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Abstract: Due to the high cost and low accuracy of high-temperature tests, the viscosity data for
multicomponent slag systems is difficult to be obtained precisely. Therefore, it is important to fulfill
the viscosity database of the multicomponent slag systems via reasonable methods with lower costs.
In this study, a viscosity prediction method based on the machine learning method was proposed for
the CaO-SiO2-FeO-Al2O3-P2O5 quinary slag system. To provide valid data for the machine learning
model, the viscosity predicted by the molecular dynamic method and multiple semi-empirical models
were compared to verify the applicability of these methods to the slag system. Different machine
learning models were also developed. The results showed that the prediction results from the
gradient boosting decision tree method were the most accurate for the CaO-SiO2-FeO-Al2O3-P2O5

quinary slag system. Based on this method, a color-map concerning the numerical effect of Al2O3

and P2O5 contents and slag viscosity is provided, which also provides assistance for the composition
engineering to fulfill a certain demand on the viscosity design.

Keywords: metallurgical slag; machine learning; viscosity; molecular dynamic; Pearson
correlation coefficient

1. Introduction

Slag is widely applied in the ironmaking and steelmaking process for steel purification.
Many scholars are studying the online modification of hot steel slag [1] to obtain slag
with practical application effects by adjusting its physical phase and microstructure [2,3].
Among all the slag properties, viscosity is one of the most important properties concerning
the smelting performances of the slag. The slag viscosity determines the fluidity of the slag,
the speed of mass transfer in the slag, the effect of slag–steel separation, and the metal yield.
Wang [4] investigated the changes in the CaO-SiO2-Al2O3-MgO-FetO-P2O5 slag system
caused by the composition change of P2O5 and FetO by Raman spectroscopy, Fourier
transform infrared reflection, nuclear magnetic resonance, and viscosity measurements,
reporting that P5+ copolymerizes with [SiO4]. Therefore, the increase in P2O5 leads to
an increase in polymerization degree and viscosity. Wang [5] also claimed that the slag
polymerization and the viscosity of the CaO-SiO2-Al2O3-MgO-FeO slag system increase
with the increase in Al2O3 content based on Raman and magic angle spinning nuclear
magnetic resonance.

However, the experiments still have limitations. Besides the difficulties to conduct
experiments at such a high temperature, the instrumentation, fluid state, and homogeneity
can all contribute to errors in the experimental results. Seshadri et al. [6] suggested that the
most effective way to confirm viscosity is to repeat the experiment on two devices with
overlapping shear rate ranges but with different modes of operation. As components in
the slag system increase and the temperature rises, less experimental data are available. To
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numerically analyze the influencing factors on the slag viscosity, many researchers have
developed reasonable models based on the limited amount of experimental data to predict
viscosity over a wide range of components.

Bouhadja et al. [7] used the reverse non-equilibrium molecular dynamics (RNEMD)
method to calculate the shear viscosity of (CaO–Al2O3)1–x(SiO2)x liquid melts in calcium
aluminosilicate glass system. Santhy et al. [8] revealed the relationship between the net-
work character and viscosity of silicates that the viscosity decreases with increasing O/Si
ratio. Tang et al. [9] established a model based on the effect of different oxides on the
polymerization of slags, which was built according to the NBO/T model proposed by
Mills [10] for estimating the viscosity of silica-aluminate melt and has a good prediction for
CaO-SiO2-MgO-Al2O3-R2O system slag. However, the data coverage of the semi-empirical
viscosity model is still limited.

