Layered Hybrid iron Fluorides
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Synthesis
2.3. Characterisation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McNulty, J.A.; Lightfoot, P. Structural chemistry of layered lead halide perovskites containing single octahedral layers. IUCrJ 2021, 8, 485–513. [Google Scholar] [CrossRef] [PubMed]
- Li, X.T.; Hoffman, J.M.; Kanatzidis, M.G. The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 2021, 121, 2230–2291. [Google Scholar] [CrossRef] [PubMed]
- Mercier, N.; Louvain, N.; Bi, W. Structural diversity and retro-crystal engineering analysis of iodometalate hybrids. CrystEngComm 2009, 11, 720–734. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Nishihara, S.; Inoue, K.; Kurmoo, M. On the nature of the structural and magnetic phase transitions in the layered perovskite-like (CH3NH3)2[FeIICl4]. Inorg. Chem. 2014, 53, 2068–2075. [Google Scholar] [CrossRef]
- Worley, C.; Yangui, A.; Roccanova, R.; Du, M.-H.; Saparov, B. (CH3NH3)AuX4·H2O (X = Cl, Br) and (CH3NH3)AuCl4: Low-band gap lead-free layered gold halide perovskite materials. Chem. Eur. J. 2019, 25, 9875–9884. [Google Scholar] [CrossRef] [PubMed]
- Vishnoi, P.; Zuo, J.L.; Li, X.T.; Binwal, D.C.; Wyckoff, K.E.; Mao, L.; Kautzsch, L.; Wu, G.; Wilson, S.D.; Kanatzidis, M.G.; et al. Hybrid layered double perovskite halides of transition metals. J. Am. Chem. Soc. 2022, 144, 6661–6666. [Google Scholar] [CrossRef]
- Han, C.; McNulty, J.A.; Bradford, A.J.; Slawin, A.M.Z.; Morrison, F.D.; Lee, S.L.; Lightfoot, P. Polar ferromagnet induced by fluorine positioning in isomeric layered copper halide perovskites. Inorg. Chem. 2022, 61, 3230–3239. [Google Scholar] [CrossRef]
- Ben Ali, A.; Greneche, J.M.; Leblanc, M.; Maisonneuve, V. [H3tren]3+ templated iron fluorides; synthesis, crystal structures and Mössbauer studies. Solid State Sci. 2009, 9, 1631–1638. [Google Scholar] [CrossRef]
- Adil, K.; Leblanc, M.; Maisonneuve, V.; Lightfoot, P. Structural chemistry of organically-templated metal fluorides. Dalton Trans. 2010, 39, 5983–5993. [Google Scholar] [CrossRef]
- Stephens, N.F.; Slawin, A.M.Z.; Lightfoot, P. A novel scandium fluoride, [C2N2H10]0.5[ScF4], with an unprecedented tungsten bronze-related layer structure. Chem. Commun. 2004, 614–615. [Google Scholar] [CrossRef]
- Stief, R.; Massa, W.Z. Jahn-Teller ordering in pipzH2[Mn2F8], a fluoromanganate(III) with a new layer structure. Anorg. Allg. Chem. 2006, 632, 797–800. [Google Scholar] [CrossRef]
