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Abstract: Four different new Schiff basses tethered indolyl-triazole-3-thione hybrid were designed
and synthesized. X-ray single crystal structure, tautomerism, DFT, NBO and Hirshfeld analysis were
explored. X-ray crystallographic investigations with the aid of Hirshfeld calculations were used
to analyze the molecular packing of the studied systems. The H···H, H···C, S···H, Br···C, O···H,
C···C and N···H interactions are the most important in the molecular packing of 3. In case of 4, the
S···H, N···H, S···C and C···C contacts are the most significant. The results obtained from the DFT
calculations indicated that the thione tautomer is energetically lower than the thiol one by 13.9545
and 13.7464 kcal/mol for 3 and 4, respectively. Hence, the thione tautomer is the most stable one
which agree with the reported X-ray structure. In addition, DFT calculations were used to compute
the electronic properties while natural bond orbital calculations were used to predict the stabilization
energies due to conjugation effects. Both compounds are polar where 4 (3.348 Debye) has a higher
dipole moment than 3 (2.430 Debye).

Keywords: Schiff bases; indolyl-triazole-3-thione; tautomerism aspect; Hirshfeld Surface Analysis

1. Introduction

Schiff bases are the compounds carrying imine or azomethine (–C=N–) functional
groups. These compounds were reported and synthesized for the first time by Hugo Schiff
via condensation of carbonyl compounds with the primary amines [1]. Schiff bases are
important pharmacological pharmacophores distributed in variety of organic compounds
and have many applications in different fields such as inorganic chemistry, biological
and analytical chemistry. In the field of pharmaceutical and medicinal chemistry, these
compounds also, possess a variety of pharmacological activities including anti-cancer [2],
anti-tubercular [3], analgesic [4,5], anti-oxidant [6], anti-inflammatory [7], anthelmintic [8],
anti-microbial [9], and so forth.

Indole-triazole-3-thione heterocyclic systems have gained a lot of attention in the
research community due to their significant applications in different fields like pharma-
ceutical, agrochemical, coordination chemistry and biosensor applications [10,11]. Among
the biological applications, these indole-triazole-3-thione hybrids have been shown to
have strong inhibition activities against many enzymes such as AChE [12], TNF-α [13],
(ADAMTS-5) [14], dizinc metallo-β-lactamase [15], and ureases inhibition [16]. Many
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synthesized substituted indole-triazole-3-thione systems showed high efficacy and potent
pharmacological activities like anti-microbial [17], anti-malarial [18], anti-viral [19], anti-
convulsant [20], and anti-proliferative agents [21]. The design and synthesis of new Schiff
bases based on the indole-triazole-3-thione hybrid is still of high interest. In planning a
development program towards synthesis, a new heterocyclic system is created based on
Schiff bases for drug discovery development or material sciences applications.

Our research group has been engaged in a research program about design, synthesis,
and spectrophotometric investigations of a variety of heterocyclic systems have been
recently reported [22–27]. In this context, we reported the synthesis of four different Schiff
bases with the core structure of the indolyl-triazole-3-thione hybrid. The structure of the
studied systems was confirmed using a set of spectrophotometric tools and the 3D structure
of molecules 3 and 4 is further elucidated unambiguously by single crystal X-ray diffraction
technique. Thione-thiol tautomerism was investigated using DFT calculations. In addition,
Natural Bond Orbitals (NBO) and Hirshfeld surface analyses of the most stable tautomer
were also discussed.

2. Materials and Methods

General
“Melting points were measured using a melting-point apparatus (SMP10) in open

capillaries and are uncorrected. The progress of the reaction was observed by thin layer
chromatography (TLC) and detection was achieved by UV light. Nuclear magnetic res-
onance (1H- and 13C-NMR) spectra were determined in DMSO-d6 and were recorded
on a Bruker AC 400 MHz spectrometer using tetramethylsilane as an internal standard.
Chemical shifts are described in δ (ppm) and coupling constants are given in Hz. Elemental
analysis was performed on a Flash EA-1112 instrument”.

2.1. Synthesis

A mixture of 4-amino-5-(1H-indol-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 1 (2.0 mmol)
and selected benzaldehyde derivatives 2a–d (2.2 mmol) were refluxed in glacial acetic acid
(5.0 mL) for 3 h, then cooled. Crystals either developed during cooling the acetic acid
solution as in 3, or crudes of 4–6 were filtered, dried and recrystallized from MeOH/DCM
mixture. Only, suitable crystals for single crystal X-ray structure measurements were
obtained from compounds 3 and 4.

