
Citation: Sidletskiy, O.; Gorbenko, V.;

Zorenko, T.; Syrotych, Y.;

Witkiwicz-Łukaszek, S.; Mares, J.A.;

Kucerkova, R.; Nikl, M.; Gerasymov,

I.; Kurtsev, D.; et al. Composition

Engineering of

(Lu,Gd,Tb)3(Al,Ga)5O12:Ce

Film/Gd3(Al,Ga)5O12:Ce Substrate

Scintillators. Crystals 2022, 12, 1366.

https://doi.org/10.3390/

cryst12101366

Academic Editor: Hong Joo Kim

Received: 13 September 2022

Accepted: 24 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Composition Engineering of (Lu,Gd,Tb)3(Al,Ga)5O12:Ce
Film/Gd3(Al,Ga)5O12:Ce Substrate Scintillators
Oleg Sidletskiy 1,2,*, Vitalii Gorbenko 1, Tetiana Zorenko 1, Yurii Syrotych 1 , Sandra Witkiwicz-Łukaszek 1,
Jiri A. Mares 3, Romana Kucerkova 3, Martin Nikl 3 , Iaroslav Gerasymov 2, Daniil Kurtsev 2, Alexander Fedorov 4

and Yuriy Zorenko 1,5

1 Institute of Physics, Kazimierz Wielki University in Bydgoszcz, Powstańców Wielkopolskich Str., 2,
85090 Bydgoszcz, Poland

2 Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Nauky Ave., 60,
61072 Kharkiv, Ukraine

3 Institute of Physics, Academy of Sciences of Czech Republic, Cukrovarnicka Str., 10,
16200 Prague, Czech Republic

4 State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine,
Nauky Ave., 60, 61072 Kharkiv, Ukraine

5 Oncology Center, Medical Physics Department, Romanowskiej Str., 2, 85796 Bydgoszcz, Poland
* Correspondence: sidletskiy@isma.kharkov.ua

Abstract: The paper addresses the development of composite scintillation materials providing
simultaneous real-time monitoring of different types of ionizing radiation (α-, β-particles, γ-rays) in
mixed fluxes of particles and quanta. The detectors are based on composite heavy oxide scintillators
consisting of a thin single-crystalline film and a bulk single-crystal substrate. The film and substrate
respond to certain types of ionizing particles, forming together an all-in-one composite scintillator
capable of distinguishing the type of radiation through the different time characteristics of the
scintillation response. Here, we report the structure, composition, and scintillation properties under
different ionizing radiations of (Lu,Gd,Tb)3(Al,Ga)5O12:Ce films deposited using liquid phase epitaxy
onto Gd3(Al1−xGax)5O12:Ce (GAGG:Ce) single-crystal substrates. The most promising compositions
with the highest light yields and the largest differences in scintillation decay timing under irradiation
with α-, β-particles, and γ-rays were selected. Such detectors are promising for environmental
security purposes, medical tomography, and other radiation detection applications.

Keywords: scintillators; garnets; radiation detectors; bulk crystal; thin single-crystalline films; liquid
phase epitaxy; ionization radiation

1. Introduction

Today, radiation detectors (both scintillation and semiconductor) are typically de-
signed for the registration of a certain type of ionizing radiation. In this way, γ-rays, X-rays,
high-energy protons, electrons, etc. are detected with high efficiency by inorganic bulk
materials with a high atomic number (density) capable of attenuating these quanta and
particles and converting them into UV or visible light photons (in scintillators), or directly
into an electric current (in semiconductors). However, to distinguish neutrons or charged
α- or β-particles with short attenuation lengths from γ- and X-rays, the detector thickness
should be as small as possible and/or the material density should be as low as possible to
minimize the absorption of high-energy particles contained in mixed fluxes. For example,
detectors based on plastic scintillators [1,2] designed for neutron–gamma discrimination are
bulky due to their low density. Meanwhile, in real conditions of environmental radiation
monitoring, radiation fluxes consist of different types of particles with different impacts on
human health and the environment. As an alternative, compact composite multilayer detec-
tors based on heavy oxide scintillators may enable simultaneous identification of different

Crystals 2022, 12, 1366. https://doi.org/10.3390/cryst12101366 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst12101366
https://doi.org/10.3390/cryst12101366
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0001-9729-3521
https://orcid.org/0000-0002-2378-208X
https://orcid.org/0000-0001-6641-3172
https://doi.org/10.3390/cryst12101366
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst12101366?type=check_update&version=1


Crystals 2022, 12, 1366 2 of 16

types of particles by choosing the proper thickness and composition of a single-crystalline
substrate and thin single-crystalline film(s) deposited onto the mentioned substrate [3–6].
In the proposed solution, each layer in a multilayer detector is sensitive to a certain type of
ionizing radiation. The scintillation response from each layer is distinguished by its decay
time and/or the wavelength of luminescence band. The optimal time discrimination is
achieved by activation of the layers with dopants that have different luminescence decay
times (Pr3+ in the range of 10–30 ns, Ce3+ in the range of 20–70 ns, Sc3+ in the range of
hundreds of ns, etc.). Discrimination by luminescence wavelength is also possible due to
the fact that the mentioned activators possess characteristic luminescence bands. At the
same time, each subsequent layer has to be transparent to luminescence from the previous
layer(s) in order to collect all emitted light by a photodetector. Therefore, the detection of
certain types of ionizing radiation is possible by distinguishing the time profiles (scintilla-
tion decay times) and/or luminescence bands of scintillation responses related to each type
of ionizing radiation.