With the development of computing power, machine learning (ML) provides a practi-
cal way to analyze complex data relationships. In contrast to physical models, ML models
provide satisfying data extensibility. Jiang et al. [11] performed a PCA-KNN model for the
prediction of blast furnace slag viscosity based on a large number of experimental data,
which also showed accuracy in terms of data sets containing temperature and alkalinity
information. Saigo et al. [12] proposed Einstein–Roscoe regression (ERR) regression, which
employs a Gaussian process-based migration learning framework to improve the accuracy
of high-temperature slag viscosity datasets using auxiliary measurement regression param-
eter estimates provided at a balanced reasonable cost. Cai et al. [13] proposed a Kriging
interpolation geometric model with the introduction of an oxide property weight correc-
tion for multi-system slag viscosity prediction with less error than the empirical model
and can be extended to the continuous physicochemical properties of multi-component
slags. Huang et al. [14] automatically predicted the viscosity of the slag by an innovative
two-stage predictive modeling approach and demonstrated its effectiveness on a collected
unbalanced data set. A two-equation model with a six-order polynomial combined with
the Arrhenius formula was developed accordingly.

In this study, the ML viscosity prediction model was developed based on CaO-SiO2-
FeO-(P2O5)-(Al2O3) slag. Molecular dynamics (MD) simulations of the slag system were
firstly carried out in order to investigate the influence of different compositions of P2O5
and Al2O3 in the structure of the slag system. The viscosity of the slag was predicted by
the RNEMD method to investigate the correlation between the slag structure properties
and the physical properties. Several semi-empirical models were also adopted for viscosity
prediction. The results were compared based on the Pearson correlation coefficient with
the contents of P2O5 and Al2O3. ML model was further developed for viscosity prediction
of the CaO-SiO2-FeO-(P2O5)-(Al2O3) slag system. The results of the study can provide a
theoretical basis for subsequent studies of CaO-SiO2-FeO-(Al2O3)-(P2O5) slag systems with
specific compositions.

2. Calculation Methods
2.1. Model Construction and Parameter Selection

The simulation system was established based on the CaO-SiO2-FeO-(P2O5)-(Al2O3)
slag system. The basicity of CaO/SiO2 was fixed at 1.5. The FeO content was fixed at 30%.
The absolute temperature was kept at 1873 K. The mass fraction of Al2O3 and P2O5 in
the slag system varied in the range of Al2O3: 0–30%; P2O5: 0–30%. A total of 64 sets of
simulations were conducted. The Al2O3 and P2O5 contents in each set of simulations and
the corresponding case names are shown in Figure 1. Detailed compositions and density of
different slag systems can be referred to in Table S1.
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Figure 1. The Al2O3 and P2O5 contents in each set of simulations and the corresponding case
names: (a) CaO-SiO2-FeO-Al2O3-P2O5 slag system (AP model); (b) CaO-SiO2-FeO-Al2O3 slag system
(A model); (c) CaO-SiO2-FeO -P2O5 slag system (P model).

In this study, a cubic box of approximately 5000 atoms was built. The size of the box
was determined by Equations (1) and (2).

1
ρ0

slag
= 0.45ω(SiO2)% + 0.285ω(CaO)% + 0.204ω(FeO)% + 0.48ω(P2O5)%(1400 ◦C) (1)

ρslag = ρ0
slag + 0.07

(
1400− T

100

)
(2)

where ω(MO)% is the mass fraction of the oxide composition in the slag, T is the actual
temperature of the system, and ρslag is the density of slag melt, g/cm3.

The Born–Mayer–Huggins interatomic potential function and Lennard–Jones two-body
potential function were adopted in the present simulations. These two potential functions
have been widely used in silicate systems and showed good results [15–17]. The functions
are shown in Equations (3) and (4), and the parameters are shown in Table 1.

Uij(r) =
qiqj

rij
+ Aije

(−Bij(r)) −
Cij

r6
ij

(3)

Evdw = Dij

{
−2
[ xij

x

]6
+

[ xij

x

]12
}

(4)

where Uij(r) is the interatomic pair potential, qi,qj is the ionic charge, rij is the inter-ion
distance, Evdw describes the van der Waals force interactions, Dij is the well depth, and xij is
van der Waals bond length.

