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Abstract: Zinc selenide (ZnSe) nanomaterial is a binary semiconducting material with unique fea-
tures, such as high chemical stability, high photosensitivity, low cost, great excitation binding energy,
non-toxicity, and a tunable direct wide band gap. These characteristics contribute significantly to its
wide usage as sensors, optical filters, photo-catalysts, optical recording materials, and photovoltaics,
among others. The light energy harvesting capacity of this material can be enhanced and tailored to
meet the required application demand through band gap tuning with compositional modulation,
which influences the nano-structural size, as well as the crystal distortion of the semiconductor.
This present work provides novel ways whereby the wide energy band gap of zinc selenide can be
effectively modulated and tuned for light energy harvesting capacity enhancement by hybridizing a
support vector regression algorithm (SVR) with a genetic algorithm (GA) for parameter combinatory
optimization. The effectiveness of the SVR-GA model is compared with the stepwise regression
(SPR)-based model using several performance evaluation metrics. The developed SVR-GA model
outperforms the SPR model using the root mean square error metric, with a performance improve-
ment of 33.68%, while a similar performance superiority is demonstrated by the SVR-GA model over
the SPR using other performance metrics. The intelligent zinc selenide energy band gap modulation
proposed in this work will facilitate the fabrication of zinc selenide-based sensors with enhanced
light energy harvesting capacity at a reduced cost, with the circumvention of experimental stress.

Keywords: zinc selenide; support vector regression; lattice parameter; genetic algorithm; nano-
particle size; energy band gap

1. Introduction

The synthesis and characterization of zinc selenide semiconductor nano-materials
has attracted global attention lately due to the novel properties demonstrated by zinc
selenide semiconductors compared to other members of chalcogenide groups [1–3]. The
features contributing to the uniqueness of this class of semiconductors include the lower
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electrical resistivity, non-toxicity, high transmission, insignificant lattice mismatching, wide
energy band gap, as well as tunable light harvesting capacity over a range of spectrums [4].
These characteristic features, coupled with the quantum confinement effect, have enhanced
and strengthened the practical application of zinc selenide semiconductors in various
optoelectronics and photovoltaic applications, such as the thin-film winder layer of solar
cells, thin-film transistors, ultrasonic transducers, small integrated circuits, anti-reflection
coating, energy generation, laser screens, light-emitting devices, and catalysis [5–7]. Tailor-
ing the energy gap of zinc selenide semiconductor nanomaterials through doping lessens
the loss of photons within the spectrum range, which contributes to charge carriers in
photocurrents. The nano-structural size of the semiconductor and the crystal structural
contraction (as well as elongation) emanated while doping are related to the energy gap in
this contribution using an intelligent-based model.

The factors influencing the physical properties of zinc selenide semiconductors include
the deposition parameters (for thin-film samples), experimental preparation conditions,
synthesis techniques, and incorporation of dopants [7,8]. These factors ultimately control
the crystal lattice parameters and the size of the semiconducting nanomaterial. Nickel
particle incorporation into the lattice structure of zinc selenide semiconductors has been
reported to excite photons, which, ultimately, promotes the carriers to the defect level with
a consequential distortion in the lattice parameter at varying nano-sizes of the semiconduc-
tor [2]. This work aims to estimate the energy gap of doped zinc selenide semiconductors
through the hybridization of a computational machine learning support vector regression
algorithm and a genetic algorithm, using the lattice constant of the semiconductor and the
size of the material as model inputs.

Support vector regression (SVR) belongs to the class of intelligent regression algo-
rithms with high efficacy and efficiency in handling nonlinear real-life problems [9]. The
algorithm was first proposed and developed by Vapnik, and effectively implements the
kernel trick for dataset transformation into a space with characteristic high dimensional-
ity [10]. The utilization of the kernel trick, convex optimization, and Langrage multipliers
enhances the global convergence of the algorithm, and subsequently averts local solutions.
These unique features have significantly contributed to the wide application of this algo-
rithm in different areas of study [11–14]. In an attempt to further enhance the robustness
and reliability of SVR-based models, the user-defined parameters of the algorithm are
optimized using a genetic algorithm (GA) in this work, with an evolutionary operational
principle [15,16].