(E)-4-((4-Bromobenzylidene)amino)-5-(1H-indol-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (3).
Yield: 74%, m.p. 231–232 ◦C [Lit.28 222–223 ◦C]. 1H NMR (400 MHz, DMSO-d6) δ 14.36
(s, 1 H), 11.94 (s, 1 H), 9.80 (s, 1 H), 7.98 (d, J = 8.5 Hz, 2 H), 7.82 (d, J = 8.5 Hz, 2 H),
7.63 (d, J = 8.0 Hz, 1 H), 7.63 (d, J = 8.0 Hz, 1 H), 7.23–7.20 (m, 1 H), 7.71 (d, J = 1.2 Hz,
1 H), 7.07–7.03 (m, 1 H): 13C NMR (101 MHz, DMSO-d6) δ 166.10, 162.55, 143.99, 137.48,
132.92, 131.64, 131.13, 127.81, 127.22, 124.27, 122.80, 121.78, 120.43, 112.44, 105.98; elemental
analysis calculation for C17H12BrN5S: C, 51.27; H, 3.04; Br, 20.06; N, 17.58; S, 8.05 found: C,
51.46; H, 3.09; Br, 20.01; N, 17.68; S, 8.10.

(E)-4-((2,4-Dichlorobenzylidene)amino)-5-(1H-indol-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (4).
Yield: 83%, m.p. 241–242 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 14.41 (s, 1 H), 11.92 (s, 1 H),
10.53 (s, 1 H), 8.31 (d, J = 8.5 Hz, 1 H), 7.86 (d, J = 1.9 Hz, 1 H), 7.67 (m, 2 H), 7.48 (d,
J = 8.2 Hz, 1 H), 7.27–7.15 (m, 2 H), 7.06 (m, 1H); 13C NMR (101 MHz, DMSO-d6) δ 162.41,
159.65, 144.31, 138.53, 137.47, 136.65, 130.41, 129.58, 129.25, 129.07, 127.82, 124.25, 122.70,
121.81, 120.40, 112.45, 106.27; elemental analysis calculation for C17H11Cl2N5S: C, 52.59; H,
2.86; Cl, 18.26; N, 18.04; S, 8.26 found C, 52.66; H, 2.96; Cl, 18.24; N, 18.12; S, 8.21.

(E)-5-(1H-Indol-2-yl)-4-((2-nitrobenzylidene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione (5).
Yield: 73%, m.p. 243–244 ◦C. 1H NMR (DMSO-d6, 400 MHz) δ 14.38 (br.s, 1 H), 11.90 (br.s,
1 H), 10.55 (s, 1 H), 8.30 (d, J = 7.5 Hz, 1 H), 8.24 (d, J = 7.8 Hz, 1 H), 7.88–8.012 (m, 2 H), 7.61
(d, J = 7.8 Hz, 1 H), 7.45 (d, J = 8.4 Hz, 1 H), 7.21 (dd, J = 7.2, 8.4 Hz, 1 H), 7.10 (d, J = 0.9 Hz,
1 H), 7.03 (dd, J = 7.8, 7.2 Hz, 1 H); 13C NMR (101 MHz, DMSO-d6) δ 162.56, 161.25, 149.32,
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144.25, 137.48, 134.85, 133.75, 129.82, 127.79, 126.99, 125.53, 124.30, 122.58, 121.81, 120.42,
112.44, 106.20; elemental analysis calculation for C17H12N6O2S: C, 56.04; H, 3.32; N, 23.06;
S, 8.80 found C, 56.21; H, 3.39; N, 23.01; S, 8.71.

(E)-5-(1H-Indol-2-yl)-4-(((perfluorophenyl)methylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione (6).
Yield: 88%, m.p. 277–278 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 14.46 (s, 1 H), 11.90 (s, 1 H),
10.52 (s, 1 H), 7.63 (d, J = 8.0 Hz, 1 H), 7.46 (d, J = 8.1 Hz, 1 H), 7.26–7.21 (m, 2 H), 7.08–7.05
(m, 1 H); 13C NMR (101 MHz, DMSO-d6) δ 162.25, 153.55, 144.16, 137.48, 127.95, 127.77,
124.37, 122.54, 121.73, 120.48, 112.42, 106.05; elemental analysis calculation for C17H8F5N5S:
C, 49.88; H, 1.97; F, 23.21; N, 17.11; S, 7.83 found C, 49.98; H, 2.00; F, 23.22; N, 17.08; S, 7.90.

