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Abstract: Bi-modal particles are used as reinforcements for Cu-matrix. Nano TiC and/or Al2O3 were
mechanically mixed with Cu particles for 24 h. The Cu-TiC/Al2O3 composites were successfully
produced using spark plasma sintering (SPS). To investigate the effect of TiC and Al2O3 nanoparticles
on the microstructure and mechanical properties of Cu-TiC/Al2O3 nanocomposites, they were
added, whether individually or combined, to the copper (Cu) matrix at 3, 6, and 9 wt.%. The results
showed that titanium carbide was homogeneously distributed in the copper matrix, whereas alumina
nanoparticles showed some agglomeration at Cu grain boundaries. The crystallite size exhibited a
clear reduction as a reaction to the increase of the reinforcement ratio. Furthermore, increasing the
TiC and Al2O3 nanoparticle content in the Cu-TiC/Al2O3 composites reduced the relative density
from 95% for Cu-1.5 wt.% TiC and 1.5 wt.% Al2O3 to 89% for Cu-4.5 wt.% TiC and 4.5 wt.% Al2O3.
Cu-9 wt.% TiC achieved a maximum compressive strength of 851.99 N/mm2. Hardness values
increased with increasing ceramic content.

Keywords: copper; nanocomposites; metal-matrix composites (MMCs); mechanical properties; spark
plasma sintering

1. Introduction

Copper strengthening is a current priority due to the pressing need to use it in various
applications requiring a balance of properties [1–3]. Metal-matrix composites are most
promising in achieving balanced mechanical properties between nano and microstructure
materials [4–8]. Copper is used in many industries owing to its low cost, ease of man-
ufacturing, and good corrosion resistance [9]. The main drawbacks of pure copper are
its substantial low strength, high coefficient of thermal expansion (CTE), and generally
poor mechanical properties [10]. One effective way to overcome these limitations is to
reinforce copper with ceramic particles to obtain composites with superior properties. The
effectiveness of dispersed particles in matrix strengthening depends primarily on particle
characteristics: size, distribution, spacing, thermodynamic stability, and low solubility and
diffusivity of its constituent elements in the matrix. Among ceramic particles, alumina
nanoparticles have shown outstanding mechanical properties even at high temperatures,
as well as low production costs [11,12]. In addition, TiC is an attractive candidate for
metallic matrices such as copper (Cu), iron (Fe), aluminum (Al), titanium (Ti), and nickel
(Ni) because of its high hardness, high melting point, and abrasion resistance with good
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electrical conductivity [12–14]. Due to the aforementioned factors, Cu reinforced with
(TiC-Al2O3) composites led to a more viable material.

Numerous techniques have been used to fabricate reinforced copper matrix com-
posites (CMCs), including molecular-level mixing (MLM) [15], in situ metallurgy [12,13],
flake powder metallurgy [16,17], high-energy ball milling (HEBM) [7,18–20], friction stir
processing [21–26], high-pressure torsion [26], and rolling [27–30]. Although these tech-
niques enhanced the mechanical properties of processed composites, they resulted in an
inhomogeneous distribution of particle reinforcements within the matrix. Additionally,
they have the potential to cause morphological and structural damage, as demonstrated
through carbon nanotubes (CNTs) within a copper matrix [31].

The spark plasma sintering (SPS) method, developed recently, is a new technique for
synthesizing metal matrix composites. The SPS technique has piqued researchers’ interest
due to its advantages of sintering at relatively low temperatures, higher heating speeds,
shorter processing times, and the absence of pre-compression as in conventional sintering.
Thus, the SPS technique enables the fabrication of nanostructured composites without
the high grain growth rate associated with traditional sintering methods. As a result,
SPS composites exhibit exceptional mechanical properties at room temperature, even at
elevated temperatures [32].

To the authors’ knowledge, few papers discuss the solid-state spark plasma sintered
Cu-Al2O3 [33] and Cu-TiC [34–36], respectively. However, no information on the synthesis
and mechanical investigation of hybrid Cu-Al2O3-TiC through mechanical alloying and
SPS techniques have been released. Thus, this work fabricated three separate nanocompos-
ites of Cu-TiC, Cu-Al2O3, and hybrid Cu-TiC-Al2O3, using mechanical alloying and SPS
processing. The influence of the TiC and Al2O3 nanoparticles content on the microstructure
and mechanical properties of the prepared nanocomposites was also investigated.

