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Abstract: Dendrites are important microstructures in single-crystal superalloys. The distribution of
dendrites is closely related to the heat treatment process and mechanical properties of single-crystal
superalloys. The primary dendrite arm spacing (PDAS) is an important length scale to describe
the distribution of dendrites. In this work, the second-generation single crystal superalloy HT901
with a diameter of 15 mm was imaged under a metallurgical microscope. An automatic dendrite
core identification and full-field quantitative statistical analysis method is proposed to automatically
detect the dendrite core and calculate the local PDAS. The Faster R-CNN algorithm combined with
test time augmentation (TTA) technology is used to automatically identify the dendrite cores. The
local multi-directional algorithm combined with Voronoi tessellation is used to determine the local
nearest neighbor dendrite and calculate the local PDAS and coordination number. The accuracy
of using Faster R-CNN combined with TTA to detect the dendrite core of HT901 reaches 98.4%,
which is 15.9% higher than using Faster R-CNN alone. The algorithm calculates the local PDAS of
all dendrites in H901 and captures the Gaussian distribution of the local PDAS. The average PDAS
determined by the Gaussian distribution is 415 µm, which is only a small difference from the average
spacing λ (420 µm) calculated by the traditional method. The technology analyzes the relationship
between the local PDAS and the distance from the center of the sample. The local PDAS near the
center of HT901 are larger than those near the edge. The results suggests that the method enables the
rapid, accurate and quantitative dendritic distribution characterization.

Keywords: single crystal superalloy; TTA Faster R-CNN; PDAS; local multi-direction; Voronoi
tessellation

1. Introduction

Dendritic structures, which are mainly caused by the segregation of elements at the
solid–liquid surface during the non-equilibrium solidification of the alloy, are the main
characteristic structures of single-crystal superalloys [1–3]. Additionally, it is closely related
to the solidification process [4–6] and properties (e.g., creep strength and fatigue life [7,8],
mechanical properties [9,10], corrosion properties [11]) of the alloy. The primary dendrite
arm spacing (PDAS) is one of the important quantitative characterization parameters of
the microstructure in single-crystal superalloys [12–14].
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The traditional method of calculating PDAS mainly relies on the number of dendritic
structures on the plane of a sample and the area of the sample [15–17], which can be
obtained by:

λ = C

√
S
N

(1)

where λ is PDAS (µm), S is the area of the sample to be counted (µm2), N is the number of
dendrites on the plane of the sample to be counted, and C is a coefficient which depends
on the primary dendrite arrangement. Equation (1) obtains an average dendrite spacing,
which is a quantification of the overall dendrite distribution in a specified field of view and
provides a unified parameter for establishing the mapping between dendrite distribution
and process and properties. However, the complex distribution of dendrites will increase
the difficulty of selecting the coefficient C. In addition, Equation (1) only gives the aver-
age value of PDAS rather than the local PDAs of each dendrite, which can quantify the
inhomogeneity of dendrite distribution through statistical analysis. The inhomogeneity of
single crystal composition and microstructures may lead to greater changes in properties,
which is closely related to the asymmetric heat flux and transients in solidifications [18].

Therefore, in order to design a parameter that can reflect the local distribution uni-
formity of the dendrite, a variety of local PDAS calculation methods are defined [19–21].
Warnken et al. [19] presented a method for measuring the local dendrite arm spacing. The
Warnken–Reed method calculates the local PDAS of a single dendrite core by defining a
certain initial number of nearest neighbors, and iteratively adding potential nearest neigh-
bors within the cut-off distance defined by the added nearest neighbors. However, when
the standard deviation of the selected nearest neighbors is large, the number of nearest
neighbors added iteratively may far exceed the number of true nearest neighbors (TNNs).
Tschopp et al. [20] proposed the Voronoi tessellation method to calculate PDAS, which
solves the problem of unlimited increase in nearest neighbors in Warnken–Reed; however,
this provided no means to determine true nearest neighbors. In [21], Tschopp tried to use a
four-fold symmetry algorithm to automatically identify the dendrite core. This method
requires removing the background and manually defining the threshold, which requires
extensive computational time.