2.2. Crystal Structure Determination

The experimental results, data collection for the studied compounds, and software
used [28–32] were amended in Supplementary Materials.

2.3. Hirshfeld Surface Analysis

The topology analyses were performed using Crystal Explorer 17.5 program [33].

2.4. Computational Methods

“All DFT calculations were performed using Gaussian 09 software package [34,35]
with theB3LYP/6-31G(d,p) method. Natural bond orbital analyses were performed using
NBO 3.1 program as implemented in the Gaussian 09W package [36]. The self-consistent
reaction field (SCRF) method [37,38] was used to model the solvent effects when calculated
the optimized geometries in solution”.

3. Results and Discussion
3.1. Synthesis of Schiff Bases Based Indolyl-Triazole-3-Thione Hybrid 3–6

The desired Schiff bases 3–6 incorporating indolyl-triazole-3-thione hybrid were syn-
thesized according to Scheme 1. In one step condensation reaction of the following substi-
tuted aromatic benzaldehydes (2a: 4-bromobenzaldehyde; 2b: 2,4-dichlorobenzaldehyde;
2c: 2-nitrobenzaldehyde; and 2d: pentafluorobenzaldehyde) reacted separately with 4-
amino-5-(1H-indol-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 1 in AcOH under reflux
condition for 3 h to afford the target Schiff bases in very good yields. The NMR spectra
of the Schiff bases 3–6 showed the triazole NH around 14.40 ppm, the indole NH was
found at 11.90 ppm, whereas the benzylidene CH=N was detected around 10.50 ppm. The
thiocarbonyl group (C=S) was found near 162.50 ppm. Interestingly, compounds 3 and 4
were obtained as crystalline materials subjected to single crystal X-ray diffraction analysis.

3.2. Crystal Structure Description

The X-ray structures of 3 and 4 were determined at 120(2) K. Processing parameters and
crystal data are listed in Table 1. Both structures agreed very well with the spectral analyses.

Compound 3 crystallized in the triclinic system and P1 space group with unit cell
parameters of a = 5.9989(2) Å, b = 12.1234(5) Å, c = 13.6872(7) Å, α= 74.972(4)◦, β=81.734(4)◦

and γ = 83.213(3)◦. The unit cell volume is 947.98(7) Å3 and the number of molecules per
unit cell is 2, and one molecule per asymmetric unit. Selected bond distances and angles
are listed in Table 2. The asymmetric unit comprised one molecule of compound 3 and
one acetic acid molecule (Figure 1A). In this compound, the indole and the triazole rings
are almost coplanar. The tilt angle between the planes passing through these moieties is
found to be 1.64(12)◦. In contrast, the 4-bromo-phenyl moiety and the triazole rings are
significantly twisted from one another by 59.51(14)◦.
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Table 1. Crystal Data.

3 4

CCDC No. 2101946 2101947
Empirical formula C19H16BrN5O2S C17H11Cl2N5S

Formula weight (g/mol) 458.34 388.27
Temp (K) 120(2) 120(2)

Radiationλ(Å) 1.54184 1.54184
Crystal system Triclinic Tetragonal

Space group P1 I41/a
a (Å) 5.9989(2) 32.0004(4)
b (Å) 12.1234(5) 32.0004(4)
c (Å) 13.6872(7) 6.65620(10)
α(deg) 74.972(4) 90
β (deg) 81.734(4) 90
γ(deg) 83.213(3) 90
V (Å3) 947.98(7) 6816.1(2)

Z 2 16
ρcalc (Mg/m3) 1.606 1.513
µ (mm−1) 4.211 4.660
No. reflns. 9793 16833

Unique reflns. 3541 3538
Completeness to θ = 67.684 100% 99.9%

GOOF (F2) 1.050 1.031
Rint 0.0332 0.0285

R1 a (I ≥ 2σ) 0.0591 0.0315
wR2 b (I ≥2σ) 0.1603 0.0818

a R1= Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = [Σ[w(Fo
2−Fc

2)2]/Σ[w(Fo
2)2]]1/2.
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Table 2. Selected bond lengths [Å] and angles [◦] for 3 and 4.