The simulation process was carried out with the melt quenching method. In the
beginning, each sample was relaxed for 150 ps at 5000 K in a regular system synthesis (NVT),
followed by a cooling rate of 1013 K/s to 1873 K in 312.7 ps. Data were collected in a holding
time of 1873 K for more than 0.3 ns. All the MD simulations were performed using the
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package [18]. The
integration time step was set to 1 fs with a cut-off value of 10 Å for short-range interactions
and a cut-off value of 10 Å for Coulomb interactions. Finally, the radial distribution
functions, coordination numbers, atomic structure, and viscosity were analyzed with the
software VMD (1.9.3, University of Illinois at Urbana-Champaign, USA, open access), Ovito
(basic, 3.5.4, Germany, open access), and ISAACS (V2.1, Central Michigan University, USA,
open access) [19–21].
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Table 1. The potential function parameters used in this calculation [15–17].

Ion i Ion j Aij (gÅ2/fs2) βij (1/Å) Cij (gÅ8/fs2)

P P 4.56 × 10−22 7.0600 0
P Ca 2.64 × 10−21 12.5000 0
P Si 1.73 × 10−23 12.5000 4.49 × 10−25

P Fe 2.05 × 10−22 6.2500 0
P O 3.04 × 10−23 3.4500 0

Ca Ca 5.27 × 10−21 6.2500 6.9501 × 10−26

Ca Si 4.28 × 10−22 6.2500 0
Ca Fe 3.53 × 10−23 6.2500 0
Ca O 1.15 × 10−20 6.0600 1.39 × 10−25

Si Si 3.47 × 10−23 6.2500 0
Si Fe 9.22 × 10−23 12.9001 0
Si O 1.01 × 10−21 6.0600 0
Fe Fe 4.7 × 10−23 3.4500 0
Fe O 6.41 × 10−22 5.1600 0
O O 2.4 × 10−20 5.8800 2.78 × 10−25

Al Al 6.6302 × 10−23 6.2500 0
Ca Al 5.9095 × 10−22 6.2500 0
Si Al 4.7906 × 10−23 6.2500 0
O Al 1.3775 × 10−21 6.0606 0

Ion i Ion j Dij xij

Fe Al 0.0036 3.71
P Al 0.017018 4.323

2.2. RDF and CN Calculations

The radial distribution function (RDF) is usually determined by calculating the dis-
tance between all particle pairs and binning them into a histogram. The histogram is then
normalized to the ideal gas. The expression is shown in Equation (5). In the RDF value
curve, the first extreme value is the distance between the atom and its neighbors. The area
under the extreme value curve is calculated as the coordination number (CN), with the
expression in Equation (6).

g(r) =
V
N

n(r, ∆r)
4πr2 (5)

N = 4π
∫ r1

r0
r2g(r)ρdr (6)

where N/V is the number density of particles within dr, n(r,∆r) is the average number of
other atoms around the central atom, r0 is the rightmost position starting at r = 0 where g(r)
is approximately zero, and r1 is the first minimal value.

2.3. Viscosity Calculation Method

The viscosity of a fluid is commonly known as a measure of the internal friction that
impedes the flow of the fluid. In MD studies, the calculation of viscosity is essential for the
analysis of fluid transport properties and thermal properties.

Muller-Plathe [22] proposed a method to calculate shear viscosity in terms of RNEMD,
which was achieved by exchanging momentum and artificially constructing the shear field;
the formulas are shown in Equations (7) and (8). The velocity gradient and shear rate can
be obtained from the simulation accordingly. This method has been applied to many fields,
such as nanofluids, for the calculation of thermally conductive viscosity [23,24]. In this
simulation, the RNEMD method was also adopted to calculate the viscosity of different slag
systems. During the calculation, the two ends were fixed, and the system was sliced along
the Z-axis. 50 slices were cut. The momentum components at the center and both sides
were exchanged to construct the velocity gradient and form the shear field to calculate the
viscosity. The schematic diagram is shown in Figure 2. During the calculation, the slag was
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considered as a liquid state. The solid fraction was not introduced in the model, which may
cause some inaccuracies.

jz(px) = −η
∂v
∂x

(7)

η = −
Σ

trans f er
(px,1 − px,11)

2∆tLxLy

〈
∂vx
∂Z

〉 (8)
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Moreover, the viscosities of different slag systems in a full liquid state were also predicted
by several semi-empirical models, including the NPL model [25], Urbain model [26,27], and
Kondratiev and Jak model [28]. The predicted results were compared with those from
RNEMD methods. The relation between the structure of different slag systems and the
predicted viscosities was further analyzed for the applicability assessment of these perdition
methods in terms of the slag systems in this study.