The remaining part of the work is organized as follows: Section 2 explains the math-
ematical formulation of a genetic algorithm and a support vector regression algorithm.
The computational details and a description of the dataset employed for modeling are
presented and described in Section 3 of the manuscript. The presentation and discussion of
results are contained in Section 4, while Section 5 concludes the manuscript.

2. Description of Mathematical Formulation of the Employed Algorithms

The formulation of the employed support vector regression algorithm is presented
in this section. A description of the hybridized genetic optimization algorithm is also
presented in this section of the manuscript.

2.1. Support Vector Regression Mathematical Formulation

Consider the training samples {S, g∗} of zinc selenide semiconductors doped with
foreign materials and subsequently distort the lattice parameter at the nanoscale. The
distorted lattice parameter and the semiconductor’s nano-size are the descriptors to the
model, and are represented as S, with a matrix size of m x D, where m and D stand for
the training sample data size and the sample dimension, respectively. The experimentally
measured energy gaps of the semiconductor are represented as g∗, with a matrix size of
m x 1. The energy gaps to be predicted using the proposed hybrid model are empirically
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represented by the function f(S), with the following mathematical expression shown in
Equation (1):

f(S) =ωTσ(S) + γ (1)

where ω and γ represent the model vector to be optimized and the bias, respectively.
Determination of f(S) using the support vector regression (SVR) approach involves the
solving and minimization of the optimization problem presented in Equation (2), with the
aid of the constraints expressed in Equation (3) [10,17].

ωTω

2
+ µ

m

∑
j=1

(ηj + η∗j ) (2)


ωTσ(Sj) + γ− g∗ ≤ ε + ηj
g∗ −ωTσ(Sj)− γ ≤ ε + η∗j
η∗j , ηj ≥ 0, j = 1, 2, 3, . . . , m

(3)

where µ = penalty factor, η = slack variable, η∗ = slack variable, and ε = training sample
error threshold. The value of µ penalizes and regularizes the deviation beyond the defined
loss zone, while the incorporation of slack variables (η and η∗) becomes imperative to
address the constraints that make the actualization of the training sample error threshold ε
seem impossible [9,18]. µ further determines the equilibrium relationship existing between
the function norm and empirical risk. Lagrange multipliers (ψ, ψ∗, χ and χ∗) are invoked
to address the convex optimization problem with the Lagrange expression presented in
Equation (4) [19]. 

ωTσ(Sj) + γ− g∗ ≤ ε + ηj
g∗ −ωTσ(Sj)− γ ≤ ε + η∗j
η∗j , ηj ≥ 0, j = 1, 2, 3, . . . , m

(4)

The partial derivative of Equation (4), with respect to ω, γ, η and η∗, leads to the
expressions contained in Equation (5) [20–22].

ω =
m
∑

j=1

(
ψj − ψ∗j

)
σ(Sj)

µ− ψj − χj = 0
µ− ψ∗j − χ∗j = 0
m
∑

j=1

(
ψj − ψ∗j

)
= 0

(5)

The optimization problem is modified as presented in Equation (6), with the modified
constraints presented in Equation (7).

min
1
2

n

∑
j,i=1

(ψ∗j − ψj)ζij(ψ
∗
i − ψi)−

m

∑
j=1

(ψ∗j − ψj) + ε
m

∑
j=1

(ψ∗j + ψj) (6)


m
∑

j,i=1
(ψ∗j − ψj) = 0

ψ∗j ≥ 0, j = 1, 2, 3, . . . , m
ψ∗j ≤ γ, j = 1, 2, 3, . . . , m

(7)

where ζij is the kernel function ζij = σ(Sj)
Tσ(Si)

T , with the expression provided in Equa-
tion (8) [20], as follows:

ζij = exp
(
−τ‖Sj − Si‖2

)
(8)

where τ is the kernel parameter.
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The final regression function is presented in Equation (9), as follows:

f(S) =
m

∑
j=1

(
ψj − ψ∗j

)
exp

(
−τ‖Sj − Si‖2

)
+ γ (9)