Atoms Distance Atoms Distance Atoms Distance Atoms Distance

3 4

Br1–C3 1.905(4) N3-N4 1.376(4) Cl1-C1 1.7363(15) N3–C8 1.339(2)
S1–C8 1.685(4) N4–C9 1.298(5) Cl2–C3 1.7350(16) N3–N4 1.3743(18)
N1–C7 1.275(6) N5–C17 1.367(5) S1–C8 1.6757(16) N3–H3 0.88(2)
N1–N2 1.387(5) N5–C10 1.375(5) N1–C7 1.264(2) N4–C9 1.308(2)
N2–C8 1.386(5) O1–C19 1.312(6) N1–N2 1.3867(18) N5–C17 1.371(2)
N2–C9 1.388(5) O2–C19 1.220(6) N2–C9 1.3838(19) N5–C10 1.384(2)
N3–C8 1.332(5) N2–C8 1.3883(19)
Atoms Angle Atoms Angle Atoms Angle Atoms Angle

C7–N1–N2 115.3(3) C5–C6–C1 119.4(4) C7–N1–N2 118.44(13) C2–C1–C6 122.12(14)
C8–N2–N1 127.9(3) C5–C6–C7 119.9(4) C9–N2–N1 120.03(12) C2–C1–Cl1 117.36(12)
C8–N2–C9 108.1(3) C1–C6–C7 120.7(4) C9–N2–C8 108.05(12) C6–C1–Cl1 120.51(12)
N1–N2–C9 123.4(3) N1–C7–C6 119.3(4) N1–N2–C8 131.87(13) C1–C2–C3 117.97(14)
C8–N3–N4 114.3(3) C8–N3–N4 113.99(13)
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most important hydrogen bond contacts (B) and hydrogen bonding interactions (C) in 3.

The structure of this compound is stabilized by the intramolecular C11–H11···N1 hydro-
gen bond where the donor-acceptor distance is 3.045(5) Å and hydrogen-acceptor distance
of 2.56 Å (Table 3). On the other hand, the molecular units of 3 are packed in the crystal via
intermolecular H···S, H···O, and H···N hydrogen bond contacts (Figure 1B). The hydrogen
bond parameters of the N3-H3···S1, N5-H5···O2, O1-H1A···O2 and C18-H18C···N4 hydrogen
bonding interactions are summarized in Table 3 while presentation of the molecular units
held together by these hydrogen bonding contacts is shown in Figure 1C.
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Table 3. Hydrogen bonds for 3 and 4 [Å and ◦].

D–H···A d(D–H) d(H···A) d(D···A) <(DHA)

3
N3–H3···S1#1 0.83 2.43 3.247(3) 170
N5–H5···O2#2 0.86 2.27 3.054(5) 152
C11–H11···N1 0.95 2.56 3.045(5) 112

O1–H1A···O2#3 0.89 1.77 2.662(5) 174
C18–H18C···N4#2 0.98 2.60 3.317(6) 131

#1−x, −y, −z + 1; #2−x + 1, −y, −z + 1; #3−x + 1, −y, −z

4
C7–H7···S1 0.95 2.38 3.1578(16) 139

C16–H16···Cl2#1 0.95 2.88 3.3819(17) 114
N5–H5···S1#2 0.86(2) 2.52(2) 3.3293(15) 156(2)
N3–H3···N4#3 0.88(2) 2.11(2) 2.9751(19) 166(2)

#1−y + 3/4,x + 1/4,z−7/4; #2y + 1/4, −x + 3/4, −z-1/4;#3−y + 3/4,x−1/4, −z−1/4

The compound 4 crystallized in the more symmetric tetragonal system and the I41/a
space group. The unit cell parameters are a = b = 32.0004(4) Å, c = 6.65620(10) Å with unit
cell volume of 6816.1(2) Å3 and Z = 16. There is one molecular formula per asymmetric unit
(Figure 2A). In this case, the indole and the triazole rings are more twisted from one another
by 14.34(13)◦ compared to that in 3 (1.64(12)◦). In addition, the aryl moiety was found
less twisted (5.69(11)◦) relative to the triazole moiety compared to that in 3 (59.51(14)◦).
Presentation for the different twists among the connected rings is shown in Figure 3.
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Similar to 3, the molecular structure of compound 4 is stabilized by intramolecular
C7–H7···S1 interaction with hydrogen-acceptor and donor-acceptor distances of 2.38 and
3.1578(16) Å, respectively (Table 3). Other intermolecular hydrogen bond contacts affecting
the molecular packing are shown in Figure 2B while the molecular packing via these
hydrogen bonding interactions is shown in Figure 2C.