The concept of composite scintillators (CS) for distinguishing different types of high-
energy particles in mixed fluxes has been developed in recent years (see [7] and citations
therein). The idea comprises the simultaneous registration of high-penetrating γ- or X-rays
by a bulk crystalline substrate, and low-penetrating α- or β-particles by a single-crystalline
film deposited onto the substrate. Herein, the film and substrate must possess different
luminescence decay times and/or emission wavelengths due to doping with different
activators, or different host composition of the substrate and film. Consequently, the best
discrimination between the luminescence from a substrate and film is achieved at the
largest difference between scintillation decay times of substrate and film materials. At the
same time, the scintillation light output should be as high as possible to clearly discriminate
the signals in cases of low irradiation dose.

The main focus in the development of composite scintillators is on garnet-type
compounds such as LuAG:A3+ (A = Ce, Pr, Sc) [8–11], (Lu,Gd,Tb)AG:Ce [12–14], and
Tb3Al5O12:Ce [15] due to their high light yield and quite fast scintillation decay, chemical
stability, easy tuning of energy structure by optimization of host composition, and relatively
easy production of films with cubic space symmetry using the liquid phase epitaxy (LPE)
method. Among such garnets, the highest light yield was registered in GAGG:Ce and
other Al-Ga-substituted bulk crystals [16–19] and single-crystalline films [13,20]. While
substrate compositions are limited to Y-Lu-Gd-substituted systems due to the inability
to produce bulk crystals of Tb-based garnets from melt because of incongruent melting,
the single-crystalline films of Tb3Al5O12 and other Tb-containing mixed compositions can
be grown from melt solutions [12,15], providing more room for engineering of garnet
compositions.

Fabrication of such films became possible due to the combination of advanced tech-
nologies of single-crystal growth and single-crystalline film deposition. LPE is an efficient
method for preparation of composite substrate-film scintillators with a prescribed thickness
and composition. Single-crystalline films based on garnet [8–15], orthosilicate [21–24],
perovskite [25–28], and other complex oxide compounds have been fabricated success-
fully from PbO or Bi2O3 fluxes, and most promising compositions have been selected.
Nowadays, the LPE method offers the possibility of creating “phoswich-type” (phosphor
sandwich) composite scintillators based on epitaxial crystalline structures for registration
of low-penetrating α- and β-particles, and bulk single-crystal substrates for registration
of high-penetrating radiation (X- or γ-rays). The LPE method for composite scintillator
production also enables adjustment of the thickness of the film scintillators according to
the penetration depth of registered particles. Specifically, the thickness providing complete
absorption of α-particles of 239Pu and 241Am radioisotopes typically equals 12–15 µm [7].
Therefore, the thickness of LPE-grown scintillation thin films usually does not exceed
15–50 µm.

This paper addresses the growth of RE3Al5−xGaxO12:Ce (R = Lu, Gd, Tb) single-
crystalline films deposited using the LPE method onto Gd3Al5-xGaxO12:Ce (GAGG:Ce)
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substrates with x = 2.5 and describes testing of their structure, composition, and optical
and scintillation properties under α-, β-, and γ-irradiation in comparison with previously
studied composite scintillators [8–10,12–14]. Misfits between substrate and film lattice
parameters were determined for some composite scintillators based on X-ray diffraction
and rocking curve measurements. Simultaneously, the segregation coefficients of the host
and activator cations were calculated. A high flexibility of host cation composition in the
epitaxial structures provides the possibility of precise tuning of scintillation performance of
composite scintillators. Further recommendations are elaborated to improve the parameters
of radiation detectors based on the developed scintillators.

2. Materials and Methods
2.1. Fabrication of Substrates

Substrates with the composition of Gd3Al5−xGaxO12:Ce (x = 2.5) were fabricated from
Czochralski-grown crystals produced by the Institute for Scintillation Materials (Kharkiv,
Ukraine). Typical crystal size was 30 mm diameter and 30–100 mm length. The crystals
were annealed at 1250–1300 ◦C in an air atmosphere to eliminate color centers related to
oxygen vacancies. The substrates were cut using a diamond wire saw and ground at ISMA,
then chemically–mechanically polished in a SiO2 slurry at CIA Karat, Lviv, Ukraine. A
typical substrate cross-section was 5 × 5 mm2 and had a thickness of 1 mm.

2.2. Film Deposition via LPE Method

Composite scintillators based on garnet crystals and films were grown using the LPE
method in the Epitaxy Laboratory of the Chair for Optoelectronic Materials in the Institute
of Physics of Kazimierz Wielki University (UKW) in Bydgoszcz, Poland.