The difficulty in calculating PDAS is to accurately identify dendritic cores and abstract
it as a point on a two-dimensional image. Different components and different solidification
processes will seriously affect the geometric morphology and distribution density of the
dendrite structure, which will increase the unpredictable difficulty in identifying the
dendrite core. The traditional method to determine the position of the dendrite core
requires time-consuming manual identification, which will take 10 minutes to 0.5 h to label
100 dendrite cores, which mainly depends on the complexity of the dendrite.

In [22], Wang used the linear intercept method with concentric circles to calculate
dendrite arm spacing. However, the method of estimating dendrite arm spacing by the
distance between intercept points and the number of intercept points is an indirect and
approximate estimation method of dendrite spacing. Although the method can quickly
calculate PDAS, the error of the calculation result is difficult to control.

Miller et al. [23] provide a method for automatically identifying dendrite cores based
on a skeletonization technique. The binary dendrite SEM images are eroded into multiple
thin lines, and the intersections of the thin lines are judged as the dendrite cores. Although
this method can automatically identify the dendrite core, the true accuracy of this algorithm
is relatively low. This is mainly because the algorithm not only requires high-quality image
segmentation, but also can only handle relatively regular geometric shapes.

Bogdan et al. [24–26] applied a DenMap technique which is based on pattern recog-
nition algorithm. The algorithm locates the dendrite core through a Normalized Cross-
Correlation (NCC [27]) algorithm and improves the recognition accuracy through a Fast
Fourier Transform (FFT) [28] algorithm. DenMap automatically recognizes dendrite cores
and can detect 506 dendrite cores with high accuracy within 90 seconds. However, this
method requires complex pre-processing of the original SEM image, which requires the
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use of a variety of computer vision algorithms such as FFT, histogram equalization, noise
removal, etc., which will increase a lot of calculation difficulties and calculation time. The
calculation of NCC depends on the selection of templates, and the selection of different
templates will inevitably bring different calculation results. The dendrites and background
textures of different materials or different positions in the same piece of material may have
large differences, which may seriously affect the accuracy of the judgment of the position
of the dendrite core.

At present, the main automatic identification technologies of dendrite cores mainly
rely on manually defining features [23] or templates [24–26] and using classic pattern
recognition algorithms to identify objects of interest. However, this type of algorithm
requires complex pre-processing and post-processing, which increases the difficulty of
use and limits the scope of use. The single-crystal superalloy microscopic images have
complex backgrounds and features, which are difficult to accurately identify through the
pattern-recognition algorithm of manually defined features and templates. Therefore,
this paper develops an intelligent end-to-end feature extraction algorithm to replace the
template matching algorithm that requires complex pre-processing and post-processing, so
as to quickly and accurately identify dendrite cores in complex backgrounds.

In this work, we utilize the test time augmentation (TTA [29]) Faster R-CNN [30]
technique, which is an object-recognition algorithm based on deep learning [31–33], to
quickly and accurately detect dendrite cores, then apply Voronoi tessellation combined
with a local multi-directional algorithm to calculate true local PDAS, thereby creating a
map of the distance from the center of the circle and local PDAS over the sample surface.

TTA is an application of data augmentation to the test dataset. For the Faster R-CNN
model that has been trained, the new method uses TTA to pre-define the input of the model
to obtain multiple augmented outputs and calculate the average of the repeated outputs
to obtain the recognition result. This method can effectively improve Faster R-CNN’s
recognition accuracy of dendrite cores without changing the original model. We use the
Voronoi tessellation method combined with local multi-directional algorithm to calculate
the local PDAS of all dendritic cores. The Voronoi tessellation method determines the
nearest neighbors for each extracted dendrite core, and the local multi-directional algorithm
deletes the TNNs misjudged by the Voronoi tessellation method and calculates the local
PDAS. Finally, for all local PDAS, statistical analysis is carried out from different directions
such as surface distribution, Gaussian distribution, line distribution, etc., and its deep
information is excavated.

