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Abstract: CdTe:Cl doped single crystals were grown under conditions of tellurium excess by using an
accelerated crucible rotation technique, modified vertical Bridgman (ACRT-MVB) method. Chlorine
dopant levels were kept at 4.4 × 1019 at·cm−3, for all growths, while the Te excess level varied from
3.5 to 15% by weight. The relationship between the detector performance, Te inclusions, and resistivity
was investigated in detail. Tellurium excess caused additional nucleation which decreased the average
single crystal grain size. At the same time, the increasing Te excess level improved the electrical
transport properties. In the three Cl-doped, and one In-doped CdTe crystals, detectors from Cl-doped
CdTe grown under 15% Te excess showed better response to gammas and alphas, and high µτ for
electrons (1.8 × 10−3 cm2/V), as well as for holes (5.1 × 10−4 cm2/V). The full-width half maximum
for the Cl-doped CdTe were very large, as the peaks were broadened, especially at high bias. This
could be due to hole trapping in a Cl-related A-center (VCd-ClTe)−, and in Cd- vacancies (VCd)−,
and electron trapping in Te-antisites (TeCd)+.

Keywords: CdTe; radiation detector; mobility-lifetime; medical imaging; Te-inclusions

1. Introduction

The medical imaging market is growing at a compound annual growth rate of 5.8% [1].
A variety of gamma-ray and x-ray detectors, including scintillators and various semicon-
ductor solid-state detectors, are effectively used for medical imaging. Detectors based
on cadmium telluride (CdTe) and cadmium zinc telluride (CZT) have proven to be supe-
rior than the alternatives, and are already replacing scintillator-based equipment in ad-
vanced imaging modalities such as bone densitometry, oncology, dental imaging, molecular
breast imaging (MBI), single photon emission computed tomography (SPECT), and hy-
brid SPECT/CT [2]. CdTe and CZT technology is expected to be used in the detectors
of choice, if it were affordable and available, in nearly all medical imaging modalities
involving ionizing radiation. CdTe has been actively investigated for more than 70 years
for photovoltaics [3–6], room-temperature γ-ray and x-ray radiation detection [7–9], as well
as medical imaging [10]. CdTe, due to its particular set of properties, is a good alter-
native to Si, CZT, and scintillators. CdTe is a II-VI chalcogenide semiconductor with a
band gap of ∼1.5 eV at room temperature, which can be relatively easily doped as p- or
n-type. It has high stability (formation enthalpy ∼100 kJ mol−1), high absorption coefficient
(>5 × 105 cm−1), and near optimum band gap for visible absorption. Its better intrinsic
hole-transport properties [11], compared to CZT [12,13], make CdTe a strong candidate for
applications where stability under very high count-rates is needed.

Even after two decades of research, CdTe and its alloys remain the desired choice for
room-temperature radiation detection, but its widespread use is limited by high-cost due
to the low yield and long production times. The limiting factors for the single crystal yield
include: high melt-to-solid thermal conductivity ratio, the low thermal conductivity of
solid phase, symmetry of the crystal structure, and clustering in the melt [14]. To improve
the yield and performance, several growth techniques, including traveling heater method
(THM), high pressure Bridgman (HPB), vertical Bridgman (VB), and modified vertical
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Bridgman (MVB) have been attempted [15,16]. The addition of the accelerated crucible
rotation technique (ACRT) to MVB has been effective in achieving many desirable aspects,
including improved quality of the crystal, shorter growth time, stable growth interface,
lower tellurium-rich secondary phases, increased uniformity, and highly achieved stoi-
chiometry [17–21]. THM growth rate is ~1–3 mm per day, whereas growth by ACRT-MVB
is ~1–2 mm per hour. Despite being grown at very slow rates, crystals grown by THM have
a high-volume of Te-rich secondary phase [22] which require post-growth annealing [23].

In the current work, CdTe growth, doped with Cl for application to medical imaging,
is studied. The excess Te during the growth is varied, which has both positive and negative
effects. Excess Te causes a cooling effect [24], resulting in more nucleation sites, lowered
grain size, and lower crystal quality. However, Te excess does reduce the Cd-related
defects, especially VCd induced during the lower partial pressure of Cd during the melt
growth [25]. Te-excess improves the charge carrier’s lifetime and mobility, which improves
the detectors spectroscopic performance [24,26,27]. The distinctive electrical transport
property for CdTe:Cl is the dominant hole mobility which is related to the Cl-related
A-center (ClTe-VCd) [28]. In addition, Cl as a dopant cause an increase in the resistivity,
and compared to other dopants, it generated only a shallow donor which has negligible
contribution to the lifetime [29,30].