To get a high-quality multilayer scintillator, the misfit between lattice parameters of
the single-crystalline substrate and film must not exceed 0.5–1% [29]. The single-crystalline
films (SCF) were grown by the LPE method both from BaO and PbO fluxes, the basic
features of which are described elsewhere [7,29,30]. In total, over 40 samples of composite
scintillators based on GAGG:Ce substrates and (Lu,Gd,Tb)3Al5−xGaxO12:Ce films with
thicknesses within the 5–125 µm range were prepared (Figure 1). The nominal film com-
positions are presented in Table 1. The Ce concentration in the melt solution was 10 at%
relative to the total concentration of the lanthanide cations.

Table 1. Nominal contents of rare earth cations in the studied films grown from different fluxes.

BaO Flux PbO Flux

Gd3Al1.5Ga3.5O12
Gd3Al3Ga2O12
Gd3Al1Ga4O12

Gd3Al3Ga2O12
Gd3Al2Ga3O12

Tb1.5Gd1.5Al1.5Ga3.5O12
Tb1.5Gd1.5Al2Ga3O12

Tb1.5Gd1.5Al3.25Ga1.75O12

Tb3Al5O12
Tb2GdAl1.5Ga3.5 O12
Tb3Al2.25Ga2.75O12
Tb3Al1.5Ga3.5O12

Lu1.5Gd1.5Al2Ga3O12
Lu1.5Gd1.5Al3Ga2O12

Lu1Gd2Al1Ga4O12
Lu1.5Gd1.5Al1.5Ga3.5O12

Lu1Gd2Al1.5Ga3.5O12



Crystals 2022, 12, 1366 4 of 16Crystals 2022, 12, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. Multicomponent garnet composite scintillators fabricated in this work and their thick-
nesses in μm. 

2.3. Determination of Optical and Scintillation Parameters 
The absorption spectra were registered using a Jasco 760 UV–vis spectrometer in the 

200–1100 nm range. The cathodoluminescence (CL) spectra were registered at room tem-
perature (RT) using an e-beam in a SEM JEOL JSM-820 electron microscope equipped with 
a Stellar Net spectrometer and a TE-cooled CCD detector working in the 200–925 nm 
range. 

Express control of the scintillation light yield and scintillation decay kinetic of the 
film parts of composite scintillators and substrates was performed using a set-up consist-
ing of a Hamamatsu H6521 photomultiplier, homemade multichannel analyzer working 
with the shaping time of 12 μs, and a Tektronix TDS3052 digital oscilloscope under exci-
tation by α-particles from a 239Pu (5.15 MeV) source. The pulse-height spectra (PHS) were 
compared with the standard YAG:Ce SCF sample with a photoelectron yield of 360 
phels/MeV and a LY of 2.65 photons/keV. Herein, α-particles from a 239Pu source (energy 
of 5.15 MeV) excited only the epitaxial layers of film samples (not their substrates), be-
cause α-particle penetration depth in the studied materials was approximately 12–15 μm 
[7]. 

Next, investigations of the scintillation responses of the composite scintillators under 
study and reference substrates were performed, also at the Institute of Physics of the 
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Figure 1. Multicomponent garnet composite scintillators fabricated in this work and their thicknesses
in µm.

2.3. Determination of Optical and Scintillation Parameters

The absorption spectra were registered using a Jasco 760 UV–vis spectrometer in
the 200–1100 nm range. The cathodoluminescence (CL) spectra were registered at room
temperature (RT) using an e-beam in a SEM JEOL JSM-820 electron microscope equipped
with a Stellar Net spectrometer and a TE-cooled CCD detector working in the 200–925 nm
range.

Express control of the scintillation light yield and scintillation decay kinetic of the film
parts of composite scintillators and substrates was performed using a set-up consisting of a
Hamamatsu H6521 photomultiplier, homemade multichannel analyzer working with the
shaping time of 12 µs, and a Tektronix TDS3052 digital oscilloscope under excitation by
α-particles from a 239Pu (5.15 MeV) source. The pulse-height spectra (PHS) were compared
with the standard YAG:Ce SCF sample with a photoelectron yield of 360 phels/MeV and
a LY of 2.65 photons/keV. Herein, α-particles from a 239Pu source (energy of 5.15 MeV)
excited only the epitaxial layers of film samples (not their substrates), because α-particle
penetration depth in the studied materials was approximately 12–15 µm [7].

Next, investigations of the scintillation responses of the composite scintillators under
study and reference substrates were performed, also at the Institute of Physics of the
Czech Academy of Sciences in Prague (FZU), using a set-up consisting of a hybrid PMT
(HPMT DEP PP0475B with a pre-amplifier), measuring electronics (Ortec 672 Spectroscopy
Amplifier and 927 ASPEC MCA), and PC control. The PHS were measured using different
shaping times in the 0.5–10 µs range under excitation by α-particles from 241Am (energy of
5.49 MeV) and 239Pu (5.15 MeV) sources, β-particles from a 90Sr + 90Y source (continuous
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distribution of energies of average values 0.546 and 0.939 MeV for 90Sr and 90Y, respectively),
and γ-rays from 137Cs (an energy of 662 keV) radio-isotopes. Nphels photoelectron yield
measurements of the selected samples were also performed under α-radiation of 4.8 MeV
of 241Am with a thin palladium foil (from a special source at CERN in Geneva) and under
γ-radiation of 662 keV.