- Aidoudi, F.H.; Downie, L.J.; Morris, R.E.; de Vries, M.A.; Lightfoot, P. A hybrid vanadium fluoride with structurally isolated S = 1 kagome layers. Dalton Trans. 2014, 43, 6304–6307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Clulow, R.; Bradford, A.J.; Lee, S.L.; Slawin, A.M.Z.; Lightfoot, P. A hybrid fluoride layered perovskite, (enH2)MnF4. Dalton Trans. 2019, 48, 4784–4787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aidoudi, F.H.; Aldous, D.W.; Goff, R.J.; Slawin, A.M.Z.; Attfield, J.P.; Morris, R.E.; Lightfoot, P. An ionothermally-prepared S = 1/2 kagome lattice. Nat. Chemistry. 2011, 3, 801–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBurgomaster, P.; Ouellette, W.; Liu, H.; O’Connor, C.J.; Yee, G.T.; Zubieta, J. Solvatothermal chemistry of organically-templated vanadium fluorides and oxyfuorides. Inorg. Chim. Acta. 2010, 363, 1102–1113. [Google Scholar] [CrossRef]
- Pimenta, V.; Le, Q.H.H.; Clark, L.; Lhoste, J.; Hémon-Ribaud, A.; Leblanc, M.; Grenèche, J.M.; Dujardin, G.; Lightfoot, P.; Maisonneuve, V. New iron tetrazolate frameworks: Synthesis temperature effect, thermal behaviour, Mössbauer and magnetic studies. Dalton Trans. 2015, 44, 7951–7955. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Yang, G.; Cui, H.; Wang, C. Honeycomb-like porous iron fluoride hybrid nanostructure: Excellent Li-storage properties and investigation of the multi-electron reversible conversion reaction mechanism. J. Mater. Chem. A 2015, 3, 19832–19841. [Google Scholar] [CrossRef]
- Lemoine, K.; Zhang, L.T.; Greneche, J.M.; Hemon-Ribaud, M.; Leblanc, M.; Guiet, A.; Galven, C.; Tarascon, J.M.; Maisonneuve, V.; Lhoste, J. New amorphous iron-based oxyfluorides as cathode materials for high-capacity lithium-ion batteries. J. Phys. Chem. C 2019, 123, 21386–21394. [Google Scholar] [CrossRef]
- Rigaku. CrystalClear 2014; Rigaku Corporation: Tokyo, Japan, 2014. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. SHELXL-2018; Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 2018. [Google Scholar]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. General Structure Analysis System (GSAS); Los Alamos National Laboratory: Los Alamos, NM, USA, 2004. [Google Scholar]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 2001, 34, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Brese, N.E.; O’Keeffe, M. Bond-valence parameters for solids. Acta Cryst. B 1991, 47, 192–197. [Google Scholar] [CrossRef]
- Aldous, D.W.; Stephens, N.F.; Lightfoot, P. The role of temperature in the solvothermal synthesis of hybrid vanadium oxyfluorides. Dalton Trans. 2007, 4207–4213. [Google Scholar] [CrossRef]
- Leblanc, M.; Maisonneuve, V.; Tressaud, A. Crystal chemistry and selected physical properties of inorganic fluorides and oxide-fluorides. Chem. Rev. 2015, 115, 1191–1254. [Google Scholar] [CrossRef] [PubMed]
Compound | 1 | 2 | 3 |
---|---|---|---|
Formula | (H2pipz)3Fe4F18·2H2O | (H2pipz)2Fe3F13·H2O | (H2pipz)FeF5·H2O |
Formula weight | 865.90 | 608.88 | 257.02 |