2.4. Machine Learning (ML) Methods

In this paper, four ML methods, namely artificial neural network (ANN) [29], random
forest (RF) [30], Support Vector Machine (SVM) [31], and gradient boosting decision tree
(GBDT) [32] were used based on the MATLAB toolbox to calculate the corresponding
properties of the models for prediction. ANN is an information processing system that
mimics the structure and function of neural networks in the human brain by simulating
neuronal activity with a mathematical model. ANN usually shows better performance for
fuzzy systems [33]. RF is an integrated algorithm consisting of decision trees. RF achieves
the prediction of properties by building a large number of decision trees to form a forest.
SVM performs non-linear classification by a kernel method and uses a hinge loss function
to calculate empirical risk. A regular term to optimize structure risk in the solution system
is usually added in this method. GBDT consists of multiple decision trees and accumulates
the conclusions of all trees as the final result. GBDT performs well on low-dimensional
and non-linear data. In this study, the P2O5 and Al2O3 contents were used as independent
variables. The viscosity calculated by Urbain’s method was used as the target variable. The
optimal ML model is evaluated by Root Mean Squared Error (RMSE).

3. Results and Discussion
3.1. Slag Structure Analysis

In the basic CaO-SiO2-FeO converter slag system, the Si4+ in the system acts as a
network-former and has a strong adsorption capacity for surrounding oxygen atoms due
to its high charge and small radius. Si atoms can combine with O and form σ-bonds. When
the p-orbitals of oxygen atoms are filled, the dx-pπ bonds can be formed with the d-orbitals
of Si, thus enhancing the Si-O bonds. These characteristics lead that silicate structures
are easy to form large irregular short-range ordered aggregates. A certain proportion of
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P2O5 and Al2O3 exhibit similar properties when brought into the system. The increase
in these compositions helps increase the degree of the system polymerization. Figure 3
shows the structures of CaO-SiO2-FeO-Al2O3 (A model), CaO-SiO2-FeO-P2O5 (P model),
and CaO-SiO2-FeO-Al2O3-P2O5 (AP model). The [SiO4], [AlO4], and [PO4] tetrahedral
structures of O combined with Si4+, Al3+, and P5+ are present in Figure 3a–c, respectively,
as the main body of the grid structure. While Ca2+ and Fe2+ in the slag exist as free states
in the interstices of the structure.
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Figure 3. Atomic distribution of the AP model. Ca (orange), Fe (green), O (red), Al (pink), P (blue),
and Si (yellow): (a) CaO-SiO2-FeO-Al2O3 model; (b) CaO-SiO2-FeO-P2O5 model; (c) CaO-SiO2-FeO-
Al2O3-P2O5 model.

Figures S1–S3 show the RDFs and CNs of the main atomic pairs in the P model, A
model, and AP model, respectively. Based on the RDF curves and characteristic positions
of the different models, the detailed bond lengths are shown in Table S2. The bond lengths
barely change with the slag compositions. There are no obvious coordination plateaus in
the CN curves of Ca-O and Fe-O. While the CNs of Si-O all remain around 4, indicating
that the tetrahedral structure of Si-O is quite stable, as shown in Table S3. The coordination
plateau of P-O is also stable and constant at 4. The CNs of Al-O have a tendency to increase,
indicating that with the increase in Al content, Al3+ and O2- have a tendency to form an
octahedral structure with a coordination of 6.