3. Results
3.1. Determination of Film Structure and Composition

The lattice parameters of the Lu-Gd-Tb-substituted films were smaller than those of
the GAGG:Ce substrate due to the lower amounts of Gd atoms. Logically, the films with
larger Ga and Gd contents possessed lower misfits (Figure 2a). Overall, the misfit between
the GAGG:Ce substrate and film lattice parameters did not exceed 0.71%. The XRD rocking
curves with a FWHM of 0.037–0.047◦ proved a very good structural quality of the yielded
films (Figure 2b).
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μm, Δa = −0.54%); (b) X-ray rocking curve of Tb1.5Gd1.5Al1.5Ga3.5O12:Ce SCF, 6 μm. 
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Figure 2. (a) XRD patterns of (Tb,Lu,Gd)3(Al,Ga)O12:Ce SCFs with different nominal contents (1—
Tb3Al2.25Ga2.75O12:Ce SCF, 24 µm thickness, misfit ∆a = −0.49%; 2—Lu1.5Gd1.5Al3Ga2O12:Ce SCF,
6 µm, ∆a =−0.71%; 3—Tb2GdAl1.5Ga3.5O12:Ce SCF, 35 µm, ∆a =−0.20%; 4—TbGd2Al1.5Ga3.5O12:Ce
SCF; 125 µm, ∆a = −0.54%); (b) X-ray rocking curve of Tb1.5Gd1.5Al1.5Ga3.5O12:Ce SCF, 6 µm.

Based on the results of the film composition measurements, the segregation coefficients
of different cations were determined. Predictably, the segregation coefficients of RE atoms
in dodecahedral positions of Lu-Gd-substituted garnet hosts were larger for smaller Lu
(1.11–1.27) atoms in contrast to larger Gd atoms (0.83–0.95), in line with an earlier funda-
mental work on admixture segregation in garnet compounds [30]. It is important to note
the larger Gd segregation coefficient at growth from BaO flux (0.95) as compared to that
from PbO flux (0.83). As the difference between the ionic radii of Gd and Tb is very small,
their segregation coefficients were quite similar among the Tb-Gd-substituted samples, in
the range of 0.90–1.17 for Tb and 0.90–1.06 for Gd, independently of the flux type.

Regarding the segregation coefficients of Al/Ga occupying tetrahedral and octahedral
positions, a large difference was observed between the samples grown from PbO and BaO
fluxes (Figure 3). For the growth from PbO flux, the segregation coefficient of smaller Al
atoms (1.50–1.81) was remarkably larger than that of larger Ga cations (0.62–0.78), which
agrees well with results presented in [30].
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onto GAGG:Ce substrates, dependent on crystallization temperature.

However, the reciprocal situation was observed in the samples grown from BaO flux,
where Al segregation coefficients were 0.49–0.82 in contrast to Ga segregation coefficients
of 1.13–1.25 (Figure 3). This discrepancy may be attributed to a compensation of the
lattice misfit between GAGG:Ce substrate with a larger lattice constant of 12.23 Å and
smaller lattice constant of the films, which reached 0.71 %, as shown above. This misfit
in the films grown from PbO flux was partially compensated by the incorporation of
large Pb2+ atoms with an ionic radius of 1.29 Å into dodecahedral sites. For instance, the
actual composition of the film with the Gd1.5Lu1.5Al1.5Ga3.5O12:Ce nominal composition
was Gd1.406Lu1.521Pb0,0011Ce0.0057Ga2.294Al2.814O12, whereas Ba was not detected in the
films grown from the BaO flux within the available measurement precision. Preferential
introduction of Ga with the ionic radii of 0.47 and 0.62 Å in the tetrahedral and octahedral
sites, respectively, against the 0.39 and 0.53 Å for Al, contributed to minimization of the
lattice misfit between the substrates and films. The same mechanism may explain the
phenomenon mentioned above of a larger Gd segregation coefficient in films grown from
BaO flux.

Furthermore, the LPE crystallization of films from BaO flux proceeded at a 50 ◦C
higher temperature than the growth from PbO flux (Figure 3). Therefore, temperature
changes may also cause a sharp increase in the Ga segregation coefficient, which is more
sensitive to crystallization temperature variation [30]. The Ce segregation coefficients of
0.009–0.0028 were typical for growth via the low-temperature LPE method and tended to
decrease in Gd- and Ga-rich compositions.

3.2. Primary Selection of Promising Compositions

First, we screened the compositions by their light yield and scintillation decay time
under α-particle excitation. Films with a thickness of over 15 µm were selected to ensure
that α-particles were completely absorbed into them.