2. Experimental Procedures
2.1. Crystal Growth

CdTe crystals, including one CdTe:In having 8.8 × 1016 at·cm−3 In with 3.5% excess
Te, and three CdTe:Cl with 4.4 × 1019 at·cm−3 Cl, under various Te excess conditions 3.5,
7.5% and 15%, were grown by using a 43-zone ACRT-MVB, 4 inch electrodynamic gradient
freeze (EDG) furnace. The pBN crucible and fused-quartz ampoule were etched with
aqua-regia solution and 20% hydrofluoric acid solution, respectively. About 1 kg CdTe-
charge was prepared in a glove-bag. The 63 mm inner diameter (ID) pBN crucible, with the
CdTe- charge was sealed in a 69 mm (ID) quartz ampoule, under a 10−8 torr vacuum by
using 5-rotary torches. In all growths, the superheating temperature was kept ~50 K above
the melting point, which varies with the excess percentage tellurium. The temperature
gradient was kept at 50 K/inch, and the cooling rate at 4 K/h between 1273–973 K and
at 35 K from 973 K to the room temperature. Growth rates of 1 mm/h and 2 mm/h were
employed for Cl and In doped crystals, respectively. The concave interface was observed in
all the crystal growth and can be seen clearly in Figure 1c. Further details of the growths
are provided in Table 1.

Table 1. Growth description for all CdTe crystal growths.

No Crystal Growth Dopant
(cm−3)

Teex
(wt.%)

Teex
(cm−3) pBN ACRT

1 CG224 (CRY-1) In: 8.8 × 1016 3.5 9.2 × 1020 Y Y

2 CG241 (CRY-2)

Cl: 4.4 × 1019

3.5 9.2 × 1020 Y Y

3 CG235 (CRY-3) 7.5 2.2 × 1021 Y Y

4 CG247 (CRY-4) 15.0 4.8 × 1021 N Y

CRY-1, the CdTe:In was grown as a reference crystal for three CdTe:Cl growths. Te ex-
cess was achieved with a total of 36.27 g of Te. The crystal growth time was 11.8 days with
a growth rate of 1 mm/h. The ingot and wafers, with highlighted grain-boundaries are
shown in Figure 1a. Ingots had a few big grains with an abundance of twins.
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Figure 1. Pictures for ingots and marked wafers from (a) CRY-1, (b) CRY-2, and (c) CRY-3 growths.

In Cl-doped CdTe crystal growths, the Cl level was kept constant at 4.4 × 1019 at·cm−3.
CRY-2 was grown with the lowest Te excess of 3.5%. The grown ingot and wafer cuts with
marked grain boundaries are shown in Figure 1b. After cutting the tip and heel region,
the bulk region was further cut into axial wafers. Crystals had big grains, and fewer twins
and sub-grain boundaries.

The third growth, CRY-3, was accomplished with 7.5% by weight of excess Te. The grown
ingots and wafers with marked grain boundaries are shown in Figure 1c. The ingot had
large grains with few twins and subgrain boundaries.

CRY-4 was the last growth with the highest excess Te of 15% by weight. The crystal
growth was performed with 2 mm/h rate, 2 times faster than other three growths. The ingot
had a high accumulated Te region at the heel region, as well as the ingot surface, as shown
in Figure 2. The grains were small in size with abundant subgrain boundaries.

Ingots were sand blasted to clean off growth contamination and excess Te at the
surfaces. Roughly 2–3 mm wafers with high Te accumulated region were cut from the
heel side. Ingots were cut into ~2–3 mm thick axial and radial wafers by using a pro-
grammed wire saw. Wafers were marked for the single crystals and were further cut
into ~10 × 10 × 2 mm3 small wafers. Small wafers were 6-sides polished with 1 µm and
0.05 µm Al2O3 particles. Detectors were fabricated by sputtering ~50 nm Au contacts on
two planar surfaces using a plasma chamber. To reduce the leakage current, a few samples
before Au sputtering were etched for 1–2 min with 1–2% bromine methanol solution.
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ingot and the axial wafer from the bulk region with marked small grains.