The performance of the support vector regression-based model presented in Equation (9)
can be significantly influenced through tuning of the model parameters, which include
the regularization factor (µ), maximum error threshold epsilon (ε), and kernel parameter
(τ) of the Gaussian kernel function [23]. The tuning of these parameters (µ,ε,τ) can be
executed using a manual search, grid search, or meta-heuristic algorithms [24,25]. The
choice of genetic algorithm for the optimization of these parameters is due to the ease of
implementation of the genetic algorithm, convergence to global solution, and avoidance
of premature convergence. These hyper-parameters are encoded as chromosomes in the
genetic algorithm operational description using training and testing sets of data. All the
genetic algorithm operators were implemented during the training and testing phases of
model development using training and testing sets of data, respectively.

2.2. Genetic Algorithm

The genetic algorithm is a class of optimization algorithms that mimic and simulate
naturally occurring evolutionary processes, with the aim of attaining optimum values for a
set of parameters, through fitness selection from the initially defined population [15,26].
Genetic-based information is contained and encoded in a bit of string with a fixed length
of characteristic features called individuals. The probable solutions are encoded in a
chromosome-based architectural structure called individuals, in which the independent
variables are represented by genes [27,28]. The primary operational principles of the
algorithm include reproduction (new population generation), crossover (choosing probable
parents and recombination), and mutation [29]. The commencement of an algorithm
involves an initial population of potential individuals, while the subsequent generation
through selection, crossover, and mutation improve the performance of the algorithm until
global convergence is attained, which brings the algorithm to a stop [30]. Each of these
basic operations of the genetic algorithm are controlled through probability setting. Several
individuals are contained in the search space at the commencement of the algorithm
iteration circle, while these individuals are evaluated in accordance with the defined
problem-dependent fitness function [31,32]. The reproduction stage of the algorithm is often
initiated randomly, followed by a parent selection process, which could be easily conducted
through tournament selection or any other methods, such as the panmixia technique.

3. Computational Methodology

The computational development of SVR and GA is presented in this section. This
section further presents the description of the employed set of data as well as the statistical
analysis of the dataset.

3.1. Data Acquisition, Description and Statistical Analysis

Data samples from forty-three compounds of doped zinc selenide nanostructured
semiconducting materials were employed in developing SVR-GA and SPR models for
energy gap quantification. The data samples were extracted from different sources in
the literature [4,5,7,8,33–38]. The descriptors such as the lattice parameter and the size
of the semiconducting compounds were also extracted from the same sources with their
corresponding energy gaps. Foreign material inclusion stretches the lattice parameters
of the parent semiconductor and leads to distortion. Addition of dopants such as boron
has been reported to widen the visible region transmittance due to the crystallinity of
the semiconducting compound, which can be influenced by the size of nanoparticles [39].
Confinement of electrons and holes due to silver dopant incorporation into the parent zinc
selenide semiconductor has also been reported to widen the energy gap of the materials
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with increases in the crystalline size of the nanoparticles [40]. These are clear indications of
the influence of lattice parameters and nano-crystalline size on the energy gaps of doped
zinc selenide. In order to further investigate the potential of lattice parameters and the
size of zinc selenide nanomaterials in estimating the energy gap of doped zinc selenide
semiconductors, statistical analysis of the dataset was conducted. Table 1 presents the
correlation coefficients between each of the descriptors and energy gaps; maximum, mean,
minimum and standard deviations of the collected samples are also presented.

Table 1. Description of statistical analysis results.

Statistical Parameter a (
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Correlation coefficient −0.569 −0.518 1.000
Maximum 5.935 82.200 3.790

Mean 5.601 21.546 2.795
Minimum 5.220 2.070 1.700

Standard deviation 0.153 20.219 0.506

In-depth statistical information about the entire dataset can be inferred from the values
of mean, range (maximum and minimum), standard deviations and correlation coefficients.