Light output in dependence on nominal cationic composition (Figure 4a) reflects the
tendency to increase with reducing Ga content and average radius of a rare earth (RE) ion,
namely by increasing Lu or Tb contents in the solid solutions. Meanwhile, another spot
with high light yields was located at a Ga content of 3.5 formula units (f. u.) (Figure 4c).
Considering the Gd-Lu (Figure 4b) and Gd-Tb (Figure 4c) mixed compositions separately,
one may note that the tendency to light yield increase with reducing Ga and increasing
Lu(Tb) content was sustained in both compositions. Meanwhile, a very high light yield of
up to 380 % relative to YAG:Ce was observed in Gd-Tb mixed compositions at a Ga content
around 3.5 f. u. Note that we presumed that the light yield in Al-free samples, i.e., at Ga
content of 5 f. u., was equal to zero, as has been reported by different groups for Ce-doped
Y3Ga5O12, Gd3Ga5O12, and Lu3Ga5O12 [17,18]. The data on light yield in GAGG:Ce films
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crystallized into GAGG substrates were taken from [7]. Overall, the region with the highest
light yields extended from Lu-containing samples at x = 2–3 to Gd-Tb-substituted samples
at x = 3.5–4 (Figure 4a).
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average ionic radius of the rare earth ion and Ga content in the films under α-particle excitation in 
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Figure 4. Light yield in (Gd,Lu,Tb)3(Al,Ga)5O12:Ce films on GAGG:Ce substrates in dependence on
average ionic radius of the rare earth ion and Ga content in the films under α-particle excitation in
(a) all the sample series, (b) Lu-Gd-substituted films, and (c) Gd-Tb-substituted films.

The scintillation decay times predictably decreased with Ga content (Figure 5), while
there was a tendency to acceleration of scintillation decay with Lu and Tb addition. In gen-
eral, the observed correlations were the result of the interplay between carrier trapping and
energy transfer phenomena between Gd3+ and Tb3+ host cations and Ce3+ activator, as well
as carrier trapping and thermal ionization of electrons from the 5d1 level of Ce3+ [31–35].
Furthermore, cationic composition (represented as an averaged ionic radius of Lu, Gd, and
Tb cations in dodecahedral sites, as well Ga content in octahedral and tetrahedral sites,
affected the crystal’s field and location of carrier traps and Ce3+ levels in the bandgap.
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particle excitation. 
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Figure 5. Scintillation decay time (1/e) in (Gd,Lu)3(Al,Ga)5O12:Ce (a) (Gd,Tb)3(Al,Ga)5O12:Ce (b)
films in dependence on average ionic radius of the rare earth ion and Ga content in the films under
α-particle excitation.

3.3. Characterization of Selected Composite Scintillators

Following the results of light yield and scintillation decay in (Gd,Lu,Tb)3 (Al,Ga)5
O12:Ce films deposited onto GAGG:Ce substrates (Figures 4 and 5), seven compositions
with high light yields, four grown from PbO flux, and three grown from BaO flux, were
selected for detailed characterization. The samples are listed in Table 2.

Table 2. List of the selected composite scintillators and their film thicknesses as used in detailed tests
of scintillation performance.

Sample Number Sample Composition Used Flux Sample Thickness, µm

Substrate Gd3Al2.5Ga2.5O12:Ce (GAGG:Ce) 1 mm
PL16-4 Gd1.5Lu1.5Al1.5Ga3.5O12:Ce/GAGG:Ce PbO 40
PL19-10 Tb2GdAl1.5Ga3.5O12:Ce/GAGG:Ce PbO 33
PL20-3 Tb1.5Gd1.5Al1.5Ga3.5O12:Ce/GAGG:Ce PbO 39
PL20-7 Tb1Gd2Ga3.5Al1.5O12:Ce/GAGG:Ce PbO 31.5
PL22-8 Lu1.5Gd1.5Al3Ga2O12:Ce/GAGG:Ce BaO 16
PL25-3 Tb1.5Gd1.5Al1.5Ga3.5O12:Ce/GAGG:Ce BaO 42
PL25-10 Tb1.5Gd1.5Al2Ga3O12:Ce/GAGG:Ce BaO 63

Scintillation Parameters

Normalized CL luminescence spectra of film and substrate parts of composite scintilla-
tors were typical for Ce-doped garnets, with a wide band peaking in the 527–532 nm range
corresponding to the Ce3+ 5d–4f radiative transitions (Figure 6a,b). The emission spectra
of Lu-containing film scintillators were predictably blue-shifted as compared with that of
the GAGG:Ce substrate due to a lower crystal field strength in the dodecahedral positions
of the garnet host [32,33]. The spectra of Tb-containing scintillators were modulated with
several narrow bands around 490, 550, 580, and 620 nm (Figure 6b) corresponding to 5d–4f
transitions of Tb3+ [36], indicating a competition between Tb3+ and Ce3+ luminescence
centers. The highest intensity was registered in the Lu-Gd mixed samples in agreement
with the data on light yield under α-particle irradiation (see Table 3). A negligible spectral
intensity was noted in the UV band indicating an absence of defect-related luminescence in
the LPE-grown film scintillators.
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Figure 6. (a) Normalized XRL spectra of the selected Lu-Gd- (a) and Tb-Gd-based (b) composite
scintillators in comparison with GAGG:Ce substrate and reference BGO scintillator.

Table 3. Scintillation yield parameters of the selected composite scintillators.