3.3. Analysis of Molecular Packing

The Hirshfeld surfaces of 3 are shown in Figure 4. Many red spots were recognized in the
dnorm map. These regions represent the atomic site included in short intermolecular interactions.
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Decomposition of the fingerprint plot gave the percentages of all intermolecular
contacts in the crystal. The percentages of all possible intermolecular interactions and the
decomposed fingerprint plots of the short contacts are presented in Figure 5. It is clear
that the H···H (31.8%), H···C (22.4%), S···H (9.8%) and Br···H (8.9%) contacts are the most
dominant. In addition, there are some significant contributions from the N···H (5.5%),
C···N (5.4%), C···C (5.2%) and O···H (4.4%) contacts.
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In order to decide which intermolecular contacts are the most significant, the dnorm
map was decomposed and the results are shown in Figure 6. In this figure, only the contacts
appeared as red spots are presented. The results indicated that, the H···H, H···C, S···H,
Br···C, O···H, C···C and N···H interactions are the most important as these contacts having
shorter distances than the van der Waals radii sum of the interacting atoms. List of the short
interaction distances are given in Table 4. The shortest contacts are Br1···C19 (3.421 Å),
S1···H3 (2.252 Å), C14···C10 (3.297 Å), H15···C3 (2.693 Å), N4···H18C (2.529 Å), H2···H2
(2.070 Å) and O2···H5 (2.140 Å).

Both of the H···C and S···H contacts appeared as two spikes in the fingerprint plot
indicating that the molecule inside the surface acting as hydrogen bond donor and acceptor.
In contrast, the O···H and N···H appeared as sharp spikes at the lower left and lower
right of the corresponding fingerprint plots, respectively. As a result, the molecule inside
the surface acting as hydrogen bond acceptor with respect to the O···H contacts and the
hydrogen bond donor is the crystallized acetic acid molecule. The opposite is true for the
N···H contacts.
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Table 4. Most important contacts and the corresponding shortest interaction distances.

Contact Distance (Å) Contact Distance (Å)

Br1···C19 3.421 H15···C3 2.693
S1···H3 2.252 N4···H18C 2.529

C14···C10 3.297 H2···H2 2.070
C8···C11 3.388 O2···H5 2.140
C13···C9 3.324 O1···H16 2.491

Also, the presence of some short C···C contacts (5.2%) related to the aromatic π-system
revealed the presence of π–π stacking interactions. This fact was further confirmed by
the presence of large green flat area in the curvedness and the complementary red/blue
triangles in the shape index (Figure 4).

For compound 4, the dnorm, shape index and curvedness maps are presented in
Figure 7. In addition, there are a large number of red spots in dnorm map indicating
the presence of short contacts which are important for the molecular packing and the
crystal stability. These contacts were further analyzed using the fingerprint plot, and their
percentages were calculated. The results of decomposed fingerprint plots are depicted
in Figure 8. It is obvious that the H···H (26.8%), Cl···H (16.0%), H···C (15.4%), N···H
(9.5%), C···C (7.1%) and Cl···C (6.8%) are the most common contacts. The rest of the other
interactions and their percentages are presented in the lower part of Figure 8.
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Figure 8. Decomposed fingerprint plots of the most dominant contacts and the percentages of all
possible intermolecular interaction in the crystal structure of 4.

In addition, all S···H and N···H intermolecular contacts appeared in the corresponding
decomposed fingerprint plots as two sharp pikes for each interaction. This observation
revealed not only the significance of these two contacts in the molecular packing but
also shed the light on the contribution of the molecular unit inside the surface in these
interactions as hydrogen bond donor and acceptor. As expected, the N···H interactions
appeared as sharper spikes indicating shorter interaction distances than the S···H contacts.
The importance of these interactions in the molecular packing was also revealed from the
appearance of these interactions as intense red regions in the corresponding decomposed
dnorm maps (Figure 9).

On the other hand, the S···C and C···C contacts appeared as faded red regions in
their decomposed dnorm maps. In addition, these intermolecular contacts have shorter
distances than the vdW radii sum of the interacting atoms. A list of all possible short
contacts is given in Table 5. Some other short contacts were also detected such as the
Cl1···C17, Cl1···N5, Cl2···H16 and S1···N2 having interactions distances of 3.239, 3.217,
2.829 and 3.304Å, respectively.
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Table 5. Most important contacts and the corresponding shortest interaction distances.