2. Materials and Methods
2.1. Materials

Copper (Cu) powder with 99.9% purity (supplied by AlphaChemical, MA, USA) with
an average particle size of 10 µm was used as a metal matrix. Alumina (Al2O3) nanopowder
with 99.7% purity (supplied by Alpha Chemicals, MA, USA) with an average particle size
of 50 nm and titanium carbide (TiC) nanopowder with 99.7% purity (supplied by Inframat
Advanced Materials, L.L.C., CT, USA) with an average size of 100 nm were used. Both TiC
and Al2O3 were used as individual/hybrid reinforcement. The Cu powder was mixed with
3, 6, and 9 wt.% of individual/hybrid reinforcement of TiC and Al2O3 using a ball milling
technique for 24 h. The powders were mixed in a stainless-steel vial and protected from
oxidation using highly pure argon gas using a 25:1 ball to powder ratio (BPR), 110 rpm,
and a ball diameter of 5 mm. Stearic acid (1.5 wt.%) was used as a process controlling agent
(PCA). Figure 1 and Table 1 show the composition of fabricated samples.
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Table 1. Composition of the prepared specimens and their contents in the Cu matrix.

Materials after Sintering by (SPS)

Composition

Matrix Reinforcement

Cu [wt.%] TiC [wt.%] Al2O3 [wt.%]

0 Pure copper 100 ——- ——-

I
Cu-3 wt.% TiC 97 3 ——-
Cu-6 wt.% TiC 94 6 ——-
Cu-9 wt.% TiC 91 9 ——-

II
Cu-3 wt.% Al2O3 97 ——- 3
Cu-6 wt.% Al2O3 94 ——- 6
Cu-9 wt.% Al2O3 91 ——- 9

III
Cu-1.5 wt.% TiC and 1.5 wt.% Al2O3 97 1.5 1.5
Cu-3 wt.% TiC and 3 wt.% Al2O3 94 3 3
Cu-4.5 wt.% TiC and 4.5 wt.% Al2O3 91 4.5 4.5

2.2. Spark Plasma Sintering (SPS)

The sintering process was performed using a spark plasma sintering technique (DR.
SINTER LAB Model: SPS-1030, Syntex, Osaka, Japan). In all experiments, the powder was
loaded into a graphite die with an inner diameter of 15 mm with graphite foil and enclitic
by 0.5 mm thick graphite cover to prevent the friction of the sample with the die during
the compaction process and to minimize heat loss. Before sintering, the SPS chamber was
evacuated to a pressure below 5 Pa. The samples were heated from room temperature up
to 950 ◦C by pulsed D.C. current using the heating rate of 20 ◦C/min. The samples were
then held at the maximum temperature for 45 min under a uniaxial pressure of 30 MPa
applied since the first minute of heating. This processing route was used to fabricate the
Cu-TiC/Al2O3 nanocomposites.

2.3. Mechanical Properties

The hardness was measured along the polished surface of the specimen using a Vickers
hardness tester (HMV-2T Model SHIMADZU, Kyoto, Japan). The test was carried out
under 100 g load for 15 s dwell time.

The microhardness values were evaluated for an average of twelve readings on the
surface of each sample. The compression test for the investigated specimens was carried out
using a universal testing machine. In the compression test, three samples were investigated,
and average results were obtained. The dimensions of the specimens for compression tests
were 6 mm in diameter and 15 mm in length. The applied crosshead speed was 0.05 mm/s,
and the test was performed at room temperature.

3. Results
3.1. XRD Analysis

Figure 2 shows the XRD patterns of the prepared ten samples, pure Cu and 3, 6, 9 wt.%
TiC/Al2O3 (individual and hybrid) nanocomposites. Only peaks corresponding to Cu,
TiC, and Al2O3 appeared, whereas pattern-like Cu was observed in the case of 3 wt.%
Cu/TiC/Al2O3 samples; this may be due to the lower percentage of both TiC and Al2O3
that are below the limits of the XRD device. This may be attributed to the controlled milling
and sintering process in an argon atmosphere which shows that no other peaks for any new
phases or intermetallic compounds were formed due to the rapid consolidation process
(45 min) during the SPS technique.
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Figure 2. XRD patterns of composites after (SPS) process.

The crystallite size was assessed by the classical Williamson–Hall method (FWHM)
from the broadening of XRD peaks and using the following formula [37,38]:

β cos θ
λ

=
k
d
+ 2ε

(
2sin θ
λ

)
(1)

where β is the full width at half maximum height (FWHM), θ is the Bragg’s angle of the
peak, λ is the wavelength of X-ray (0.15406 nm), K is a dimensionless shape factor (0.9),
which depends on the material, d is the crystallite size, and ε is the microstrain.