3.2. Computational Incorporation of Genetic Algorithm in Support Vector Regression for
Hyper-Parameter Optimization

The energy gap of zinc selenide nanostructured semiconductor was simulated and
modeled through incorporation of genetic algorithm into support vector regression algo-
rithm for the optimum selection of hyper-parameters, which include the penalty factor,
kernel function and parameter as well as the epsilon (threshold modeling error on training
samples). The simulation and modeling were conducted within the computing environment
of MATLAB. The dataset available for pattern extraction was randomized and separated
into training and testing set. The beauty of randomization process is that it promotes
evenly dispersed and distributed intricacies needed for pattern acquisition between train-
ing and testing data samples in such a way that the model is not tested and validated on
the information it has not acquired during training phase of model development. The
procedures and processes undertaken for computational modeling of energy gap of doped
zinc selenide are itemized below.

Step 1: Genetic algorithm initialization and initial parameter definition: Probable
solutions were generated at this stage of model development and spanned across the
defined search space for each of the support vector regression parameters. Penalty factor’s
upper and lower search space bounds were set as [1000, 1] while the space for the epsilon
and kernel parameters was set as [0.09, 0.01] and [0.9, 0.1], respectively. The sensitivity
(performance) of the developed hybrid model to the size of probable solutions within the
search space was investigated purposely to set a balance between the exploration and
exploitation strengths of the hybrid model for efficient prediction of energy gap of doped
zinc selenide nanostructured semiconductor.

Step 2: Selection of the best chromosome among the probable ones on the basis of
fitness function computation: This stage of model development incorporates the generated
probable solutions from genetic algorithm into support vector regression algorithm. The
potential of each of the chromosomes after being incorporated into SVR algorithm was
determined using root mean square error of the testing set of data. The procedures for
fitness function computation and determination are detailed as follows for each of the
genetic evolutionary-based chromosomes:

i. Each chromosome, which carries hyper-parameter information in a defined order,
combines with a selected function (kernel) that helps in data transformation to
space with higher dimension.

ii. Combination of chromosomes, kernel function and hyper-parameter lambda (E-
7) was implemented for training SVR algorithm using training set of samples.
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The estimates of each of the trained SVR models during training phase (TP) were
compared with the measured values using root mean square error (RMSE). The
values of RMSE-TP for each trained model were ranked in ascending order. The
support vectors corresponding to each of the trained models were also saved.

iii. The saved support vectors for each of the trained models in Step 2 were employed
for determining the energy gap of doped zinc selenide nanostructured semicon-
ductors in the testing set of samples. The estimated energy gaps during testing
phase (TSP) were compared with the experimental values using RMSE. The values
of RMSE-TSP were recorded and ranked accordingly.

iv. With the known value of RMSE-TSP for each of the trained and validated models, we
could determine the best fit chromosome as characterized with lowest RMSE-TSP.

Step 3: Reproduction operator: This stage replaces the weak chromosomes from
the initially generated probable solutions within the search space through application of
reproduction operator. The probability for selection was set at 0.8 so as to ensure that the
best-fit chromosomes identified in Step 2 are preserved through the subsequent stages of
model development.

Step 4: Crossover operator deployment: For the purpose of establishing subsequences
and portions exchanged between the parents and the offspring, crossover probability
was implemented with a probability of 0.65. This stage allows weaker chromosomes (as
determined by their fitness) to gradually become extinct while best-fit chromosomes are
preserved.

Step 5: Population mutation: Randomization of chromosome potions was carried out
at this stage. Mutation probability was set at 0.009.

Step 6: Control of the population size and stopping conditions of the hybrid algorithm:
Step 2 to Step 5 were repeated while the chromosomes in the population were replaced with
more fit individuals until similar value of RMSE-TSP was obtained for fifty consecutive
iterations. The number of populations was varied from ten to hundred to investigate the
influence of population size on both the convergence and performance sensitivity.

Step 7: Final model development with optimum parameters: Using the saved opti-
mum parameters of genetic algorithm, final SVR-based model was developed while the
values of both SVR and genetic algorithms that can enhance model reproducibility were
saved. Figure 1 presents the details of the computational description of the developed
hybrid model.
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4. Results and Discussion

The results of the developed hybrid SVR-GA and SPR models are presented and
discussed in this section. The influence of the hybrid model parameters and the comparison
of the model performance are further discussed. The results of the developed hybrid
models, when employed for external validation, are also presented.
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4.1. Effect of Chromosomes Size on Penalty Factor, Epsilon and Kernel Parameter on Error
Convergence of the Developed Hybrid Model

