Effects of Pre-Deformation under Tension and Annealing Process on the Microstructure and Properties of Al-6Mg-1.0Mn Extruded Wide Reinforcement Plate
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Material Preparation
2.2. Microstructure Characterization
2.3. Mechanical Testing
2.4. IGC Testing
3. Results and Analysis
3.1. Resistance to Intergranular Corrosion and Tensile Properties of Al-Mg-Mn Strip Plates after Stabilized Annealing
3.2. The Microstructure of Al-Mg-Mn Strip Plate with Pre-Deformation under Tension
4. Discussions
5. Conclusions
- When the pre-deformation under tension is 10–14%, the corrosion resistance of the Al-Mg-Mn extruded ribbed plate increases with the increase in the annealing temperature. When the stabilization treatment temperature is in the range of 220–360 °C, the corrosion performance is first decreased, and then increases with the rise in temperature and becomes stable at 300 °C. After stabilization annealing at 300 °C for 2 h and sensitization at 150 °C, the resistance to intergranular corrosion is first decreased, and then increases with prolonged sensitization time.
- The pre-deformation under tension and annealing process can regulate the interaction between dislocations and precipitates effectively, which improves the hardening effect and intergranular microstructure of the investigated alloy. The continuous distribution of β-phase at the grain boundaries significantly deteriorates the Al-Mg-Mn intergranular corrosion performance. The intergranular precipitation phase grows with the increase in sensitization time, and the precipitation phase changes from a continuous to intermittent precipitation state.
- The pre-deformation under tension and the annealing process can, evidently, improve the mechanical properties of Al-Mg-Mn alloy. When the pre-stretching deformation amount is 14%, and stabilization annealing occurs at 300 °C for 2 h, the peak tensile strength of the alloy is 360 MPa, the yield strength is 205 MPa, and the elongation is 18.5%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Filatov, Y.A.; Yelagin, V.I.; Zakharov, V.V. New Al-Mg-Sc alloys. Mat. Sci. Eng. A 2000, 280, 97–101. [Google Scholar] [CrossRef]
- Kaibyshev, R.; Musin, F.; Lesuer, D.R.; Gnieh, T. Superplastic behavior of an Al-Mg alloy at elevated temperatures. Mat. Sci. Eng. A 2003, 342, 169–177. [Google Scholar] [CrossRef]
- Zhang, R.; Knight, S.P.; Holtz, R.L.; Goswami, R.; Davies, C.H.J.; Birbilis, N. A survey of sensitization in 5xxx series aluminum alloys. Corrosion 2016, 72, 144–159. [Google Scholar] [CrossRef]
- Wen, W.; Zhao, Y.; Morris, J.G. The effect of Mg precipitation on the mechanical properties of 5xxx aluminum alloys. Mater. Sci. Eng. A 2005, 392, 136–144. [Google Scholar] [CrossRef]
- Zhang, X.M.; Nie, Z.R.; Huang, H.; Weng, S.P.; Gao, K.Y. Effect of cold deformation and annealing on intergranular corrosion property of 5E06 aluminium alloy plates. T. Nonferr. Metal. Soc. 2013, 11, 3056–3063. [Google Scholar]
- Lee, B.H.; Kim, S.H.; Park, J.H.; Kim, H.W.; Lee, J.C. Role of Mg in simultaneously improving the strength and ductility of Al-Mg alloys. Mater. Sci. Eng. A 2016, 657, 115–122. [Google Scholar] [CrossRef]
- Yin, Z.M.; Zhu, D.P.; Jiang, F. Recrystallization of Al-Mg-Mn and Al-Mg-Mn-Sc-Zr Alloys. J. Mater. 2004, 6, 3–6. [Google Scholar]
- Li, Y.J.; Arnberg, L. Solidification structures and phase selection of iron-bearing eutectic particles in a DC-cast AA5182 alloy. Acta Mater. 2004, 52, 2673–2681. [Google Scholar] [CrossRef]
- Jin, T.N.; Nie, Z.R.; Xu, G.F.; Ruan, H.Q.; Yang, J.J.; Fu, J.B.; Zuo, T.Y. Effects of cooling rate on solidification behavior of dilute Al-Sc and Al-Sc-Zr solid solution. T Nonferr. Metal. Soc. 2004, 14, 58–62. [Google Scholar]
- Guo, C.; Zhang, H.T.; Li, S.S.; Chen, R.X.; Nan, Y.F.; Li, L.; Wang, P.; Li, B.M.; Cui, J.Z.; Nagaumi, H. Evolution of microstructure, mechanical properties, and corrosion behavior of Al-4Mg-2Zn-0.3Ag (wt.%) alloy processed by T6 or thermomechanical treatment. Corros. Sci. 2021, 188, 109551. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, H.T.; Zou, J.; Li, B.M.; Cui, J.Z. Effects of pre-treatment combining with aging on the microstructures and mechanical properties of Al-Mg-Ag alloys. Mater. Sci. Eng. A 2019, 740–741, 82–91. [Google Scholar] [CrossRef]
- Zuo, J.Z.; Hou, L.G.; Shi, J.T.; Zhuang, L.Z.; Zhang, J.S. The mechanism of grain refinement and plasticity enhancement by an improved thermomechanical treatment of 7055 Al alloy. Mater. Sci. Eng. A 2017, 702, 42–52. [Google Scholar] [CrossRef]