Figure 3 shows the effect of ceramic ratio on the crystallite size. A clear reduction of
the crystallite size with increasing wt.% of ceramic additives was observed. Al2O3 and
TiC are ceramic materials that act as internal balls that reduce the particle size [39,40]. In
addition, the SPS technique achieved the consolidation process, which is a rapid method
for the sintering in which no chance for the grain growth of the particles occurs [41,42]. The
crystallite size of pure copper was ~105 nm, whereas the crystallite size for the produced
composites was in the range of 5–25 nm.
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3.2. Densification

The density of composite material is the most important parameter, which significantly
affects both physical and mechanical properties. The relative density is calculated and
plotted in Figure 4. Relative density is the ratio of the measured and theoretical density
of the sample. Measured density was determined by the Archimedes method, and the
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theoretical density was calculated from the simple rule of mixtures. Each percent of pure
Cu and 3, 6, 9 wt.% TiC/Al2O3 (individual and hybrid) nanocomposite were tested by three
samples, and the average results were obtained. It was observed that the relative density
decreased with increasing reinforcement content for all composites, as shown in Figure 4.
The maximum relative density (~96%) was achieved by adding 3 wt.% TiC to copper,
whereas the minimum relative density (89%) was obtained for 9 wt.% Al2O3/copper
composite. TiC (4.91 g/cm3) and Al2O3 (3.987 g/cm3) also have lower densities than
Cu [7,35]. So, the addition of a light material to a denser one decreased the overall density
of the prepared composites. This may be attributed to the presence of hard ceramic
material with a high melting point into a ductile metal such as Cu that may hinder the
high densification and increase the porosity content accompanied by the high fraction of
reinforcement [7,43].
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Figure 4. The effect of reinforcement fraction on the density of the produced composites. (a) Cu/TiC
composites, (b) Cu/Al2O2 composites, (c) Cu/hybrid composite, and (d) Comparison of relative
density between three series.

Ayman Elsayed et al. [11] studied experimental investigations for the synthesis of W–
Cu nanocomposite through spark plasma sintering, and they concluded that using the SPS
technique led to reaching a maximum of 90% relative density. On the other hand, a relative
density of 98.1% was reached for Cu-Fe-Al2O3-MoS2 composite sintered using the SPS
route [33]. Moreover, Babapoor et al. [44] investigated the effects of spark plasma sintering
temperature on the densification of TiC. They reached a relative density of 99.4% at 1900 ◦C
for 7 min under 40 MPa using the TiC powder with a mean particle size of 7 µm. They also
suggested that there is an optimum temperature for reaching the maximum density.

3.3. Microstructure Analysis

Figure 5 shows the FE-SEM micrograph of TiC-reinforced copper composite using 3%,
6%, and 9% TiC addition to Cu. Two phases are observed; the dark-gray phase represents
the Cu matrix, and the black phase is the TiC particles. For 3 wt.% samples, TiC and Al2O3
particles are concentrated along the grain boundaries in a chain form, while 6 and 9 wt.%
samples were homogeneously distributed all over the Cu matrix. This may be attributed
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to the suitable mechanical milling parameters and good SPS technique applied. The SPS
technique leads to a finer structure compared with traditional routes [18,44].
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Figure 5. SEM of Cu/TiC nanocomposite with TiC percentage of 3, 6, and 9% prepared using spark plasma sintered route.

The SEM investigation of Cu/Al2O3 microstructure is shown in Figure 6. Two phases
are observed; the dark-gray phase represents the Cu matrix while the white phase repre-
sents the Al2O3 particles. The dispersion of Al2O3 inside the copper matrix is observed
for Cu/3% Al2O3 with a little agglomeration of Al2O3 reinforcement. On the other hand,
white areas of agglomerated alumina reinforcement are revealed within the Cu/6% Al2O3
matrix grain boundaries, whereas very fine particles are dispersed within the grain interior.
Moreover, the SEM of Cu/9% Al2O3 composite shows that most of the Al2O3 nanoparticles
are agglomerated along grain boundaries, and a small percentage are dispersed with the
grains. Some authors have also concluded that increasing agglomeration steadily occurs,
along with increasing the weight percentage of reinforcement [9,15].
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The combination of both TiC and Al2O3 for reinforcing copper (Cu/hybrid nanocom-
posite) with point analysis EDS is shown in Figure 7a,b. The homogeneous distribution
of TiC nanoparticles is predominant, while the agglomeration of some Al2O3 is observed
along grain boundaries. More agglomeration of alumina particles along grain boundaries
is observed with increasing hybrid percentage (TiC and Al2O3).