2.2. Characterizations

To test the materials’ quality and detectors’ performance, different characterizations
were employed. Electrical properties were measured by using current/voltage (I/V)
characteristic plots. The setup includes a planar geometry configuration (parallel plate
configuration) using a Keithley 6105 resistivity adaptor in combination with a Keithley
237 high voltage power supply.

To evaluate the Te-rich secondary phases, their size, volumes and densities, infrared
(IR) microscopy was performed on wafers from different locations in the ingot. The statisti-
cal inclusions distribution was performed by using Image Pro Plus software. An 830 nm
illumination light was used to study the Te phases. 2–5 samples from each growth were
analyzed to quantify Te-rich secondary phases. The scanned area in XY-plan was kept
5 × 5 mm2, with 10 × 10 frames within a 0.5 mm thickness along Z-axis.

The detector performance was tested by using γ-ray spectroscopy. The charge trans-
port properties, as defined by the mobility life- time product, i.e., µτ-product, was deter-
mined by fitting the Hecht equation. In γ-ray spectroscopy, the charge induced due to the
radiations is measured by the feedback capacitor in the charge sensitive preamplifier that
converts the current from the drift of charge carriers inside the detector to a proportional
voltage pulse. Signal is further enhanced by an amplifier and then passed through a series
of pulse-shaping circuits. The signal is then passed through a set of ADC (analog to digital
converter) and MCA (multi-channel analyzer) circuits. Plotting the channel vs. number
of pulses in each channel generates a pulse height spectrum which is used to determine
the peak positions for a given irradiation source and applied electric field. The field depen-
dence of the peak position can be fit into the following modified Hitch equation, where the
hole contribution is ignored in the total signal,

Q/Q0 = λe D−1(1 − exp(−D/λe)) + Bg

Here, Q is the charge collected by the detector, Q0 the charge generated by the incident
radiation, D is the detector thickness, λe is the electron drift length and is equal to µτeE.
Bg is the system background which is roughly −(20–50).

To test the CdTe:Cl detectors for the high flux applications, an experiment was de-
signed and performed with an 241Am source with activity of 4.8 Ci in the TRIGA Mark II
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nuclear reactor facility at Kansas State University. The target was to achieve 500,000 counts
per second (cps)/mm2. Details are reported in Section 3.5.

3. Results and Discussion
3.1. Crystal Quality

During the melt growth, different types of extended defects such as the subgrain
boundaries, twins, and Te secondary phases are induced in the crystals [31]. The crystal
quality varies with the Te excess during the crystal growths. The studies show that in-
creasing Te excess cause a decrease in the melting point (liquidus), while at the same time,
it reduces the solid CdTe region due to the retrograde solidus character. Thus, Te excess
in the melt-solution meets a smaller deviation from stoichiometry [32]. The grains are
becoming smaller with the increasing Te excess due to more nucleation [24]. Comparing
CRY-1 and CRY-2, In-doped versus Cl-doped crystals (Figure 1), the latter has slightly larger
grains and better crystal quality with fewer twins. In Cl-doped growths, it is clear that the
3.5% excess Te growth has a superior quality; the crystallinity is better with fewer twins
and larger grains. This indicates that Te excess enhances the nucleation causing subgrain
boundaries and smaller grains.

3.2. IR Spectroscopy

In CdTe, Te inclusions are generated from the non-stochiometric melt growth. In addition,
the excess Te during the growth affects the flux of inclusions [33]. The density and the size
of the Te inclusions drastically affect the detector performance. Te inclusions > 10 µm with
a density ~105 cm−3 or greater degrade the detector performance [34–36].

The IR images and the inclusion data for each growth are shown in Figures 3–6.
In CRY-1, CdTe:In, a 3.5% excess Te induced large inclusions (Figure 3). In all three CdTe:Cl
growths, the densities of inclusions remain roughly 1–8 × 105 cm−3. On the other hand,
the mean size of Te inclusions with the increased level of Te in the melt decreases from
micrometer to nanometer level. In the case of CRY-4, due to the higher growth rate, some Te
remained undissolved and migrated towards the heel during the solidification of the crystal.
Inclusion average size and density is comparatively low in Cl-doped crystals. The excess
Te induces electrically inactive traps (TeCd

0) and some Cl-related A-centers (ClTe-VCd)−.
The Cl related traps, A-centers and Cl antisites [ClTe]+ are reported as the most stable and
dominant traps with a low formation energy ~0.12 eV [37,38]. These traps are causing a
p-type conductivity in CdTe:Cl crystals [39].
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Figure 3. IR microscopy data for CRY-1 sample; (a) Te decoration on a dislocation side. (b) Large
prismatic and triangular inclusions.
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Figure 6. CRY-4, a 5 × 5 mm2, multi grain sample; (top) Te inclusions with average density
~5.5 × 105 cm−3 and size ~0.02 µm. (bottom) 2d-IR image with an inset showing inclusions’ alignment.