TTA Faster R-CNN is the first object recognition network used to identify dendrite
cores. This deep learning-based method can automatically, quickly and accurately identify
dendrite cores. Among them, TTA is an application of data augmentation to the test dataset.
In this work, the combination of TTA and Faster R-CNN is used to reduce the misjudgment
of similar features (such as dendrite cores and dendrite arms) by Faster R-CNN. The local
multi-directional method delineates the area for the neighbors of the dendrite, and at most
one neighbor can exist in each area. The combined use of a local multi-directional direction
and Voronoi tessellation method can effectively reduce the misjudgment of TNNs.

The method can quickly, accurately, and robustly detect dendrite cores. The most
important thing is that the new method can directly process the original image without
complicated processing. The quantitative statistics and analysis of the local PDAS distribu-
tion of single crystal superalloys provide new information for the distribution of dendrites,
which helps researchers to establish a reliable mapping relationship between the process
and the organization. Due to the strong self-learning ability and generalization ability of
neural network, this method is suitable for the identification of all microstructures with
similar dendrite structures. Combined with quantitative statistical analysis, the method has
the potential to accurately and quickly collect a large amount of structural data, allowing
the optimization and quality control of industrial processes to improve the mechanical and
creep properties of materials.
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2. Materials and TTA Faster R-CNN Algorithm
2.1. Experimental Data

The research uses nickel-based single crystal superalloys as the research object. In
this work, we used an optical microscope (Leica DM6000M, Leica Microsystems CMS
GmbH, Germany) to obtain the microscopic images containing dendrites instead of using
an electron microscope as in [23,24], which will reduce the time required to collect image
data. The elements of HT901 are measured by the following methods: Cr: NACIS/CH
116:2013; CO, Re, Al: NACIS/CH 008:2013; C: ASTM E1019-18; Ta, Mo, W: NACIS/CH
010: 2013; Hf: NACIS/CH 012:2013; B: ASTM E2594-2009(2014). Each element is measured
3 times, and the corresponding standard deviation of the measured value of each element
is: C: 0, Cr: 0.01, Mo: 0.01, Al: 0.002, B: 0, Co: 0.002, Hf: 0.0004, Re: 0.003, Ta: 0.03,
W: 0.02. The composition of HT901 is shown in Table 1. To collect microscopic images
containing the dendrite, metallographic sample preparation, polishing, and chemical
etching were first performed to make the surface show the complete dendritic structure.
Then, metallographic chemical corrosion was conducted using an alcohol solution with
2.0–5.0% copper sulfate (m/V) and 50–70% hydrochloric acid (V/V), or an aqueous solution
with 1.0–30.0% hydrofluoric acid (V/V), 20–40% nitric acid (V/V), and 30–40% glacial
acetic acid (V/V) for 0.3 min–2 min.

Table 1. Chemical composition of single crystal sample (wt%).

Sample Code Cr Re Ta Al Co Mo W C B Hf Ni

HT901 5.84 2.90 5.97 5.59 8.01 2.48 4.47 0.017 0.011 0.17 Bal.

The dataset contains 225 grayscale images with a pixel size of 1024 × 1024. Figure 1
shows the metallographic images of HT901. We stitched 225 small-field images into the
full-field metallographic images of HT901, as shown in Figure 2b. Twenty-three images
were randomly selected from the dataset and manually labeled as training data, and the
remaining data were used as test data to test the performance of the model.
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2.2. TTA Faster R-CNN Algorithm
2.2.1. Faster R-CNN

Currently, the bottleneck of calculating the PDAS is to find a method to locate the
dendrite core quickly, accurately, and stably. The manual identification method consumes
too much time and is not suitable for processing large amounts of data. At present, the
existing technology to automatically locate the dendrite core mainly relies on pattern
recognition whose key algorithm is the traditional computer vision algorithms, such
as the skeleton extraction algorithm, the template matching algorithm, etc. However,
pattern-recognition technology based on traditional computer vision algorithms requires
complicated pre-processing and post-processing. The most important thing is that when
extracting features of interest, these algorithms need to manually define the template of the
feature, and the manually defined template can hardly contain all the characteristics of this
type of feature.