The convergence significance of the developed hybrid SVR-GA model on the model
performance is presented in Figure 2. Figure 2a shows the variations in RMSE at different
iterations for three different sizes of chromosomes in the model search space. The essence
of investigating the significance of chromosome size on model performance is to strike
a balance between model exploration and exploitation. As presented in Figure 2a, local
convergence was observed, with ten chromosomes exploring the search space, while the
points of local convergence are more prominent at the 7th and 20th iterations. When
the number of chromosomes in the search space reached fifty, the global solution of the
algorithm was attained. As can be observed in Figure 2a, the number of local convergences
during the early iteration was reduced, while global convergence was achieved until the
maximum iteration of one hundred was attained.
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Similarly, the convergence of the penalty factor at different iterations for three cate-
gories of chromosome size is presented in Figure 2b. From the presented figure, it can be
observed that the convergence of the measure of trade-off between the model complexity
and the set maximum error threshold has an insignificant influence on model convergence.
This demonstrates the robustness of the developed hybrid model. The influence of varying
the size of the chromosomes present in the model search space on the defined maximum
error threshold (epsilon) is presented in Figure 2c. This convergence shows a similar trend
to the error (RMSE) convergence presented in Figure 2a. A lower number of chromo-
somes in the model search space results in a high value of epsilon, while an increase in
the chromosome population size results in lower values of epsilon. Global convergence
was achieved with fifty chromosomes in the search space. The kernel parameter for the
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Gaussian kernel function is presented in Figure 2d at various chromosome population
sizes. For each of the investigated chromosome numbers, global convergence was attained
after twenty iterations. However, different numbers of chromosomes show different initial
global convergences. Table 2 presents the obtained optimum value for each of the hybrid
model parameters, as obtained after genetic algorithm optimization.

Table 2. Results of genetic algorithm for model optimization.

Model Parameter Optimum Value

Penalty factor 1
Chromosomes number 50

Kernel parameter 0.9
Epsilon 0.0173

Kernel function Gaussian
Hyper-parameter lambda E-7

4.2. Performance Evaluation and Comparison for the Developed Hybrid SVR-GA and SPR Models

The obtained equation from the developed stepwise regression (SPR)-based model is
presented in Equation (10), where a and D represent the lattice parameter in angstroms and
the size of the zinc selenide nanoparticle, measured in nanometers, respectively. One of the
merits of the SPR model over the SVR-GA model is the ease of implementation, while the
developed SVR-GA model is superior when it comes to accuracy and precision.

SPR = 6.33104 − 0.59181a + 0.26606D − 0.04848aD (10)

The performance of the developed hybrid SVR-GA-based model and the SPR model
was evaluated and compared through computation of the correlation coefficient (CC), root
mean square error (RMSE), and mean absolute error (MAE) during the training and testing
stages of model development. Figure 3 presents the comparison of the two developed
models using RMSE for the training and testing set of doped zinc selenide samples.
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Figure 3. Performance of the developed energy gap estimation models. (a) Comparison of the
performance of the developed SVR-GA and SPR models during training phase on the basis of RMSE,
(b) comparison of the performance of the developed SVR-GA and SPR models during training phase
on the basis of MAE, (c) comparison of the performance of the developed SVR-GA and SPR models
during testing phase on the basis of RMSE, (d) comparison of the performance of the developed
SVR-GA and SPR models during testing phase on the basis of MAE.
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The developed hybrid SVR-GA model outperforms the SPR model, with a perfor-
mance improvement of 33.68%, as presented in Figure 3a. The comparison of the two
models, using the training MAE metric presented in Figure 3b, shows a 54.35% improve-
ment of the SVR-GA model over the developed SPR model. The performance of the models
was also compared while using the testing set of doped zinc selenide compounds. The
outcomes of the comparisons are presented in Figure 3c,d, on the basis of RMSE and MAE,
respectively. The developed SVR-GA model outperforms the SPR model, with a perfor-
mance enhancement of 11.49% and 3.21%, on the basis of RMSE and MAE, respectively.
The values for each of the computed performance measuring parameters, as well as the
percentage improvement, are presented in Table 3.

