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Abstract: The early stages of nanocrystallization in amorphous Fe73.8Si13B9.1Cu1Nb3.1 ribbons and
microwires were compared in terms of their internal stress effects. The microstructure was investi-
gated by the X-ray diffraction method. Classical expressions of crystal nucleation and growth were
modified for microwires while accounting for the internal stress distribution, in order to justify the
XRD data. It was assumed that, due to the strong compressive stresses on the surface part and tensile
stresses on the central part, crystallization on the surface part of the microwire proceeded faster than
in the central part. The results revealed more rapid nanocrystallization in microwires compared to
that in ribbons. During the initial period of annealing, the compressive surface stress of a microwire
caused the formation of a predominantly crystallized surface layer. The results obtained open up
new possibilities for varying the high-frequency properties of microwires and their application in
modern sensorics.
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1. Introduction

An amorphous-nanocrystalline Fe73.5Si13.5B9Cu1Nb3 alloy was first mentioned in [1].
It was established as a soft magnetic material that demonstrated high values of magnetic
permeability and saturation magnetization, combined with low magnetostriction and low
magnetization losses [2,3]. An amorphous alloy of this composition can be produced in
the form of a ribbon by the melt spinning method, and in the form of a microwire by the
Ulitovsky-Taylor method. An amorphous-nanocrystalline state is reached as a result of heat
treatment. Due to the peculiarities of the production processes, microwires and ribbons
have different stress states, although their chemical compositions can be identical [4,5].
The value of quenching stresses in a ribbon is in the tens of MPa. The stress level in
microwires is 1–2 orders of magnitude higher than that in ribbons. In microwires, stresses
are distributed in homogeneously over the radius. Strong compressive (in units of GPa)
stresses prevail in the near-surface region of a microwire, while tensile stresses (in hundreds
of MPa) prevail in the central part [5,6]. When the shell is removed, the total level of stresses
decreases by several hundreds of MPa [6]. Despite shell removing, the character of the
total stress distribution does not change (strong compressive stress on the surface part and
weak tensile stress in the central part). This difference in the stress state not only affects
the magnetization reversal process and the shape of a hysteresis loop [7,8] but it should
also affect the processes of crystal formation at the initial stages. Previously, the effect of
mechanical stresses on the crystallization and magnetic properties of Co-rich microwires
was observed in [9–11]. It was found that isothermal annealing led to the formation of
crystallites with an elongated shape, and there existed a preferential orientation along
the microwire axis [12]. This tendency was stronger in microwires that had undergone a
directional crystallization in the presence of a magnetic field [13]. It was shown that the
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growth of crystals oriented along the microwire axis led to a giant increase in the coercivity
(by an order of magnitude or more). Moreover, the cumulative effects of stresses on the
crystallization and high-frequency properties of microwires was demonstrated in [11].

The crystallization of the Fe73.5Si13.5B9Cu1Nb3 alloy considered in this work led to the
formation of nanocrystals with the density being higher than that of the amorphous matrix.
Thus, the density of the amorphous Fe73.5Si13.5B9Cu1Nb3 alloy was 7.14·103 kg/m3 [14], the
density of the Fe3Si nanocrystals was 7.39·103 kg/m3 [15]. Therefore, under crystallization,
a negative bulk effect would be the reason for the facilitated formation of nanocrystals.
Then, the combination of existing internal stresses and additional stresses arising due to the
compensation of a bulk crystallization effect would affect the kinetics of crystal formation
under the crystallization of amorphous alloys.

It is well-known that mechanical stresses arising under rolling [16], bending [17],
milling [18], plastic deformation [19,20], and static load [21,22] affect crystal formation.