In the research, Faster R-CNN, an end-to-end target recognition network based on
deep learning, is used as the key algorithm for locating dendrite core. Compared with the
traditional pattern recognition algorithm, the advantages of faster R-CNN are as follows:
(1) The whole calculation process is carried out inside the network, which can make full use
of the parallel computing capability of GPU, thus saving calculation time. (2) End-to-end
processing reduces most complicated pre-processing and post-processing. (3) An automatic
optimized feature extraction network has better ability in extracting potential features.

The Faster R-CNN consists of three parts: the feature extraction network, regional
proposal network (RPN), and fully connected layers, as shown in Figure 3. Object detection
consists of two tasks: predicting the target category and calculating the object location. The
network achieves these tasks by outputting position information represented by an array
and a probability related to the category. To improve the performance of the detection
model, back propagation based on gradient descent is used to optimize the network weight.
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2.2.2. TTA Faster R-CNN

TTA is a simple and effective data augmentation method which can improve the
accuracy of test results. Typically, data augmentation is performed when a model is being
trained. However, TTA is a data augmentation strategy used at test time to obtain greater
robustness and improved accuracy. The advantage of TTA is that it is simple to put into
practice, makes no change to the underlying model, and requires no additional data.

In this work, we use the trained Faster R-CNN combined with TTA to complete the
detection task of the dendrite cores, as shown in Figure 4. During the testing process,
each input undergoes multiple data augmentation transformations, turning one input into
multiple inputs, and Test-Time Augmentation entails pooling predictions from several
transformed versions given of a test input to obtain a smoothed prediction. For example,
as shown in Figure 5, one could average the predictions from various translation versions,
so that the final prediction is robust.
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3. Results

The PDAS is closely related to the solution heat treatment times and mechanical
properties of the material. Additionally, it is the most important length scale in direc-
tionally solidified single-crystal alloys. Current methods of calculating mean primary
spacing utilize the counting method, as shown in Equation (1). However, the counting
method provides no way of determining the local PDAS or the PDAS distribution. Since
the dendrites are only affected by their true nearest neighbors (TNNs), an accurate identifi-
cation of TNNs is a prerequisite for accurately describing the effects of local solidification
conditions on the microstructure. Tschopp et al. [20] provided a technique by applying
Voronoi Tessellation to calculate local PDAS, but it provided no means to determine true
nearest neighbors. Tschopp et al. [21] used a four-fold symmetry algorithm to automate
the dendritic core selection process. However, this method requires complex operations
and extensive computational time.

3.1. Automatic Dendrite Core Recognition

A heat-treated single crystal bar sample, with a diameter of 15 mm, was provided as
the research object. The bar was sectioned using normal metallographic techniques and
imaged on a metallurgical microscope. Current dendrite core detection methods require
time-intensive laborious manual determination of the dendrite cores. In this work, simple,
fast, and accurate dendrite core detection technology is achieved using neural networks.

Faster R-CNN is an end-to-end neural network algorithm that can directly process
complex raw metallographic images, as shown in Figure 6a, and directly return a result
marked with a dendrite core, as shown in Figure 6b. It takes only 0.1 s to recognize
a picture.
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Figure 6. The extraction results. (a) Original image. (b) Detected result by Faster R-CNN.