Sample
LY 241Am at 1 µs

and 10 µs
(ph/MeV)

LY Difference
between 0.5 and 10 µs
of Shaping Time (%)

LY 137Cs at 1 µs
and 10 µs
(ph/MeV)

LY Difference
between 0.5 and 10 µs
of Shaping Time (%)

LY(γ-rays)/
LY(α-rays)

at 1 µs

GAGG:Ce substrate 5084–5314 23.0 38,500–41,352 20.0 7.6

PL 16-4 Lu1.5Gd1.5Al1.5
Ga3.5O12:Ce/GAGG:Ce 1224–1607 53.1 36,873–39,202 19.2 30

PL 19-10 Tb2GdAl1.5
Ga3.5O12:Ce/GAGG:Ce 110–281 284.9 32,269–34,728 21.2 293

PL 20-3 Tb1.5Gd1.5Al1.5
Ga3.5O12:Ce/GAGG:Ce 167–272 147.8 33,530–35,057 23.9 201

PL 20-7 Tb1Gd2Al1.5
Ga3.5O12:Ce/GAGG:Ce 80–182 169.3 31700–33,759 22.5 398

PL 22-8 Lu1.5Gd1.5Al3
Ga2O12:Ce/GAGG:Ce 2103–2720 53.1 32,946–35,619 20.4 15.65

PL 25-3 Tb1.5Gd1.5Al1.5
Ga3.5O12:Ce/GAGG:Ce 244–263 19.2 31,718–32,139 16.1 130

PL 25-10 Tb1.5Gd1.5Al2
Ga3O12:Ce/GAGG:Ce 245–254 17.8 31,334–31,758 15.3 128

The pulse-height spectra of GAGG:Ce substrate under α-particle and γ-quantum
excitations measured at different shaping times are presented in Figure 7, while the de-
pendences of light yield (LY) on shaping time for some studied composite scintillators are
displayed in Figure 8. LYs under α-particle and γ-ray excitation are summarized in Table 3.
The measured ratio of the LY under γ-ray and α-particle excitation was about 7.6, and this
value is quite consistent with the data of [7].
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Figure 8. Dependences of LY and energy resolution (ER) of the GAGG:Ce substrates (a) and
Gd1.5Lu1.5Al1.5Ga3.5O12:Ce/ GAGG:Ce composite scintillators grown from BaO- (b) and PbO-based
(c) fluxes, respectively, as the function of shaping time measured under various γ-rays of 137Cs and
α-particles of 4.8 MeV 241Am (CERN 241Am alpha source).

The LYs of the composite scintillators under γ-ray excitation were just a few thousand
ph/MeV less than that in the GAGG:Ce substrate, with a low contribution of “slow” light, as
indicated by the small differences in their values at 0.5 and 10 µs shaping times. This means
that in the case of composite scintillators, γ-rays excite mainly the substrate scintillators
and the contribution of light coming from the thin-film scintillators is insignificant.

The smallest contributions of “slow” light both under α- and γ-rays from 15.3 to 19.2%
were registered in Tb-Gd garnet films grown from BaO flux, while the luminescence decay
was remarkably slower in the rest of thin films. Specifically, the highest contribution of the
slow luminescence components was registered in Gd-Tb garnet films grown from PbO flux.

The highest LY under α-particle excitation was registered in Lu-Gd garnet films,
reaching 2720 ph/MeV, or ~6% of the light yield under γ-rays. However, the LYs of Tb-Gd
garnet films were significantly (8–10 times) lower in comparison with those of their Lu-
Gd counterparts. The LYs of Tb-Gd and Lu-Gd garnet films grown from BaO-based flux
were 2–3 times higher than those of their analogs grown from PbO-based flux (Table 3),
evidencing a negative role of Pb admixture in the scintillation process.

The timing characteristics of the selected composite scintillators are summarized
in Table 4, where the rate of scintillation decay is characterized by the parameters τ1/e,
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τ1/10, and τ1/100, representing the time of the signal attenuation until the 1/e, 10%, and
1% levels of the initial signal. Some types of composite scintillators demonstrated faster
scintillation decay under γ-rays than under α- and β-particles; in contrast, others displayed
the opposite trend. Such phenomena are related to the distribution of ionization density in
an ionizing particle track (see [37,38] and related articles) and is outside the scope of this
paper. Interestingly, GAGG:Ce film demonstrated faster scintillation decay under γ-rays,
while in a GAGG:Ce film/GAGG:Ce crystal composite, the ratio was the opposite [7]. In
our samples, the decay under γ-rays was the fastest among all the irradiation types in the
initial part of the curve, and the slowest in the final part. Overall, the fastest decay and
the largest τγ/τα and τγ/τβ ratios were registered in composites involving Lu-Gd mixed
films (see the example of the Lu1.5Gd1.5Al3Ga2O12:Ce SCF/GAGG:Ce SC sample shown in
Figure 9).

Table 4. Scintillation decay parameters of (Gd,Lu,Tb)3(Al,Ga)5O12:Ce SCF / GAGG:Ce SC composite
scintillators under different types of excitation. A dash indicates no registered attenuation at this
level within the 8000 ns measurement range.