Another reason for decreased IR detected density and size of Te inclusions, as de-
termined by the IR data shown in Figures 3–7, may be due to the Te incorporation to
its stoichiometric positions causing the dissociation of A-centers and ClTe

+ trap. In addi-
tion, when there is a probability of In addition, there is a probability for the formation of
TeCd

+. These new states of point defects may change the nature of CdTe:Cl from p-type to
n-type. The role of point defects in the electrical properties of CdTe:Cl crystals need to be
investigated in the future.
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Figure 7. Te inclusions, (a) size and (b) density for samples from different positions in CdTe:Cl ingots.

A comparison plot for Cl-doped samples shown in Figure 7 indicates that the average
size and density of Te inclusions is slightly decreasing with the increasing weight % of
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excess Te. There is a high probability for Te to compensate the Cd vacancies by forming
more TeCd

+ or the dissociations of ClTe
+ and A-center, as mentioned before.

Different isothermal and gradient annealing treatments have been effectively em-
ployed to reduce the Te inclusions [40–42]. Besides single step annealing, 2-step heat
treatments involving Cd- and Te-annealing have been successfully used to eliminate the
inclusions as well as to recover the resistivity of the crystals [43,44]. To study the isothermal-
annealing effects on inclusions in CdTe:Cl crystals, Cd annealing experiments were per-
formed at 750 ◦C for 12 h. The size and the density of inclusions decreases after annealing,
as shown in IR images in Figure 8 and summary plots in Figure 9. The change in inclusions
is probably due to the change in Te-related point defects, as well as the thermal migration of
inclusions towards the surface of the samples. The deep trap TeCd

+, which mainly caused
the high resistivity is compensated by Cd, as a result the resistivity decreases. In addition,
the Cd annealing causes a decrease in Cd vacancies and an increase in Cd interstitials, over-
all causing a decrease in resistivity. The Cl-induced trap, ClTe

+ still remains dominant over
other traps. During the annealing, metallic impurities originally gettered in Te inclusions
are detrapped. An adverse consequence of Cd annealing is due to the abovementioned
rearrangements of point defects, resulting in a significant deterioration of the resistivity,
roughly 2–4 orders of magnitude. The attempt to measure the spectral response of the
annealed detectors failed due to the low resistivity, high dark current, and low signal to
noise ratio. During the annealing some big triangular inclusions, due to the so-called
dislocation-loop punching mechanism, were identified [45]. These defects are probably
induced due to the exothermic reaction of the elemental Te within the inclusions with
the diffused Cd atoms. The generates heat and pressure in the CdTe matrix, causing a
distortions and movements around inclusions and the dislocations.
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Figure 8. IR images for CRY-3, 5 × 5 mm2 wafer, (a) as grown with big inclusions and (b) Wafer after
the annealing. Insets show a 0.5 × 0.5 mm2 area, where big inclusions in (b) are annealed out.
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Figure 9. A comparison of Te inclusions; (a) size, and (b) density, for CdTe:Cl as-grown (AG) and
after annealing at 750 ◦C for 12 h (Ann).
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3.3. Electrical Characterizations

Two to five detectors from different growth positions are tested for bulk resistivity by
measuring I/V characteristic plots. The results from I/V characteristic plots for In and Cl
doped crystals grown under 3.5% excess Te are shown in Figure 10. The average values of
resistivity are provided in Table 2.

Crystals 2022, 12, x FOR PEER REVIEW 9 of 17 
 

 

3.3. Electrical Characterizations 

Two to five detectors from different growth positions are tested for bulk resistivity 

by measuring I/V characteristic plots. The results from I/V characteristic plots for In and 

Cl doped crystals grown under 3.5% excess Te are shown in Figure 10. The average values 

of resistivity are provided in Table 2. 

Table 2. Summary of results for CdTe:Cl growths. Nt is volumetric density, OD is outer diameter. 