However, since the gray scale of the dendrite core is similar to that of the dendrite
arms, and the background of the original image is very complicated, this will directly affect
the accuracy of the Faster R-CNN to detect the dendrite core. In fact, the detection results
of Faster R-CNN show that there are many dendrite cores that cannot be identified, as
shown in Figure 7a. In order to solve this problem, this paper adds the TTA process to the
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original detection model. Figure 7b shows the dendrite core detection results after using
TTA. The detection model after TTA successfully identified most of the dendrite cores that
were not recognized by the original detection model.

Crystals 2021, 11, x FOR PEER REVIEW 8 of 16 
 

 

Faster R-CNN is an end-to-end neural network algorithm that can directly process 
complex raw metallographic images, as shown in Figure 6a, and directly return a result 
marked with a dendrite core, as shown in Figure 6b. It takes only 0.1 s to recognize a 
picture. 

 

  
(a) (b) 

Figure 6. The extraction results. (a) Original image. (b) Detected result by Faster R-CNN. 

However, since the gray scale of the dendrite core is similar to that of the dendrite 
arms, and the background of the original image is very complicated, this will directly af-
fect the accuracy of the Faster R-CNN to detect the dendrite core. In fact, the detection 
results of Faster R-CNN show that there are many dendrite cores that cannot be identified, 
as shown in Figure 7a. In order to solve this problem, this paper adds the TTA process to 
the original detection model. Figure 7b shows the dendrite core detection results after us-
ing TTA. The detection model after TTA successfully identified most of the dendrite cores 
that were not recognized by the original detection model. 

 

 
(a) (b) 

Figure 7. The recognition results of Faster R-CNN and TTA Faster R-CNN. (a) The extraction result 
of Faster R-CNN, A is the dendrite cores that were missed; (b) the extraction result of TTA Faster R-
CNN. 

In this work, we used Faster R-CNN and TTA Faster R-CNN to detect and count the 
dendrite cores in the full field of view of HT901, as shown in Figure 8. The image in Figure 
2b has a size of 15,360 × 15,360 pixels, including a complete circular cross section of HT901 
with diameter of 15 mm. The total processing time from loading the image to plotting the 

A 
 

Figure 7. The recognition results of Faster R-CNN and TTA Faster R-CNN. (a) The extraction result of Faster R-CNN, A is
the dendrite cores that were missed; (b) the extraction result of TTA Faster R-CNN.

In this work, we used Faster R-CNN and TTA Faster R-CNN to detect and count
the dendrite cores in the full field of view of HT901, as shown in Figure 8. The image in
Figure 2b has a size of 15,360 × 15,360 pixels, including a complete circular cross section
of HT901 with diameter of 15 mm. The total processing time from loading the image to
plotting the result is 24.5 s, run on a PC (IW4202-4G, SITONHOLY, China) with Windows
10 (Intel® Xeon® CPUE5-2690 v4 @ 2.40 GHz; 64 GB RAM; NVIDIA GeForce RTX3090).
A total of 1154 dendrite cores were identified, of which 1147 were correct, 7 were wrong,
and 12 real dendrite cores were not identified. In order to quantitatively compare the
dendrite core recognition accuracy of the two methods, we counted the accurate number
of dendrite core recognition (TP, True Positive), the number of missed detections (FN,
False Negative), and the number of false detections (FP, False Positive) and calculated the
recognition accuracy, as shown in Table 2. The statistical result shows that the improved
detection model has a greater improvement than the original model in terms of accuracy
and number of dendrite cores.

In order to verify the generalization ability of this method, the research uses the metal-
lographic images of other three nickel-based single crystal superalloy bars as verification
data, and counts their identification results, as shown in Table 3. The statistical results
show that TTA Faster R-CNN remains a very high accuracy, which proves the robustness
of this method.
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Figure 8. The full field of view image of the HT901 with dendrite core is recognized by TTA Faster
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the blue circle represents the result of false detection, and the green circle represents the dendrite
core not detected by the detection model.

Table 2. The extraction results of dendrite cores by Faster R-CNN and TTA Faster R-CNN.