α-Particle Excitation
by 239Pu Source

β-Particle Excitation
by 90Sr Source

γ-Quantum Excitation
by 137Cs Source

τ1/e τ1/10 τ1/100 τ1/e τ1/10 τ1/100 τ1/e τ1/10 τ1/100

GAGG:Ce Substrate 373 992 - 409 1058 - 300 899 -
PL16-4 Gd1.5Lu1.5Al1.5Ga3.5O12:Ce SCF 124 630 6570 316 890 2930 245 785 2930
PL 20-7 Tb1Gd2Ga3.5Al1.5O12:Ce SCF 441 1054 4130 370 952 3880 300 847 3260
PL 20-3 Lu1.5Gd1.5Al3Ga2O12:Ce SCF 119 493 7090 290 854 ~3100 263 799 ~3100
PL 20-7 Tb2GdAl1.5Ga3.5O12:Ce SCF 434 1230 - 345 988 - 260 860 -

PL 22-8 Tb1.5Gd1.5Al1.5Ga3.5O12:Ce SCF 422 1207 - 341 1002 - 265 910 -
PL 25-3 Tb1.5Gd1.5Al1.5Ga3.5O12:Ce SCF 455 ~2230 - 336 ~2230 - 306 ~2230 -
PL 25-10 Tb1.5Gd1.5Al2Ga3O12:Ce SCF 359 915 - 257 778 - 242 721 -
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Figure 9. Scintillation decay of GAGG:Ce SC substrate (a) and Lu1.5Gd1.5Al1.5Ga3.5O12:Ce 
SCF/GAGG:Ce SC composite scintillators grown from PbO- (b) and BaO-based (c) fluxes under α- 
and β-particle and γ-ray excitations. 

Meanwhile, composite scintillators based on the Gd-Lu- and Gd-Tb-containing films 
demonstrated quite different scintillation decay behaviors in registration of different 
types of particles. In the Gd-Lu garnets, both γ-rays and β-particles were well 
distinguished from α-particles by scintillation timing (Figure 10a,b). The scintillation 
decay under α-particles was ~2.5 times faster within first few hundred ns, while it 
abruptly slowed down over longer times (Figure 9a,b). Herein, τα/τγ (a) and τa/τβ (b) ratios 
sharply changed from 0.4–0.5 at the signal decay level of 1/e to 2.3 at the signal decay level 
of 1/100. The scintillation decay in Gd-Tb films was significantly slower compared to that 
in Lu-Tb films, and the τα/τγ and τa/τβ ratios were within the ranges of 1–1.7 and 1–1.4, 
respectively. 

Figure 9. Scintillation decay of GAGG:Ce SC substrate (a) and Lu1.5Gd1.5Al1.5Ga3.5O12:Ce
SCF/GAGG:Ce SC composite scintillators grown from PbO- (b) and BaO-based (c) fluxes under α-
and β-particle and γ-ray excitations.

Meanwhile, composite scintillators based on the Gd-Lu- and Gd-Tb-containing films
demonstrated quite different scintillation decay behaviors in registration of different types
of particles. In the Gd-Lu garnets, both γ-rays and β-particles were well distinguished
from α-particles by scintillation timing (Figure 10a,b). The scintillation decay under α-
particles was ~2.5 times faster within first few hundred ns, while it abruptly slowed down
over longer times (Figure 9a,b). Herein, τα/τγ (a) and τa/τβ (b) ratios sharply changed
from 0.4–0.5 at the signal decay level of 1/e to 2.3 at the signal decay level of 1/100. The
scintillation decay in Gd-Tb films was significantly slower compared to that in Lu-Tb films,
and the τα/τγ and τa/τβ ratios were within the ranges of 1–1.7 and 1–1.4, respectively.
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scintillators under study (see Table 4 for the sample denotations).

The γ-rays and β-particles were rather poorly distinguished by scintillation timing
in the composite scintillators under study (Figure 10c). A more remarkable difference
was noted in the initial stage of scintillation decay for the intensity decay level of 1/e,
whereas at longer times the τβ/τγ tended to 1 in most of the samples. Meanwhile, the
best γ/β separation was demonstrated in composite scintillators based on Tb-Gd films
((Figures 10c and 11). Namely, in Tb2-1.5Gd1-1.5Al1.5Ga3.5O12:Ce SCF / GAGG:Ce SC com-
posite scintillators the τβ/τγ ratio reached 1.32 (Figure 10c).

Another figure of merit (FOM) parameter based on the normalized difference between
the decay constants may better reflect the practical feasibility of the time discrimination
of different types of particles using substrate-film scintillators, as compared with the
case when using decay time ratios. This FOM is proportional not to the ratio between
decay constants but to the difference between them—for example, for α- and β-particles
it is expressed by Equation (1). Therefore, it is convenient to quantify the efficiency of
distinguishing the particles and quanta using a FOM which equals 0 in the case of no
discrimination and 1 in the case of ideal discrimination.

FOMαβ =

∣∣(τα − τβ

)∣∣(
τα + τβ

) (1)
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Figure 12. Figures of merit for the different pairs of irradiation types, FOMαγ (a), FOMaβ (b), and 
FOMβγ (с) of the selected composite scintillators under study. 
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Ga3.5O12:Ce SCF/GAGG:Ce SC (b) composite scintillators grown from PbO- (a) and BaO-based
fluxes, respectively, under α- and β-particle and γ-ray excitations.