Contact Distance(Å) Contact Distance(Å)

Cl1···C17 3.239 S1···N2 3.304
Cl1···N5 3.217 N4···H3 1.99

Cl2···H16 2.829 C9···C1 3.327
S1···H5 2.389 C3···C1 3.356
S1···C9 3.328

3.4. DFT Studies
3.4.1. Thione-Thiol Tautomerism

The studied compounds could exist in two possible tautomeric forms which are the
thione and thiol tautomers. The optimized molecular structures of the thione and thiol
tautomers of 3 and 4 are shown in Figure 10. The calculated total energies of both tautomers
are listed in Table 6. It is clear that the thione tautomer is energetically lower than the
thiol one by 13.9545 and 13.7464 kcal/mol for 3 and 4, respectively. Hence, the most stable
tautomer in gas phase of the studied compounds is the thione form. This conclusion is in
good agreement with the reported X-ray structure of the studied compounds. In addition,
in solution of the compounds in DMSO, the thione tautomer is energetically lower and
could be considered the most stable one. On the other hand, the calculated thermodynamic
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parameters indicated that the thione tautomer is the most stable thermodynamically as it
has more negative Gibbs free energy compared to the thiol one.

Table 6. Calculated total energies and thermodynamic properties of the thione and thiol tautomers
of the studied systems.

Gas

3 3T1 4 4T1

E −3898.6836 −3898.6572 −2246.7638 −2246.7377
ZPVE a 0.2646 0.2605 0.2553 0.2512
Ecorr

b −3898.4190 −3898.3968 −2246.5084 −2246.4865
−13.9545 −13.7464

H −3898.3983 −3898.3757 −2246.4868 −2246.4644
G −3898.4711 −3898.4492 −2246.5615 −2246.5401
S 153.1780 154.6190 157.2350 159.1760

DMSO

3 3T1 4 4T1

E −3898.6984 −3898.6723 −2246.7779 −2246.7517
ZPVE a 0.2646 0.2602 0.2552 0.2510
Ecorr

b −3898.4338 −3898.4121 −2246.5227 −2246.5007
−13.5900 −13.8032

H −3898.4131 −3898.3909 −2246.5009 −2246.4785
G −3898.4860 −3898.4650 −2246.5758 −2246.5544
S 153.4790 155.9540 157.6420 159.9290

a ZPVE: Zero point vibrational energy correction, b E + ZPVE.

3.4.2. Optimized Geometry

The calculated optimized structures of the most stable tautomer of 3 and 4 agreed
very well with the reported X-ray structures as indicated from the excellent matching
between them (Figure 11). The geometric parameters of the optimized structures are close
to the experimental results with some little deviations in the bond distances and bond
angles (Table S1 in Supplementary data). In addition, the deviations of the calculated bond
distances from the experimental values are very small. For example, the largest deviations
occurred for the C22–N5 and C20–N6 in compounds 3 and 4, respectively. The maximum
errors in these cases are 0.027 and 0.019 Å, respectively. The corresponding percentage
relative errors are 2.03 and 1.42%, respectively. These deviations could be attributed to the
fact that the optimized structures belong to a single molecule in the gas phase which is free
from the crystal packing effects. Generally, there are very good straight-line correlations
with correlation coefficients (R2) of 0.994 and 0.968–0.990 for bond distances and angles,
respectively (Figure 12).

The studied systems comprised CHNSX (where X=Cl or Br) backbone and differ
only in the substituent attached to the phenyl moiety. Graphical presentations of the
natural charges at the different atomic sites are shown in Figure 13. The N and S atoms are
electronegative where the NH nitrogen is the most electronegative in both compounds. The
calculated natural charges at the amine nitrogen are almost the same for both compounds
(−0.547 e). The other nitrogen atoms have smaller negative natural charges ranging from
−0.225 to −0.303 e and −0.224 to −0.393 e for 3 and 4, respectively. In addition, the
thione S-site has smaller negative natural charges than any of the nitrogen sites which
are calculated to be −0.219 and 0.202 e for 3 and 4, respectively. In contrast, all hydrogen
atoms are electropositive where the NH proton has the most positive natural charges. Their
natural charge values are calculated to be 0.452 and 0.461 e for 3 and 4, respectively. On
the other hand, the majority of carbon atoms have negative natural charges except those
bonded to the N or S atoms where the most positive carbon is the one located between two
nitrogen sites in the triazole moiety.
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Both compounds are polar molecules with a net dipole moment of 2.430 and 3.348
Debye for 3 and 4, respectively. The compound with two chloro substituents at the phenyl
ring (4) has higher polarity than the one with bromo substituent (3). The direction of
the dipole moment vector is the same in both compounds as can be seen from Figure 14.
In the same figure, the molecular electrostatic potential map (MEP), HOMO and LUMO
levels were presented. In MEP map, there are red regions related to the atomic sites with
high electron density while the blue regions are related to the atomic sites with the lowest
electron density.