Method TP FN FP Accuracy (%)

Faster R-CNN 964 195 9 82.5
TTA Faster R-CNN 1147 12 7 98.4

Table 3. The extraction results of dendrite cores of three additional samples.

Sample Code TP FN FP Accuracy (%)

HT910 1360 14 27 97.1
HT912 1237 15 34 96.2
HT913 1133 17 21 96.8

3.2. Statistical Results

The Voronoi tessellation algorithm provided a method to limit the maximum nearest
neighbors; however, it provided no means to determine the true nearest neighbors. In this
work, we utilized a local multi-directional algorithm combined with the Voronoi tessellation
algorithm to calculate true local nearest neighbors. The two-dimensional space was divided
into k sections in the full-field image with the dendrite core as the origin. In this work, k
was defined as 8, and the interval division was designed as an equal angle division, as
shown in Figure 9. First, the neighbors of each dendrite core were calculated by the Voronoi
tessellation, then the true nearest neighbors were selected by multi-directional algorithm.
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The results from the application of the Voronoi tessellation method combined with
a local multi-directions algorithm to the HT901 single-crystal microstructure are shown
in Figure 10. The distribution of dendrite spacing is not uniform, as shown in Figure 10a.
The result demonstrates that the smaller PDAS is more likely to appear near the edge of
the sample.

Most of the areas in Figure 10b are covered by hexagons (N6) and pentagons (N5),
and the remaining areas are filled with a small amount of heptagonal (N7), square (N4),
triangular (N3) and octagonal (N8).

The statistical results of local PDAS are shown in Figure 11a. The algorithm calculates
the local PDAS of the dendrites and captures the gaussian distribution of all local PDAS. The
average local PDAS λ is determined to be 415 µm. For comparison, the average dendrite
spacing λ calculated by the traditional method is equal to 420 µm, and a C coefficient
equal to 1.075 is used in the calculation process. The λ calculated by the local PDAS is
very close to the λ obtained by the traditional method. The slight difference between
the two is likely due to C = 1.075 for an ideally packed hexagonal array [16]. The local
multi-directional method and the close match with the classical method mean that the local
multi-directional algorithm can successfully remove the first nearest neighbor dendrites
that are incorrectly captured by the polygon mosaic method. Therefore, the algorithm
can successfully capture the influence of solidification conditions on the local dendrite
neighborhood and provide more analyzable data for single crystal research. Figure 11b
quantitatively counts the frequency of coordination number determined in Figure 10b. For
HT901, the largest detected coordination number frequency is 6 and 5, accounting for 73.2%
of all dendrites.
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Figure 11. The Gaussian distribution of local PDAS and coordination number. (a) PDAS vs. frequency for HT901,
λ = 415 µm, (b) coordination number vs. frequency for HT901.

The relationship between local PDAS and coordination number is shown in Figure 12.
The location with a small coordination number corresponds to a relatively small local
PDAS, and the location with a large coordination number corresponds to a relatively large
local PDAS. Figure 11a determines the λ as 415 µm, and the local dendrite spacing closest to
λ is the dendrite whose coordination numbers are equal to 5 and 6, as shown in Figure 12.
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Figure 12. The relationship between the coordination number and local PDAS of HT901, λ = 415 µm
is the average local dendrite spacing determined in Figure 11a.

Figure 10a demonstrates that the distribution of dendrite spacing is not uniform. We
divided the HT901 sample from the center into seven rings of equal width along the radius
direction to quantify this unevenness, as shown in Figure 13. The average local PDAS in
each ring in Figure 13 are calculated, and the result is shown in Figure 14. The average
PDAS has a downward trend from the center to the edge of the sample, as shown in
Figure 14. Figure 14 shows that the closer to the center of the HT901 sample, the sparser
the distribution of dendrites. Conversely, the closer to the edge, the denser and more
uneven the distribution of dendrites. This is closely related to the first cooling at the edge
of the sample bar and the final cooling at the center of the sample bar during the heat
treatment process.
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4. Discussion

The PDAS is an important length scale of single-crystal superalloys, which is closely
related to the solution heat treatment time and cooling rate. The object of our work is to
find a simple, accurate, and fast way to calculate and statistically characterize the PDAS.