The results presented in Figure 12 demonstrate that that the highest FOMαγ of up
to 0.38 and highest FOMαβ of up to 0.44 were obtained with the Lu1.5Gd1.5-substituted
films, which seem promising for these discrimination tasks. FOMβγ did not exceed 0.13
(the highest value was again registered in the Tb2Gd-substituted films).
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FOMβγ (c) of the selected composite scintillators under study.

4. Discussion

With the goal of distinguishing the different components of radiation fluxes by scintilla-
tion decay dynamics, τα/τγ ratios were previously registered under the same experimental
procedure in several garnet composite scintillators [8–10,12–14]. Obviously, the highest
τα/τγ ratios were achieved in a system where substrate and film were doped with different
activators. For example, they reached 16 in a LuAG:Pr SCF/LuAG:Sc SC composite [10]
and 6 in a Lu3-xTbxAl5O12:Ce SCF/LuAG:Pr SC scintillator [12]. The τα/τγ ratios in the
systems where both substrate and film were doped with the same activator are remarkably
lower, although the former were more convenient from a practical point of view as the
responses from both the film and substrate could be registered by the same photodetector
with the same efficiency. In particular, in GAGG:Ce SCF/GAGG:Ce SC composites with
varying Al/Ga ratios, this parameter was within the range of 1.18–1.50 [13,14].

The results for Gd-Tb-substituted films on GAGG:Ce substrates in the present work,
in general, repeat these values. Meanwhile, the scintillation decay in Lu-Gd-substituted
systems demonstrated a completely different trend where the decay under α-particles is
faster than that under γ-rays in the time range up to approximately 1000 ns, and slower at
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longer times. Herein, the τα/τγ and τa/τβ ratios changed from 0.4 to 2.3. A similar trend
with a low τα/τγ in the initial stage of scintillation decay and then its rapid increase was
observed in a LuAG:Ce single crystal [8,9].

Another evaluation of the efficiency of signal discrimination by the scintillation decay
kinetic under α- and β-particles and γ-quanta was performed using the respective FOMs
(Figure 11). The highest FOMαγ and FOMαβ were obtained with the Lu1.5Gd1.5-substituted
films, which are more promising materials for α/γ and α/β discrimination in comparison
with Tb2-1.5Gd1-1.5-based films.

Accounting for the highest light yield under α-particles registered in Lu1.5Gd1.5Al1.5-
3Ga3.5-2O12:Ce SCF/GAGG:Ce SC and overall faster decay as compared to Gd-Tb-substituted
films, these composite scintillators seem to be the most promising for distinguishing α-/γ-
or α-/β-particles via the character of scintillation decay. Meanwhile, scintillation decays
under γ- and β-quanta were poorly distinguishable by all these types of composite scintil-
lators. However, for Gd-Tb-substituted films the τβ/τγ and FOMβγ values were notably
better than those for the Gd-Lu counterpart (Figures 10 and 11). The τβ/τγ and FOMβγ

parameters may be improved in multilayer composite scintillators involving a substrate
and a combination of two or more different Lu-Gd- and Gd-Tb-containing films responsible
for the registration of different types of ionizing particles. This is a topic of further research.

5. Conclusions

(Lu,Gd,Tb)3(Al,Ga)5O12:Ce film/Gd3(Al,Ga)5O12:Ce crystal composite scintillators
demonstrated a good performance at distinguishing α-particles from β-particles and γ-
quanta in mixed radiation fluxes. Composite scintillators involving Gd-Lu- or Gd-Tb-
substituted garnet films possessed a high light yield of 31,000–39,000 phot/MeV under γ-
quantum excitation, whereas a high light yield of up to 2720 ph/MeV under α-particles was
registered only in Lu-Gd-substituted films. Lu1.5Gd1.5Al3-1.5Ga2-3.5O12:Ce SCFs/GAGG:Ce
SC composite scintillators demonstrated remarkably faster scintillation decay under α-
particle excitation, providing τα/τγ and τa/τβ ratios ranging from 0.4 to 2.3, depending
on the stage of the scintillation process. This unusual behavior of scintillation decay,
namely a faster decay under α-particles in first 1000 ns of scintillation decay, should
be studied in more detail in further work. Meanwhile, β-particles and γ-quanta were
barely distinguished by the considered types of composite scintillators, and the highest
τβ/τγ ratio of 1.32 was achieved in Tb2-1.5Gd1-1.5Al1.5Ga3.5O12:Ce SCF/GAGG:Ce SC
composite scintillators. The calculated FOMs confirm rather good α-γ (0.38) and β-γ (0.44)
discrimination, whereas the FOM in the case of beta-gamma discrimination was relatively
low (0.13).

Overall, this work contributes to the development of scintillation detectors for moni-
toring dangerous radionuclides in mixed radiation fluxes consisting of different types of
particles and quanta, which have different impacts on human health and environmental
security. Such detectors should provide more reliable determination of different types of
radiation for environmental security and medical diagnostics. These thin-film scintillators
can also be used as visualization screens for radiation introscopy for different types of
radiation with an extremely high spatial resolution of <1 µm.
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