Quality Parameters 
CRY-1 

3.5% Te-Excess 

CRY-2 

3.5% Te-Excess 

CRY-3 

7.5% Te-Excess 

CRY-4 

15% Te-Excess 

Crystal Quality— 

Te inclusion 

Size/Density 

Prismatic defects 

and  

Big inclusions  

Nt: (1.1–8.0) × 105 

cm−3 

OD: 1.2–4.0 mm 

Big inclusions 

Nt: (3.3–7.2) × 105 cm−3 

OD: 0.01–1.6 mm 

Medium inclusions 

Nt: (2.5–5.5) × 105 

cm−3 

OD: 0.01–0.02 mm 

Small inclusions 

Resistivity: (Ω-cm) (4–8) × 108 ~1.6 × 109 (0.6–2) × 109 (1–5) × 109 

µτe-product (cm2/V) (0.09–0.1) × 10−4 (0.2–0.4) × 10−3 (0.3–1.1) × 10−3 (0.5–1.8) × 10−3 

µτh-product (cm2/V) 

Average value 

 (1.04–1.80) × 10−4 (1.04–1.80) × 10−4 (0.25–1.3) × 10−3 

~0 ~1.33 × 10−4 ~2.2 × 10−4 ~5.12 × 10−4 

 

Figure 10. I/V plots for the CRY-1 and CRY-2 central axial wafers (AS1), tested at different loca-

tions along the growth directions. The CRY-1 (top) samples had the lowest average resistivity ~6 × 

108 Ω-cm, while CRY-2 (bottom) had ~5 × 109 Ω-cm, the highest amongst the four growths. 

Figure 10. I/V plots for the CRY-1 and CRY-2 central axial wafers (AS1), tested at different locations
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while CRY-2 (bottom) had ~5 × 109 Ω-cm, the highest amongst the four growths.

The CRY-1 resistivity, as shown in Figure 10, is the lowest amongst the group. It in-
dicates that at 3.5% Te-excess, combined with In doping, was unable to achieve the high
resistivity (~1010 Ω-cm), a prerequisite for a room temperature radiation detectors. The av-
erage resistivity for the CRY-2 crystals was ~5 × 109 Ω-cm, the highest amongst the group.

In CRY-3 crystals, a central wafer was analyzed for resistivity at different positions
with a focus on the surface preparation of the detectors before contacts fabrication. Data
indicates that resistivity increases slightly along the growth direction, which is due to the
increasing Te concentration along the growth direction. In addition, the surface etching is
not making any improvement. Resistivity in wafer is increasing from 0.6–1.9 × 109 Ω-cm,
for detectors polished and etched with 1% Br-methanol solution for 1 min and hydrogen
peroxide for 5 min.
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Table 2. Summary of results for CdTe:Cl growths. Nt is volumetric density, OD is outer diameter.

Quality Parameters CRY-1
3.5% Te-Excess

CRY-2
3.5% Te-Excess

CRY-3
7.5% Te-Excess

CRY-4
15% Te-Excess

Crystal Quality—
Te inclusion
Size/Density

Prismatic defects
and

Big inclusions

Nt: (1.1–8.0) × 105 cm−3

OD: 1.2–4.0 mm
Big inclusions

Nt: (3.3–7.2) × 105 cm−3

OD: 0.01–1.6 mm
Medium inclusions

Nt: (2.5–5.5) × 105 cm−3

OD: 0.01–0.02 mm
Small inclusions

Resistivity: (Ω-cm) (4–8) × 108 ~1.6 × 109 (0.6–2) × 109 (1–5) × 109

µτe-product (cm2/V) (0.09–0.1) × 10−4 (0.2–0.4) × 10−3 (0.3–1.1) × 10−3 (0.5–1.8) × 10−3

µτh-product (cm2/V)
Average value

(1.04–1.80) × 10−4 (1.04–1.80) × 10−4 (0.25–1.3) × 10−3

~0 ~1.33 × 10−4 ~2.2 × 10−4 ~5.12 × 10−4

The CRY-4 wafer was tested at 3 different locations. The crystal exhibits similar
behavior of increasing resistivity along the growth direction, as observed in previous
growths. The average value of resistivity determined from I/V plots is ~3 × 109 Ω-cm.

Comparing the data for all Cl-doped detectors, the average resistivity is ~109 Ω-cm,
and a slight increase in the value due to the increasing Te excess. Cl-doping causes
generation of ClTe

+, a shallow donor or the dominant Cl-related A-center which makes
the CdTe:Cl p-type [46–48]. Lindström et al. [39] related it with the self-compensation and
self-purification due to Cl doping.