On the other hand, the HOMO and LUMO levels have almost similar patterns in both
compounds. The HOMO level is located mainly over the delocalized π-system and the
thione S-atom while the LUMO level is distributed over the π-system (Figure 14). Hence,
the excitation from the HOMO to LUMO level could be described as mixed π–π* and n-π*
excitations. The HOMO→LUMO excitation energies are calculated to be 3.466 and 3.462 eV
for 3 and 4, respectively.
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3.4.3. Electronic Reactivity Parameters

The HOMO and LUMO energies are important parameters for calculating molec-
ular reactivity parameters such as ionization potential (I= −EHOMO), electron affinity
(A=−ELUMO), chemical potential (µ = −(I +A)/2), hardness (η= (I − A)/2) as well as
electrophilicity index (ω= µ2/2η). These reactivity indices were calculated [39–44] and
listed in Table 7. The ionization potential and electron affinity values of 3 are lower than
4. Similarly, the electrophilicity index is lower for 3 than 4. In contrast, the hardness and
chemical potential are higher for the former than the latter.

Table 7. Reactivity parameters of the studied compounds.

Parameter 3 4

EHOMO −5.5904 −5.6320
ELUMO −2.1241 −2.2858

I 5.5904 5.6320
A 2.1241 2.2858
η 3.4662 3.3462
µ −3.8572 −3.9589
ω 2.1462 2.3419

3.5. NBO Analysis

The process of conjugation has a great importance in the stability of the molecular
system [45,46]. These intramolecular charge transfer (IMCT) and their stabilization en-
ergies (E(2)) are summarized in Table 8. Compounds 3 and 4 are stabilized σ–σ*, π→π*,
n→σ* and n→π* IMCT processes. These processes stabilized the structure of 3 up to 6.99,
22.24, 10.55 and 43.94 kcal/mol, respectively which are corresponding to BD(1)C25–C27→
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BD*(1)C23–C24, BD(2)C24–C25→ BD*(2)N7–C23, LP(2)S2→ BD*(1)N5–C22 and LP(1)N4→
BD*(2)N7–C23, respectively. The corresponding values for 4 are 6.99, 22.26, 13.24 and
43.50 kcal/mol for the BD(1)C23–C25→ BD*(1)C21–C22, BD(2)C22–C23→ BD*(2)N7–C21,
LP(2)S3→ BD*(1)N5–C20 a BD*(1)N5–C20 and LP(1)N5→ BD*(2)N7–C21, respectively.

Table 8. The E(2) (kcal/mol) values for the IMCTprocesses in 3 and 4 a.

Donor NBO Acceptor NBO E(2)(kcal/mol) Donor NBO Acceptor NBO E(2) (kcal/mol)

3 4
σ→σ*

BD(1)N5–N7 BD*(1)C23–C24 5.92 BD(1)N6–N7 BD*(1)C21–C22 5.92
BD(1)C19–C20 BD*(1)N3–N4 5.46 BD(1)C17–C18 BD*(1)N4–N5 5.46
BD(1)C25–C27 BD*(1)C23–C24 6.99 BD(1)C23–C25 BD*(1)C21–C22 6.99
BD(1)C32–C34 BD*(1)N8–C36 6.20 BD(1)C30–C32 BD*(1)N8–C34 6.20