- Vaseghi, M.; Kim, H.S. A combination of severe plastic deformation and ageing phenomena in Al-Mg-Si Alloys. Mater. Des. 2012, 36, 735–740. [Google Scholar] [CrossRef]
- Nie, B.; Yin, Z.M.; Jiang, F.; Jiang, C.L.; Cong, F.G. Influence of stabilizing annealing on tensile property and exfoliation corrosion resistance of Al-Mg-Sc alloy. Met. Sci. Heat Treat. 2008, 29, 58–61. [Google Scholar]
- Oguocha, I.N.A.; Adigun, O.J.; Yannacopoulos, S. Effect of sensitization heat treatment on properties of Al-Mg alloy AA5083-H116. J. Mater. Sci. 2008, 43, 4208–4214. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Yan, Y.; Thomas, S.; Davies, C.H.J.; Birbilis, N. The effect of reversion heat treatment on the degree of sensitisation for aluminium alloy AA5083. Corros. Sci. 2017, 126, 324–333. [Google Scholar] [CrossRef]
- Lin, Y.K.; Wang, S.H.; Chen, R.Y.; Hsieh, T.S.; Tsai, L.; Chiang, C.C. The Effect of Heat Treatment on the Sensitized Corrosion of the 5383-H116 Al-Mg Alloy. Materials 2017, 10, 275. [Google Scholar] [CrossRef]
- Tzeng, Y.C.; Lin, C.H. Effects of stabilization treatment on the precipitation behavior of β phase and stress corrosion for AA5383-H15 alloys. J. Mater. Res. 2019, 34, 2554–2562. [Google Scholar] [CrossRef]
- Searles, J.L.; Gouma, P.I.; Bucheit, R.G. Stress corrosion cracking of sensitized AA5083 (Al-4.5Mg-1.0Mn). Metall. Mater. Trans. A 2001, 32, 2856–2867. [Google Scholar] [CrossRef]
- Jones, R.H.; Baer, D.R.; Danielson, M.J.; Vetrano, J.S. Role of Mg in the stress corrosion cracking of an Al-Mg alloy. Metall. Mater. Trans. A 2001, 32, 1699–1711. [Google Scholar] [CrossRef]
- Goswami, R.; Spanos, G.; Pao, P.S.; Holtz, R.L. Microstructural evolution, and stress corrosion cracking behavior of Al-5083. Metall. Mater. Trans. A 2011, 42, 348–355. [Google Scholar] [CrossRef]
- ASTM G67; ASTM: G67–04 Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5XXX Series Aluminum Alloys by Mass Loss After Exposure to Nitric Acid (NAMLT Test). ASTM International: West Conshohocken, PA, USA, 2004.
- GB/T 7998; Intergranular Corrosion Test Method of Aluminium Alloy. 2005. Available online: https://www.chinesestandard.net/PDF.aspx/GBT7998-2005 (accessed on 6 September 2022).
- Najjar, D.; Magnin, T.J.; Warner, T.J. Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050-Aluminium alloy. Mater. Sci. Eng. A 1997, 238, 293–302. [Google Scholar] [CrossRef]
- Su, J.X.; Zhang, Z.; Cao, F.; Zhang, J.Q.; Cao, C.N. Review on the Intergranular Corrosion and Exfoliation Corrosion of Aluminum Alloys. J. Chin. Soc. Corr. Pro. 2005, 25, 187–192. [Google Scholar]
- Chen, K.H.; Huang, L.P.; Zheng, Q.; Hu, H.W. Effect of high-temperature pre-precipitation on stress corrosion cracking of 7A52 alloy. T Nonferr. Metal. Soc. 2005, 3, 5. [Google Scholar]
- Li, H.; Pan, D.Z.; Wang, Z.X.; Zheng, Z.Q. Influence of T6I6 Temper on Tensile and Intergranular Corrosion Properties of 6061 Aluminum Alloy. Acta. Metall. Sin. 2010, 46, 494–499. [Google Scholar] [CrossRef]
Alloy | Si | Fe | Cu | Mn | Mg | Ti | Zr | Zn | Al |
---|---|---|---|---|---|---|---|---|---|
Al-Mg-Mn | 0.05 | 0.13 | 0.01 | 1.0 | 6.0 | 0.08 | 0.06 | 0.02 | Bal. |
Alloy | The Heating Temperature of Ingot/°C | Extrusion Speed/m/min | Temperature into the Quenching Zone/°C | Quenching Method | Temperature after Quenching/°C |
---|---|---|---|---|---|
Al-Mg-Mn | 400–420 | 0.6 | 350 | Air-cooled | <110 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Han, Q.; Sun, W.; Wang, X.; Cui, J.; Wang, R.; Liu, C.; Jiang, M. Effects of Pre-Deformation under Tension and Annealing Process on the Microstructure and Properties of Al-6Mg-1.0Mn Extruded Wide Reinforcement Plate. Crystals 2022, 12, 1415. https://doi.org/10.3390/cryst12101415
Li P, Han Q, Sun W, Wang X, Cui J, Wang R, Liu C, Jiang M. Effects of Pre-Deformation under Tension and Annealing Process on the Microstructure and Properties of Al-6Mg-1.0Mn Extruded Wide Reinforcement Plate. Crystals. 2022; 12(10):1415. https://doi.org/10.3390/cryst12101415
Chicago/Turabian StyleLi, Pengwei, Qiqiang Han, Wei Sun, Xiangjie Wang, Jianzhong Cui, Rui Wang, Chunzhong Liu, and Min Jiang. 2022. "Effects of Pre-Deformation under Tension and Annealing Process on the Microstructure and Properties of Al-6Mg-1.0Mn Extruded Wide Reinforcement Plate" Crystals 12, no. 10: 1415. https://doi.org/10.3390/cryst12101415
APA StyleLi, P., Han, Q., Sun, W., Wang, X., Cui, J., Wang, R., Liu, C., & Jiang, M. (2022). Effects of Pre-Deformation under Tension and Annealing Process on the Microstructure and Properties of Al-6Mg-1.0Mn Extruded Wide Reinforcement Plate. Crystals, 12(10), 1415. https://doi.org/10.3390/cryst12101415