3.4. Mechanical Strength

Figure 8 represents the stress–strain curves for pure copper and TiC/Al2O3-reinforced
copper matrix composites, while the key mechanical properties obtained from the compres-
sion test are plotted in Figure 9. The compressed samples are photographed in Figure 10.
The addition of TiC enhanced the compression strength of copper and reached its maximum
compression strength of ~852 N/mm2 at 9 wt.% TiC, whereas Al2O3 additions exhibited a
dramatic effect on the Cu strength. Increasing Al2O3 from 3 to 6 wt.% increased the Cu
strength, but a clear failure of strength is noticed at 9 wt.% ratios at which a minimum value
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of compression strength 367.8 N/mm2 resulted. After the compression test, the Cu-6%
Al2O3 and 9% Al2O3 samples were destroyed (see Figure 10). clearpage
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Moreover, the strength of hybrid composites increased firstly with increasing the
percentage of reinforcement up to 6% and then slightly decreased. The extreme drop in
the compression strength of the Cu/9% Al2O3 composite may be attributed to particle-
to-particle contact resulting from ceramic particle agglomeration (see Figure 6). The high
compression strength of TiC-strengthened Cu prepared by the SPS route compared with
Cu/Al2O3 composite with the same wt.% is attributed to a combined effect of ultrafine grain
(UFG) structure by the Hall–Petch mechanism and the obstruction of dislocation movement
by nanoscale ceramic particles in the grain interior by the Orowan mechanism [8,43].

The effect of ceramic additions on the hardness of copper is illustrated in Figure 11.
The hardness steadily increases with increasing the wt.% of reinforcement for synthesized
composites. Cu/9% Al2O3 obtained the maximum hardness (211 HV), whereas two
composites that obtained the minimum hardness value of 112 HV are Cu/3% TiC and
Cu/3% hybrid. Many reasons could explain this. The first is that adding high-hardness
and high-strength ceramic materials such as TiC and Al2O3 on the ductile Cu matrix
increases the overall hardness. The second is that the addition of nanomaterials with the
incorporation of nanoparticles between the Cu particles improves the hardness as a grain
reinforcement takes place accordingly.
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3.5. Strengthening Criteria

Increasing the strength of metallic materials is based on two competing factors. The
first is work hardening, and the second is dynamic softening. Work hardening is caused
by dislocations, multiplication, pileup, and tangle. Dynamic softening is caused by dislo-
cations, rearrangement, and interactions. In the present work, the compression test and
hardness measurement are carried out at room temperature, which is why the dynamic
softening factor would not be probable, and the work hardening mechanism would affect
the enhancement of strength and hardness. This is true for pure metal and alloys, unlike the
composite materials where the contribution of ceramic additions to the matrix to enhance
the properties should be considered.

Moreover, it is worth mentioning that some authors have considered the strengthen-
ing mechanisms in ceramic-reinforced composites [6,7,15,40,42–44]. The addition of TiC
nanoparticles to the Cu matrix retained grain growth during sintering due to the peening
effect of TiC for grain boundary movement and the strengthening effect of dispersed TiC in
the Cu matrix grains where a mismatch of coefficient of thermal expansion is present [45]
(see Figure 12). Furthermore, increasing the TiC fraction increased the strength and hard-
ness of Cu-TiC composites in the present work. Another strengthening mechanism of TiC
dispersion is the Orowan mechanism, especially at low fractions of TiC [6]. Compared to
the other two cases, the composites with 3% and 6% Al2O3 gave the highest yield strength.
This is a signal of increasing material strength with decreasing ductility. This may be
attributed to the good adhesion between Cu matrix and TiC nanoparticles than between
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Cu and Al2O3 [46]. An extreme drop in the Cu-Al2O3 composite strength is noticed at 9
wt.% of Al2O3. This unexpected behavior may be attributed to the agglomeration of some
alumina particles in the Cu matrix, increasing the chance for particle-to-particle contact
(see Figure 13). A balanced behavior was observed with the hybrid (TiC/Al2O3) additions
to the Cu matrix in which the combined effects of both ceramics are clear.
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Reinforcing the Cu matrix, which is ductile in nature with two types of ceramic
materials—ceramic carbide (TiC) and ceramic oxide (Al2O3)—helps to improve the me-
chanical properties of the Cu matrix. Both TiC and Al2O3 are at the nanoscale; therefore, by
high ball milling, they filled the interstitial voids between Cu particles. As a consequence,
the strengthening effect of both of them is distributed all over the Cu matrix. The hardness
estimation test increased as the nano-ceramic hard particles were increased. This can also
be explained by the resistance of the hard ceramic particles to the indenter from greater
depth in the Cu-composite surface.