3.2. Oxygen Network Structure Analysis

The variation of different oxygen types for the A model and the P model is shown
in Figure 4. In the A model, with the increase in Al2O3 content, the content of bridging
oxygen increases, and the content of non-bridging oxygen and free oxygen decreases.
When Al2O3 content is less than 10%, OA-type non-bridging oxygen increases rapidly, and
AOA-type bridging oxygen grows slowly. When Al2O3 content exceeds 10%, the growth
rate of SOA-type bridging oxygen slows down, and AOA-type bridging oxygen increases
rapidly. The OA-type non-bridging oxygen increases more slowly when the Al2O3 content
is above 20%. In the P model, the increase in P2O5 content led to an increase in PO-type
non-bridging oxygen and SOP-type bridging oxygen content in the slag. The FO in the
slag system decreased under the aggregation caused by P2O5. Based on the approximate
relationship between the content of bridging oxygen proposed by Diao [15] and the local
structure changes in this simulation, which are shown in Equations (9)–(11), the Si-O-P
connection is more stable than SOS and POP at higher P2O5 content. The growth rate of
AOA is greater than the growth rate of SOA with the increase in Al2O3 content when the
Al2O3 content is greater than 10% due to the influence of Si in the slag.

P-O-P+ Si-O-Si→2(Si-O-P) (9)

Al-O-Al+ Si-O-Si→2(Al-O-Si) (10)

P-O-P+ Al-O-Al→2(P-O-Al) (11)
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Figure 4. Various O-type in A model and P model: (a) A model; (b) P model (BO: bridge oxygen;
NBO: nonbridging oxygen; FO: free oxygen; OP: O-P type NBO; OS: O-Si type NBO; OA: O-Al type
NBO; POP: P-O-P type BO; SOS: Si-O-Si type BO; AOA: Al-O-Al type BO; SOA: Si-O-Al type BO;
SOP: Si-O-P type BO; AOP: Al-O-P type BO).

Figure 5 shows the changing trends of BO, FO, and NBO in the AP model. For the BO
content, when the Al2O3 content is fixed, the BO content barely increases with the increase
in P2O5 content. When the P2O5 content is fixed, the BO content increases significantly with
the increase in Al2O3 content. For the NBO content, when the Al2O3 content, the increase in
P2O5 content impels the NBO content to increase slightly. When the Al2O3 content is fixed,
the content of NBO decreases as the content of Al2O3 increases. Some of the NBOs transfer
to BO with the assistance of Al3+. For the FO content, the increase in both Al2O3 and P2O5
content decreases the FO content in the slag. The covariances between the different oxygen
types and the content of Al2O3 and P2O5 were analyzed. The results are shown in Table 2.
There is a strong positive correlation of Al2O3 with BO but a strong negative correlation
with NBO. The Al2O3 and P2O5 contents also showed the same negative correlation for FO.
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Table 2. Analysis of covariances for different types and components of oxygen.

Covariance Al2O3 P2O5

BO 0.181464 0.026783
NBO −0.13103 0.026341
FO −0.05388 −0.05367

Figure 6 shows the effects of Al2O3 and P2O5 on different types of NBO and BO in
the slag. For the NBO, the content of OP increases with the increase in P2O5 content. The
increase in Al2O3 content hardly affects the content of OP. The increase in Al2O3 content
leads to the increase in OA content, but the increase in P2O5 content slightly decreases the
content of OA. Combined with the changing trend of BO, it can be obtained that when the
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P2O5 content increases, the P atom combines with OA to form POA-type bridging oxygen.
The depolymerization effect of Ca2+ and Fe2+ on the structure of AOA [34] also results in a
higher OA content at low P content and high Al content in the slag. The increases in Al
and P content also have the same reducing effect on the OS content. These OS structures
will polymerize into structures such as SOA and SOP accordingly. As for BO, POP hardly
appears. The AOA content increases with the increase in Al content. The AOA structure
can be influenced by the depolymerization effect of Ca2+ and Fe2+, while the P2O5 content
barely affects the AOA structure. In the slag system with low Al and high P contents, the
SOS-type BO is easier to be formed. While high Al and low P content reduce the SOS
content on the other hand. The POS-type bridging oxygen is only observed in the slag
system with higher P2O5 content. When the Al content increases, Al content promotes the
production of POS-type BO. The POA-type BO exists in the slag system with high Al and P
contents. The SOA-type BO increases with the increase in Al content. Figure 7 shows the
reaction mechanism of the oxygen network structures under the effects of P and Al atoms.