TTA Faster R-CNN identified 1154 dendritic cores from the circular cross-sectional
image of a single-crystal superalloy with a diameter of 15 mm or a size of 15,360 × 15,360
within 24.5 s, with an accuracy rate of 98.4%. The time for DenMap to identify 506
dendritic cores from a single-crystal superalloy image with a size of 8947 × 9271 pixels
is 89.41 s [24]. The skeletonization [23] method took 643 s to identify the dendrite cores
in the HT901, and the accuracy of the identification was only 37.3%, which was mainly
caused by the uneven morphology and distribution of the dendrite structure of the HT901.
Considering the accuracy, speed, difficulty of operation, and other related performances of
dendrite core recognition, TTA Faster R-CNN has a better performance, mainly because
the neural network has strong self-learning and generalization capabilities. However,
TTA Faster R-CNN is a supervised learning algorithm, which requires some features to
be labeled and learned before it can be used. For features with a small number, it is
likely to be detected incorrectly because of too little or no labelling. For example, a small
amount of secondary dendrite cores in HT901 will be misjudged as primary dendrite
cores. Therefore, the recognition accuracy of dendrite cores can be continuously improved
through certain post-processing. In addition, the development of an unsupervised learning-
led dendrite core recognition and extraction algorithm is also an important direction to
solve the current problem.

The research results of this work prove that the local dendritic core gradually decreases
from the center of the sample to the edge area, as shown in Figure 14. This phenomenon may
be caused by the uneven cooling rate of single-crystal superalloys during solidification [34].
The rod-shaped single-crystal superalloy has a low cooling rate in the central region, and a
larger cooling rate at the edge, which will result in a larger primary dendrite spacing in
the central region and a smaller primary dendritic spacing at the edge. This work only
performs a statistical analysis of the distribution of the dendrite spacing of HT901. The
subsequent work also needs to study the distribution of dendrite spacing in the larger size
section and the distribution of the smaller size γ’ phase.

5. Conclusions

(1) TTA Faster R-CNN was proposed to automatically select dendrite cores. The method
detected 1154 dendritic cores in the single-crystal superalloy metallographic image
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with a size of 15,360 by 15,360 pixels within 24.5 s, and the recognition accuracy
reached 98.4%, which was 15.9% higher than using Faster R-CNN alone.

(2) The local multi-directional algorithm combined with the Voronoi tessellation method
is used to calculate the local PDAS of the HT901. There is only a small gap between the
average spacing defined by Gaussian distribution of the local PDAS and the average
dendritic spacing calculated by the classical counting method, and the difference
between the two is only 5 µm.

(3) The technique can quantify the relationship between the local PDAS and the coor-
dination number, and the result suggests that the local PDAS matched by a large
coordination number is large.

(4) The mapping of local dendrite spacing to the distance from the center of sample is
quantitatively represented by this technique. The result suggests that the closer to the
edge, the denser and uneven the dendrite distribution.
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Abbreviations

HT901 The name of a self-made second-generation single crystal superalloy.
PDAS Primary Dendrite Arm Spacing.
R-CNN Regions with CNN features-An object detection and semantic segmentation technique.
TTA Test Time Augmentation.
TNNs True Nearest Neighbors.
Den Map Dendritic Mapping-An automatic dendritic mapping algorithm.
NCC Normalized Cross-Correlation.
FFT Fast Fourier Transform.
SEM Scanning Electron Microscopy.
RPN Regional Proposal Network.
FCL Fully Connected Layer.
ROI Region of Interest.
TP True Positive.
FN False Negative.
FP False Positive.
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