particle packing
effects within the specimens. The finer particles consumed a larger quantity of calcium
hydroxide to produce C-S-H colloids during hydration, which helped to improve the com-
pactness of the mortar and reduce permeability. We found that UHPG containing ultra-fine
particles far outperformed plain UHPC specimens containing fibers [5,54,58,59]. The fibers
enhanced the tensile strength and toughness of UHPC but weakened the interfacial transi-
tion zone and increased the chloride diffusion coefficient. By contrast, ultra-fine particles
strengthened the interfacial transition zone and significantly reduced permeability [59].
Taken together, it appears that ultra-fine particles played a key role in the permeability and
microstructure of the UHPG.

3.6. Observations of Microstructure

The effect of ultra-fine particles on the microstructure of the UHPG specimens was
observed using MIP tests and SEM. Figure 11 presents the MIP results of UHPG and
ordinary Portland concrete (OPC) with compressive strength of 40 MPa as reference.
The cumulative intrusion of mercury and total porosity of the UHPG specimens were
significantly lower than those of the OPC specimen. UHPG exhibited the lowest cumulative
intrusion of 0.0359 mL/g, which is approximately 68% less than that of OPC (0.115 mL/g).
The lowest porosity of the UHPG specimen was 8.59%, which is approximately 67% that
of the OPC specimen (26.38%). This shows that the addition of ultra-fine particles can
reduce the connectivity between pores, increase density, and reduce porosity. Our results
also verified that the inclusion of silica fume and RUFA in UHPG generated a secondary
reaction with calcium hydroxide to produce a denser C-S-H colloid, thereby reducing the
amount of free calcium hydroxide and reducing the volume and size of the pores caused
by C-S-H colloids. Overall, this reduced the permeability of the UHPG. These results
are similar to those of UPHCs with ultra-fine particulate binders [60,61]. The cumulative
intrusion was significantly lower than that of UHPC containing fibers [62–64]. These results
confirmed that silica fume has higher pozzolanic activity and faster reaction in the early
stages, whereas the filler effects and superior pozzolanic activity of RUFA tend to refine
the pore structure of UHPG mixtures at later stages.
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Figure 12 presents SEM images of UHPG pastes at 28 days. As shown in Figure 12a
to 12c, ultra-fine particles were randomly distributed in the cement pastes; however, non-
reacted RUFA was retained in the pastes, as shown in Figure 12c. We observed significantly
less surface porosity and hydration reactants filling in the surface microstructure of UHPG
paste. The inclusion of ultra-fine particles, such as silica fume and RUFA, had a positive
effect on the densification of UHPG, which corresponds to the results described in the
previous section. Needle-shaped AFt and C-S-H phases can be seen in Figure 12a,c. RUFA
and sulphoaluminate cement with high alumina content contributed to the formation of
these colloids, which appear to have improved the densification of the microstructure.
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4. Conclusions

This study demonstrated a commercial UHPG material formulated with ultra-fine
particles, including silica fume and RUFA mixed with Type-II Portland cement and sulphoa-
luminate cement. PS powders (0.93 wt.% of binders) were used as an admixture to optimize
workability. The optimal UHPG mixture comprised 6.5 wt.% silica fume and 7.4 wt.%
RUFA as a replacement for cement. The resulting mixture exhibited excellent fluidity and
compressive strength (up to 120 MPa at 28 days). The inclusion of sulphoaluminate cement
and silica fume helped to accelerate hardening (4 h for final setting) and early-strength
development (1-day compressive strength over 60 MPa). The addition of silica fume and
RUFA helped to improve the volumetric stability and densification of the material. Resis-
tance to chlorine ions and pore volume were both far better than those of ordinary UHPC.
Our results indicate that the ultra-fine spherical particles are significantly beneficial to the
rheology, mechanical properties, and microstructures of UHPG. The proposed UHPG has
excellent commercial applicability, including thin slabs and plates, cement grouts, and
other grouting applications.
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Abbreviations

ASTM American Society for Testing and Material
C-S-H calcium-silicate-hydrates
MIP mercury intrusion porosimetry
OPC ordinary Portland concrete
PS Polycarboxylate superplasticizer
RCPT rapid chloride permeability test
RUFA reactive ultra-fine fly ash
SEM scanning electron microscope
UHPC ultra-high-performance concrete
UHPG ultra-high-performance grout
w/b water-to-binder ratio
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