Crystals 2022, 12, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 6. Various NBO and BO in AP models: (a) OP; (b) OA; (c) OS; (d) POP; (e) SOS; (f) AOA; (g) 
POS; (h) POA; (i) SOA. 

 
Figure 7. Schematic diagram of the reaction principle of the polymerization process Ca (orange), Fe 
(green), O (red), Al (pink), P (blue), Si (yellow): (a) Formula (9); (b) Formula (10); (c) Formula (11). 

3.3. Distribution of Bond Angles 

Figure 6. Various NBO and BO in AP models: (a) OP; (b) OA; (c) OS; (d) POP; (e) SOS; (f) AOA;
(g) POS; (h) POA; (i) SOA.

3.3. Distribution of Bond Angles

Figures 8 and 9 show the bond angle distributions in the [SiO4], [PO4], and [AlO4]
structures at 1873 K for the A model, P model, and AP model. In A model and P model, it
can be seen that the bond angles of O-Si-O are around 109.0–109.1◦, which is close to the
standard tetrahedral structure of 109.5◦. The bond angles of O-P-O fluctuate in the range
of 109–116◦. The bond angle of O-Al-O stabilizes after the Al content becomes larger and
forms a stable structure. In the AP models, both O-P-O and O-Si-O bond angles are more
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stable and close to the ideal tetrahedral structure bond angles. The O-Al-O bond angles
fluctuate in the range of 102◦–113◦. Combined with the analysis of oxygen types in the
previous section, it can be seen that the presence of both P and Al will affect the degree of
polymerization to some extent. However, these two atoms have little effect on the bond
angles of O-P-O, O-Al-O, and O-Si-O.
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3.4. Viscosity Prediction with MD Models and Semi-Empirical Models

The Viscosity prediction results with the NPL model [25], Urbain model [26,27], Kon-
dratiev, and Jak model [28] were used and analyzed along with RNEMD simulation results,
which are shown in Figure 10.
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It can be found that the viscosity of the slag increases with the increase in P content and
Al content. Based on the NBO/T theory proposed by Mills [10], the amount of non-bridging
oxygen possessed by a single polymer particle contributes significantly to the variation of
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viscosity. The increase in the Al and P content leads to a decrease in NBO/T, which also
increases the slag polymerization and the viscosity.

Due to the absence of experimental data in the slag system in this study, it is difficult
to measure the applicability of these semi-empirical models and the RNEMD method on
the CaO-SiO2-FeO-(P2O5)-(Al2O3) slag systems. Considering that the positive relationship
between the BO number and the contents of Al2O3 and P2O5 has been confirmed by existing
studies [4,5], the Pearson correlation coefficient between BO number and the contents of
Al2O3 and P2O5 was introduced for the applicability assessment of these models of the
viscosity prediction, which is shown in Figure 11. Based on Table 2, the covariances
between BO and the contents of Al2O3 and P2O5 have provided proof that the positive
relationship between BO and Al2O3 is stronger than that between BO and P2O5. Hence,
the positive value of Pearson correlation coefficients of Al2O3 should be larger than that of
P2O5. Only the viscosities predicted by Urbain’s model are in accord with these inferences.
Other viscosity prediction models and RNEMD methods are not suitable for the viscosity
prediction of the slag system in this study. Therefore, Urbain’s model is determined to
be the most applicable for the viscosity prediction of the slag system in this study. The
predicted viscosity data of Urbain’s model was also adopted in the ML models developed
in the following section.
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3.5. ML Model Development for Viscosity Prediction