Consequently, the hardness is enhanced [46,47]. For the compression test, the presence
of the nano-ceramic particles dispersed formally in the Cu matrix prevents the dislocation
of the particles. In addition, as these hybrid reinforcements are at the nanoscale, they fill
the voids; consequently, the strength of samples is increased [47–49].

Table 2 shows a comparison between the present study and previous work used to
fabricate copper composites reinforced with alumina and titanium carbide nanoparticles.
In this work, different concentrations of nano alumina and/or nano titanium carbide
particles were used as a reinforcement material to the Cu matrix manufactured by the
SPS technique. This work is compared with the same composites prepared by traditional
sintering, vacuum sintering, hot pressing, and hot extrusion. The table shows that the
composites produced by the SPS technique have the best mechanical properties compared
with the other consolidation techniques.

Table 2. Comparing the present study with literature data of previous investigations.

Composite Method Density,
(g/cm3)

Ultimate Stress,
(MPa)

Yield Stress,
(MPa)

Elongation,
(%)

Hardness,
(HV) Ref. No

Pure copper

SPS at 950 ◦C

97 N/A 127.15 1.69 81
[Present
study]

Cu-3 wt.% TiC 96 741.47 313 3.97 111.9
Cu-3 wt.% Al2O3 95 587.43 500 6.17 149
Cu-1.5 wt.% TiC and 1.5
wt.% Al2O3

95 414.86 317.46 5.25 112

Cu-5 wt.% TiC Hot Press at 700 ◦C 93.3 N/A N/A N/A 67.3 [50]

Cu-5 vol.%TiC Hot extrusion N/A N/A N/A N/A 112 [51]

Cu-5 vol.% TiC SPS N/A 712 661 N/A 221 [14]

Cu-77 vol.% TiC Sintering in Vacuum
Furnace at 900 ◦C 93.4 N/A N/A N/A 544 [52]

Cu-5.3 vol.%TiC SPS N/A 602 572 N/A 194 [53]

Cu-3 wt.% Al2O3 with
Coating Ag Sintered at 950 ◦C 95.9 N/A N/A N/A 85 [7]

Cu-10 vol.% Al2O3 Sintered at 880 ◦C 83.49 N/A N/A N/A 71 [54]

Cu-3 vol.% Al2O3 Sintered at 850 ◦C 91.5 350 N/A 0.51 77 [55]Cu-5 vol.% Al2O3 Sintered at 850 ◦C 88 550 N/A 0.46 100

Cu-5 vol.% Al2O3 Sintering H2 at 850 ◦C 530 450 2.5 155 [56]

Cu-2.7 wt.% Al2O3 Sintered at 950 ◦C 92.53 460 350 N/A 54.83 [57]

Cu-5 vol.% Al2O3 Conventional Sintering N2 84.3 N/A N/A N/A 49

[58]Cu-5 vol.% Al2O3 Conventional Sintering Ar 84.3 N/A N/A N/A 48
Cu-5 vol.% Al2O3 Conventional Sintering H2 94.4 N/A N/A N/A 79
Cu-5 vol.% Al2O3 SPS at 700 ◦C 92.2 N/A N/A N/A 125

Cu-2.75 wt.% Al2O3
Pulsed Electric Current
Sintered (PECS) 99.6 N/A N/A N/A 94.83 [59]

4. Conclusions

Cu-(TiC and/or Al2O3) nanocomposites were synthesized successfully using mechan-
ical milling followed by the spark plasma sintering (SPS) technique.

The density decreased with increasing percentages of the nano reinforcements (TiC
and/or Al2O3). A maximum relative density of ~96% was achieved with the addition of
3 wt.% TiC to copper, whereas the minimum relative density (89%) was obtained by adding
9 wt.% Al2O3 to copper.
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Agglomerated areas of Al2O3 nanoparticles around grain boundaries were observed,
and increased with increasing Al2O3 fractions that, in turn, adversely affect the mechanical
properties.

The compression strength of Cu/TiC increased with increasing the TiC fraction, and
a maximum value of 851.99 N/mm2 was obtained by Cu/9% TiC. A dramatic behavior
was observed for Cu/Al2O3 composites that gave the minimum compressive strength of
367.8 N/mm2 resulted at 9% Al2O3.

The maximum hardness of 211 HV was obtained by Cu/9% Al2O3, whereas two
types of composites obtained the minimum hardness value of 112 HV: the Cu/3% TiC and
Cu/3% hybrid.
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