Crystal system | monoclinic | monoclinic | monoclinic |
Space group | P2/c | C2/c | P21/n |
a/Å | 16.9178(13) | 20.5365(14) | 11.4695(8) |
b/Å | 13.6023(10) | 13.5405(9) | 5.8774(4) |
c/Å | 12.8848(10) | 13.5727(9) | 13.6090(10) |
β/o | 108.530(3) | 92.588(4) | 91.553(6) |
V/Å3 | 2811.4(4) | 3770.4(4) | 917.06(11) |
Z | 4 | 8 | 4 |
Measured ref | 23474 | 15772 | 7243 |
Independent ref | 4952 | 3321 | 1588 |
[R(int) = 0.0627] | [R(int) = 0.1532] | [R(int) = 0.0403] | |
GOOF | 1.006 | 1.014 | 1.045 |
Final R indices (I > 2σ(I)) | R1 = 0.0331 | R1 = 0.0608 | R1 = 0.0250 |
wR2 = 0.0843 | wR2 = 0.1364 | wR2 = 0.0756 |
Compounds | Bond Lengths | Sij | Bond Lengths | Sij | Bond Lengths | Sij | Bond Lengths | Sij | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Fe1-F1 | 1.999(2) | 0.389 | Fe2-F5 | 1.945(2) | 0.451 | Fe3-F6 | 1.971(2) | 0.420 | Fe4-F14 | 2.024(2) | 0.364 |
Fe1-F1 | 2.018(2) | 0.370 | Fe2-F6 | 1.947(2) | 0.448 | Fe3-F7 | 1.9839(8) | 0.405 | Fe4-F15 | 2.007(2) | 0.381 | |
Fe1-F2 | 1.872(2) | 0.549 | Fe2-F12 | 1.884(2) | 0.531 | Fe3-F8 | 1.914(2) | 0.491 | Fe4-F16 | 1.879(2) | 0.539 | |
Fe1-F3 | 1.876(2) | 0.543 | Fe2-F13 | 1.846(2) | 0.589 | Fe3-F9 | 1.911(2) | 0.494 | Fe4-F17 | 1.9466(5) | 0.448 | |
Fe1-F4 | 1.910(2) | 0.497 | Fe2-F14 | 2.016(2) | 0.372 | Fe3-F10 | 1.911(2) | 0.494 | Fe4-F18 | 1.874(2) | 0.546 | |
Fe1-F5 | 1.972(2) | 0.419 | Fe2-F15 | 1.970(2) | 0.421 | Fe3-F11 | 1.909(2) | 0.497 | Fe4-F19 | 1.898(2) | 0.512 | |
2 | Fe1-F1 | 2.008(5) | 0.380 | Fe2-F1 | 1.984(5) | 0.405 | Fe3-F7 | 1.992(5) | 0.396 | |||
Fe1-F2 | 1.968(5) | 0.423 | Fe2-F2 | 2.027(5) | 0.361 | Fe3-F8 | 1.875(5) | 0.546 | ||||
Fe1-F3 | 1.905(5) | 0.502 | Fe2-F4 | 1.900(5) | 0.509 | Fe3-F10 | 2.020(5) | 0.367 | ||||
Fe1-F5 | 1.883(5) | 0.534 | Fe2-F6 | 1.905(5) | 0.502 | Fe3-F11 | 1.849(5) | 0.584 | ||||
Fe1-F9 | 1.875(5) | 0.544 | Fe2-F13 | 1.939(6) | 0.458 | Fe3-F12 | 1.924(6) | 0.477 | ||||
Fe1-F12 | 1.932(6) | 0.465 | Fe2-F14 | 1.859(6) | 0.568 | Fe3-F13 | 1.932(6) | 0.465 | ||||
3 | Fe1-F1 | 1.9098(11) | 0.495 | Fe1-F4 | 1.9833(11) | 0.407 | ||||||
Fe1-F2 | 1.9182(11) | 0.485 | Fe1-F4 | 1.9967(11) | 0.391 | |||||||
Fe1-F3 | 1.9020(11) | 0.506 | Fe1-F5 | 1.9052(11) | 0.502 | |||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Lightfoot, P. Layered Hybrid iron Fluorides. Crystals 2022, 12, 1443. https://doi.org/10.3390/cryst12101443
Li T, Lightfoot P. Layered Hybrid iron Fluorides. Crystals. 2022; 12(10):1443. https://doi.org/10.3390/cryst12101443
Chicago/Turabian StyleLi, Teng, and Philip Lightfoot. 2022. "Layered Hybrid iron Fluorides" Crystals 12, no. 10: 1443. https://doi.org/10.3390/cryst12101443
APA StyleLi, T., & Lightfoot, P. (2022). Layered Hybrid iron Fluorides. Crystals, 12(10), 1443. https://doi.org/10.3390/cryst12101443