π→π*
BD(2)N3–C20 BD*(2)C17–C19 7.7 BD(2)N4–C18 BD*(2)C9–C17 8.33
BD(2)N7–C23 BD*(2)C24–C25 9.26 BD(2)N7–C21 BD*(2)C22–C23 9.27
BD(2)C10–C12 BD*(2)C14–C15 20.99 BD(2)C9–C17 BD*(2)N4–C18 16.54
BD(2)C10–C12 BD*(2)C17–C19 18.5 BD(2)C9–C17 BD*(2)C10–C12 20.13
BD(2)C14–C15 BD*(2)C10–C12 17.71 BD(2)C9–C17 BD*(2)C13–C15 18.34
BD(2)C14–C15 BD*(2)C17–C19 19.41 BD(2)C10–C12 BD*(2)C9–C17 19.44
BD(2)C17–C19 BD*(2)N3–C20 20.6 BD(2)C10–C12 BD*(2)C13–C15 17.02
BD(2)C17–C19 BD*(2)C10–C12 19.53 BD(2)C13–C15 BD*(2)C9–C17 18.97
BD(2)C17–C19 BD*(2)C14–C15 21.31 BD(2)C13–C15 BD*(2)C10–C12 21.72
BD(2)C24–C25 BD*(2)N7–C23 22.24 BD(2)C22–C23 BD*(2)N7–C21 22.26
BD(2)C24–C25 BD*(2)C27–C36 15.59 BD(2)C22–C23 BD*(2)C25–C34 15.57
BD(2)C27–C36 BD*(2)C24–C25 19.79 BD(2)C25–C34 BD*(2)C26–C28 18.92
BD(2)C27–C36 BD*(2)C28–C30 18.95 BD(2)C25–C34 BD*(2)C30–C32 17.36
BD(2)C27–C36 BD*(2)C32–C34 17.4 BD(2)C26–C28 BD*(2)C25–C34 16.39
BD(2)C28–C30 BD*(2)C27–C36 16.37 BD(2)C26–C28 BD*(2)C30–C32 19.64
BD(2)C28–C30 BD*(2)C32–C34 19.65 BD(2)C30–C32 BD*(2)C25–C34 19.69
BD(2)C32–C34 BD*(2)C27–C36 19.67 BD(2)C30–C32 BD*(2)C26–C28 16.65
BD(2)C32–C34 BD*(2)C28–C30 16.64

n→σ*
LP(2)S2 BD*(1)N4–C22 13.1 LP(2)S3 BD*(1)N5–C20 13.24
LP(2)S2 BD*(1)N5–C22 10.55 LP(2)S3 BD*(1)N6–C20 10.72
LP(1)N3 BD*(1)N4–C22 10.38 LP(1)N4 BD*(1)N5–C20 10.56
LP(1)N3 BD*(1)C20–H21 9.14 LP(1)N4 BD*(1)C18–H19 8.84
LP(1)N7 BD*(1)N4–C23 7.54 LP(1)N7 BD*(1)N5–C21 7.57
LP(1)N7 BD*(1)N5–C22 7.75 LP(1)N7 BD*(1)N6–C20 7.75
n→π*

LP(3)Br1 BD*(2)C14–C15 10.2 LP(3)Cl2 BD*(2)C10–C12 12.94
LP(1)N4 BD*(2)N3–C20 19.62 LP(1)N5 BD*(2)N4–C18 20.68
LP(1)N4 BD*(2)N7–C23 43.94 LP(1)N5 BD*(2)N7–C21 43.50
LP(1)N5 BD*(2)N7–C23 25.96 LP(1)N6 BD*(2)N7–C21 26.00
LP(1)N8 BD*(2)C24–C25 36.66 LP(1)N8 BD*(2)C22–C23 36.73
LP(1)N8 BD*(2)C27–C36 37.44 LP(1)N8 BD*(2)C25–C34 37.44

a Atom numbering refer to Figure 10.

4. Conclusions

Four substituted (E)-4-(benzylidene)amino)-5-(1H-indol-2-yl)-1,2,4-triazole-3-thione
Schiff bases 3–6 were synthesized and characterized. One step condensation reaction
furnished the requisite compounds in high chemical yield. Two single crystals were
obtained 3–4. The thione-thiol tautomerism in the studied compounds was investigated
using DFT calculations. The results indicated that the thione tautomer is more stable than
the thiol one for both compounds. The supramolecular structures of 3 and 4 were analyzed
using Hirshfeld calculations. The H···H, H···C, S···H, Br···C, O···H, C···C and N···H in 3
and the S···H, N···H, S···C and C···C contacts in 4 are the most important in the molecular
packing and crystal stability. Different IMCT interactions which stabilize their molecular
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structures were predicted with the aid of NBO calculations. Further investigation towards
application of the synthesized Schiff bases based indolyl-triazole-3-thione hybrid will be
considered in the near future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst11091041/s1, X-ray structure determinations; Figures S1–S8: 1H NMR and 13C NMR of
the Schiff bases 3–6, Tables S1 and S2: The calculated geometric parameters and natural charges of
3 and 4.
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