To improve the accuracy of viscosity prediction by the ML models, different ML models
were developed in this section, including ANN, RF, SVM, and GBDT. Before performing
the prediction, the different model parameters were optimized for implementation. ANN
used two hidden layers with a maximum of 100 iterations and a tolerance of 0.01. RF used
20 decision trees with several bins of 32. GBDT used a loss function with squared error
and 20 decision trees with a convergence tolerance of 0.1. SVM normalized the data with a
regularization parameter is 0.01, and a polynomial kernel function is used with a kernel
parameter p of 1. The prediction results of different ML models are shown in Figure 12.
The values of RMSE between Urbain model data and the prediction results for each ML
model were calculated accordingly, which is shown in Table 3.

Table 3. RMSE of different ML models.

ML Methods GBDT ANN RF SVM

RMSE 0.000424539 0.013676 0.003173 0.011409
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Figure 12. Machine learning results: (a) Prediction results of viscosity by different ML models;
(b) Pearson correlation coefficient of Al2O3, P2O5, and viscosity.

According to the values of RMSE in Table 3, GBDT and ANN have the best and worst
predictive power for the viscosity prediction of the slag system in this study, respectively.
To further prove this conclusion, the Pearson correlation coefficients of viscosity perdition
results from the four ML models were also calculated, which is shown in Figure 12b. Both
Al2O3 and P2O5 contents appear positively correlated with viscosity when we adopted
the GBDT predictor. While in the prediction results of the ANN model, the Al2O3 content
appears to have a negative correlation with viscosity, which is contrary to the rules provided
by the semi-empirical models.

Based on the ML model with GBDT methods, a color-map concerning the numerical
effect of Al2O3 and P2O5 contents and slag viscosity is provided in Figure 13a. The blue
color represents the smaller value of viscosity. The red color represents the larger value of
viscosity. The iso-viscosity lines with a viscosity of 0.15Pa·s, 0.175Pa·s, 0.2Pa·s, 0.225Pa·s,
and 0.25 Pa·s were also extracted in Figure 13b. According to this figure, the slag viscosity of
the CaO-SiO2-FeO-Al2O3-P2O5 slag system in terms of different Al2O3 and P2O5 contents
can be predicted and it could also be used for composition engineering to fulfill a certain
demand on the viscosity design.
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4. Conclusions

(1) With the increase in the mass fraction of Al2O3 and P2O5, the concentration of BO
increases, and the concentration of FO decreases, which complicates the melt structure
of the slag system and increases the polymerization degree.

(2) In the CaO-SiO2-FeO-Al2O3-P2O5 slag system, the content of BO was positively
correlated with the content of Al2O3 and P2O5. The positive correlation was stronger
for the content of Al2O3.
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(3) Different semi-empirical models and RNEMD methods were used to predict the
viscosity of the three slag systems. The reliability of the Urbain model in predicting
the viscosity of the CaO-SiO2-FeO-Al2O3-P2O5 slag system has been proved according
to the Pearson correlation coefficient analysis.

(4) Among all the ML methods in this study, GBDT has the best predictive power for the
viscosity prediction of the slag system in this study, building a credible correlation
between the structure of the CaO-SiO2-FeO-Al2O3-P2O5 slag system and viscosity
prediction. Iso-viscosity lines of the CaO-SiO2-FeO-Al2O3-P2O5 slag system were
provided accordingly.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst12101338/s1, Figure S1: Radial distribution function and
coordination numbers of the major atomic pairs in the P models; Figure S2: Radial distribution
function and coordination numbers of the major atomic pairs in the A models; Figure S3: Radial
distribution function and coordination numbers of the main atomic pairs in the AP models; Table S1:
Component content of different CaO-SiO2-FeO-(P2O5)-(Al2O3) slag systems; Table S2: Bond lengths
of major atom pairs for different models; Table S3: The coordination number of each major atomic
pair for different models.
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