Table 3. Computed performance of the developed model using evaluation parameters.

Dataset SVR-GA (ev) SPR (ev) % Improvement

Training CC 0.8988 0.7267 19.1440
RMSE 0.2040 0.3076 33.6846
MAE 0.0974 0.2134 54.3485

Testing RMSE 0.5256 0.5939 11.4934
MAE 0.4296 0.4439 3.2129

4.3. Energy Gap Tailoring in ZnSe Semiconductors with Copper–Indium Co-Doping Using
Developed SVR-GA Model

The introduction of copper and indium nanoparticles, as co-dopants, into the lattice
structure of the ZnSe semiconductor alters the energy gap of the parent semiconductor,
as presented in Figure 4. The results of the developed SVR-GA model in this work align
with the experimentally measured values [8]. Details of the experimental preparation of
the samples can be found here [8]. Shifting of the absorption edge to longer wavelengths,
as characterized by reduced energy gaps, was observed after copper–indium co-doping.
Hence, the tendency to absorb photons of low energy was enhanced. The free carriers’
concentration in the conduction band can be further influenced by the presence of the
incorporated doped ions, which, ultimately, enhance the solar reflectance propensity of the
parent semiconductor [8]. Since the estimates of the developed model agree excellently
with the measured values, the photon absorption mechanism of the parent semiconductor
can be enhanced for solar application using the developed model.
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4.4. Effect of Sulfur Particle Incorporation on Energy Gap of Doped ZnSe Semiconductor Using
Developed SVR-GA Model

The energy gap tuning effect of sulfur particles’ incorporation on the lattice structure
of zinc selenide nanostructured semiconductors is presented in Figure 5, using the devel-
oped energy gap estimation model. The results of the developed model agree well with
the measured values due to the intrinsic capacity of the SVR-based model to acquire and
approximate the pattern relating to the semiconductor size, lattice parameters, and energy
gap [36]. The energy gap of the parent semiconductor decreases with the increase in the
concentration of sulfur nanoparticles, due to the absorption edge shifting to longer wave-
lengths. These observed characteristics of the doped zinc selenide semiconductor by the
developed hybrid model (which have been validated by the experimental values) would be
of great significance to tailor zinc selenide semiconductors for optoelectronics applications.
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4.5. Outcomes of External Validation of the Developed Hybrid Model

The future generalization and potential of the developed hybrid SVR-GA model were
further investigated and validated using another set of data extracted from different zinc
selenide-based semiconductors, which were not included during the training and testing
phases of model development.

Table 4 presents the results of the external validation. The estimates of the developed
hybrid SVR-GA model were characterized and evaluated through CC, RMSE, and MAE
computations, as presented in Table 4. The outstanding performance demonstrated by
the developed hybrid model strongly indicates the potential of the developed model in
tailoring zinc selenide-based nanostructured semiconductors in different applications, such
as solar pigment, optoelectronics, among others.

Table 4. Results of further validation of the developed model.

a (
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5. Conclusions

The energy gap of the zinc selenide (ZnSe) nanostructured semiconductors with
incorporated foreign materials is modeled through the stepwise regression (SPR) algorithm
and the hybridization genetic algorithm (GA) in the support vector regression (SVR)
algorithm. The lattice parameters and nano-size of the semiconductor were employed
as the model’s inputs. These inputs and their corresponding energy gaps were extracted
from forty-three doped compounds of ZnSe nanostructured semiconductors for model
development. The developed model was further validated using an external set of data
extracted from another set of ZnSe compounds that were not included during model
development. The two developed models (SPR and SVR-GA) were compared through
CC, RMSE, and MAE evaluation, and the developed SVR-GA model shows outstanding
performance over the SPR model, due to the excellent global convergence of GA, as well
as the intrinsic features of the SVR-GA model to address non-linear problems through
data transformation. The developed SVR-GA model investigates the influence of sulfur
nano-particle incorporation on the energy gap of ZnSe semiconductors, as well as the
energy gap tailoring effect of copper–indium co-dopants. The outstanding performance
demonstrated by the developed hybrid model shows its potential in tailoring the energy
gap of ZnSe semiconductors for solar, optoelectronic, and photocatalytic applications.
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