3.4. Detector Performance

The gamma-ray response and the µτ product, as determined by Hecht equation
fitting, was measured by using 241Am and 57Co standard sources as well as a 5 MeV
241Am-α source. Multiple, 1–2 mm thick detectors were selected from different axial and
radial locations within the ingots. Radiation response measurements were attempted
for the Cd annealed CdTe:Cl detectors but failed, most probably due to an increased
conductivity as well as the high leakage current; these samples showed no response to
241Am standard source.

The 57Co source was used to test the response as well as the µτ product for CRY-1,
as shown in Figure 11. The calculated µτ value was 1 × 10−4 cm2/V which is the lowest
amongst the four growths.
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Figure 11. µτe-measurements (1.0 × 10−4 cm2/V) and gamma response to 241Am for CRY-1.

All Cl-doped detectors were tested by 241Am, and Am-α source for µτe and µτh mea-
surements, respectively. CRY-2 and CRY-3 detectors response were similar with roughly
2.8 × 10−4 cm2/V µτe values, as shown in Figures 12 and 13. The detectors from CRY-4,
with highest Te excess had highest µτ value of 2.8 × 10−3 cm2/V, see Figure 14. Com-
paring the µτe values for In- and Cl-doped CdTe detectors, with 3.5 excess Te, the lat-
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ter has the higher µτ. Similarly, comparison of three Cl-doped CdTe detectors showed
that the 15% excess Te (Figure 14) achieved the highest µτ-product, making it the best
detector performance.
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Figure 12. µτe measurements (2.9 × 10−4 cm2/V) and gamma response to 241Am for CRY-2.
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Figure 13. µτe measurements (~2.9 × 10−4 cm2/V) and gamma response to 241Am for CRY-3.
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Figure 14. µτe measurements (~1.3 × 10−3 cm2/V) and gamma response to 241Am for CRY-4.
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In CdTe:Cl, an interesting behavior of the detectors towards the increasing bias was
observed; increasing the bias degrades the peak discrimination due to the so called po-
larization [49]. Generally, this is not the case with CZT detectors. A comparison of bias
dependence of photopeak of 57Co source measured by CRY-3 and one of the CZT:In de-
tector, both growth were at 7.5% of Te-excess, is shown in Figure 15. The full width at
half-maximum (FWHM) values increased due to the peak broadening. This behavior is at-
tributed to the hole and electron trapping, by Cd vacancies and Te antistes, respectively [26].

Crystals 2022, 12, x FOR PEER REVIEW 12 of 17 
 

 

In CdTe:Cl, an interesting behavior of the detectors towards the increasing bias was 

observed; increasing the bias degrades the peak discrimination due to the so called polar-

ization [49]. Generally, this is not the case with CZT detectors. A comparison of bias de-

pendence of photopeak of 57Co source measured by CRY-3 and one of the CZT:In detector, 

both growth were at 7.5% of Te-excess, is shown in Figure 15. The full width at half-max-

imum (FWHM) values increased due to the peak broadening. This behavior is attributed 

to the hole and electron trapping, by Cd vacancies and Te antistes, respectively [26]. 

 

Figure 15. Bias dependence of 57Co photopeak, measured by; (a) CdTe:Cl (1.9 mm) and (b) CZT:In 

(1.4 mm) detector with 7.5% Te-excess growths. 

An 241Am α source was used to determine the µτh and the response of detectors to-

wards α radiation. The average µτh values have an increasing trend, like µτe with the in-

creasing Te excess, see Table 2. The results for CRY-4 are shown in Figure 16. At the high-

est bias of 550 V, the peak shape was broadened, but the signal was still good due to high 

charge collection efficiency of the detector. At 550 V the leakage current reached to ~0.74 

µA. As compared to µτe, much higher biases up to 550 V were applied without significant 

distortion in µτh measurements. 

(a) 

(b) 

Figure 15. Bias dependence of 57Co photopeak, measured by; (a) CdTe:Cl (1.9 mm) and (b) CZT:In
(1.4 mm) detector with 7.5% Te-excess growths.

An 241Am α source was used to determine the µτh and the response of detectors
towards α radiation. The average µτh values have an increasing trend, like µτe with the
increasing Te excess, see Table 2. The results for CRY-4 are shown in Figure 16. At the
highest bias of 550 V, the peak shape was broadened, but the signal was still good due
to high charge collection efficiency of the detector. At 550 V the leakage current reached
to ~0.74 µA. As compared to µτe, much higher biases up to 550 V were applied without
significant distortion in µτh measurements.

A group of detectors were tested for µτe and µτh with a focus on surface preparation
effects, before the Au sputtering. Good response and high µτe was observed for the
detectors polished and etched before the Au sputtering, Figure 17. On the other hand,
good radiation response and good µτh was observed for the detectors with polished only
surfaces, Figure 18. This difference in collection of holes/electrons for different contact
configurations was observed in γ-ray spectra as well.
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Figure 16. Spectral response at increasing applied bias, and Hecht equation fitting for µτh measure-
ments (5.6 × 10−4 cm2/V) by using 241Am α source for CRY-4.
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Figure 17. µτe products determined by using 241Am- source for different treated surfaces in CRY-3 detectors.
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Figure 18. µτh products determined by using 241Am-α source for different treated surfaces in
CRY-3 detectors.

The µτ products, the excess Te during the crystal growth, and the induced Te inclusions
are analyzed together, in Table 2. It is obvious from the data that the size of the inclusions
is anticorrelated with the µτ product of the devices. The greater the size of the inclusions,
the more the degradation of the detector performance [23] The dependence of µτe and µτh
products on the excess Te conditions is shown in Figure 19. The µτ values for electron as
well as for holes increase with the excess Te. The comparison of these results indicates that
the highest level of the Te excess, achieved better µτh and µτe products ~5.1 × 10−4 cm2/V
and 2 × 10−3 cm2/V, respectively.
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Figure 19. A summary of µτ products for holes and electrons in relation with Te-secondary phases,
showing roughly a linear relationship with the averaged µτ values.

3.5. High Flux Measurements

A high-count rate experiment was designed and performed for the CdTe-Cl doped
detectors. To achieve 500,000 counts per second (cps)/mm2, an 241Am source with activity
of 4.8 Ci was placed 10 inches from the detector. The experiment was prepared in the reactor
bay of the TRIGA Mark II nuclear reactor facility at Kansas State University. The high-count
rate electronics package was equipped with a CRY-3 material, 4.12 × 5.01 mm2 detector.
The package was mounted inside the Rad-Source 1800 X-ray generator. The detector was
biased at 500 V and was irradiated with 160 keV, 12 mA X-ray generator power with 16 km
zinc, 80.5 km of aluminum attenuation. Ten minute measurements were collected. A count
rate on the order of 2.5 million cps (~100,000 cps/mm2) was achieved. Overall system
configuration measured 500,000 cps/mm2 count rate successfully. The modeled X-ray
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flux at the device as a function of generator power showing linear output with power,
as expected and the measured flux by CRY-3 in cps/mm2 are shown in Figure 20. It is clearly
observed that the detector begins to suffer from dead time at approximate 3 mA generator
power and suffers from paralyzation, where the detector went “off” due to dead time and
thus reducing the measured count rate was observed. A count rate of 110,000 cps/mm2 was
measured before paralyzation, as shown in the linear curve. The measurements performed
on this single pixel device demonstrated the capability for the Cl-doped CdTe detectors for
high-count rate applications in medical imaging devices.
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4. Conclusions

The comparison of the crystal quality, electrical properties, and response towards the
radiation demonstrates that the growth from off-stochiometric melts with high excess Te
produced high performance crystals. It was observed that ACRT-MVB grown crystals
have high performance, with charge carrier mobility-lifetime, µτh was measured at 5.3
× 10−4 cm2/V and the µτe was measured at 1.8 × 10−3 cm2/V. These values compare
favorably with THM-grown CdTe/CZT material in literatures. The results for the high
excess Te indicate that although the crystallinity of the ingots, especially the size of the
grains, decreases, at the same time the detectors’ performance improved. Comparison of
In- and Cl-doped CdTe detectors with same excess Te growths indicates that µτ product for
CdTe:Cl is better than CdTe:In. In addition, due to a Cl-related acceptor level, the µτh is
dominant. The high count-rate measurements demonstrate the capability of Cl-doped CdTe
for high-count rate applications in medical imaging devices. This is a major achievement
providing evidence that the ACRT method is appropriate to produce CdTe for high-count
rate applications such as those in medical imaging.
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