Upon undergoing a negative bulk effect, the Gibbs energy of formation of a criti-
cal nucleus of Fe(Si) nanocrystals decreases with an increase in the compressive stresses
and, on the contrary, increases under tension. Surely, this affects nucleation frequency
and, hence, the size of nanocrystals and their volume fraction in the material. Strong
compressive stresses prevail in the near-surface region of a microwire. At that region, as
mentioned above, a negative bulk effect was observed under the crystallization of the
Fe73.8Si13B9.1Cu1Nb3.1 alloy. Then, nanocrystal formation should have been facilitated
in the near-surface region of a microwire. At the same time, there were no regions with
compressive stresses in the amorphous ribbons [4]. Therefore, when comparing the initial
crystallization stages of the amorphous ribbons and microwires, the effect of compres-
sive stresses on them could be estimated. Thus, the present work aimed to study the
effect of a high level of mechanical stresses on nanocrystal formation in the amorphous
Fe73.8Si13B9.1Cu1Nb3.1 alloy, and compared initial nanocrystallization stages in amorphous
microwires and ribbons, which had the same composition but significantly different levels
of internal stresses.

2. Materials and Methods

Amorphous Fe73.8Si13B9.1Cu1Nb3.1 alloys were produced in the form of a ribbon by
rapid melt quenching; their thickness was 16–18 µm, and the width was 9 mm. Amorphous
alloys of the same composition were produced in the form of a glass-coated microwire by
the Ulitovsky-Taylor method; the average diameter of the metallic part was 16.5 µm, and the
thickness of the shell was 3.5 µm. Initial samples were produced using high-purity (99.9%)
components. As shown in [3], the best values of coercivity and magnetic permeability are
achieved by heat treatment of the Fe73.5Si13.5B9Cu1Nb3 alloy in the temperature range of
773–833 K. DTA analysis performed in [23] revealed that crystallization began at 803 K. In
contrast, results from paper [24] indicated that isothermal annealing for 1 h at 723–823 K
led to Fe(Si) nanocrystal precipitation. Accordingly, the ribbons and uncoated microwires
were annealed in a vacuum at temperatures in the range of 753–823 K for 1 h. The most
illustrative results were obtained after annealing at 753 K. Before annealing, the glass shell
was removed by chemical etching in hydrofluoric acid.

Since crystals are formed at an enhanced temperature, the value of the stresses corre-
sponding to these conditions needed to be estimated. To study the effect of temperature on
the level of mechanical stresses, the degree of bending stress relaxation in the ribbons was
estimated. For this to be done, samples of the ribbons were placed into a quartz ampoule
along its inner diameter. The length of the samples coincided with the circumference of
the ampoule. After that, heat treatment was performed at 753 K. Then, the samples were
pulled out of the ampoule, and the curvature radii of the annealed samples were measured.
To estimate the degree of stress relaxation, the parameter γ = 1 − R0/R was used [25],
where R0 is the radius of a quartz ampoule and R is the curvature radius of a ribbon after
heat treatment.
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The structure and phase compositions of the samples before and after annealing
were investigated with a SIEMENS D-500 (Manufacturer: Siemens AG. Location: Östliche
Rheinbrückenstraße 50, 76187 Karlsruhe) diffractometer using Co Kα-radiation. Since the
samples contained the amorphous and crystalline phases, the experimental curves were
decomposed into a diffuse component caused by scattering from the amorphous phase,
and a diffraction component caused by the presence of crystals. When decomposing, the
characteristics of the curve of scattering by the initial amorphous phase (the half-width and
the position of the diffuse maximum) were taken into account. The size of the nanocrystals
was calculated according to the half-width of a diffraction spectrum component using the
Scherrer equation [26,27].

The fraction of the amorphous and crystalline phases was estimated by the ratio of
the integral intensities of the diffraction and diffuse components of the X-ray diffraction
patterns, according to [28].

3. Results

After the production, the samples were amorphous. The X-ray diffraction patterns of
initial samples contained only broad diffuse maxima; no diffraction reflections from the
crystalline phases were observed (Figure 1).
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Figure 1. X-ray diffraction patterns of the initial amorphous Fe73.8Si13B9.1Cu1Nb3.1 ribbons (1) and
microwires (2).

After the annealing, the structure of both samples changed markedly. Figure 2 shows
the X-ray diffraction patterns of the microwires (Figure 2a) and ribbons (Figure 2b) annealed
at 753 K for 1 h.

Figure 2 illustrates regions of the main diffuse maximum in the X-ray diffraction
patterns; the insets show complete curves. In the figure, curve 1 is an experimental
X-ray diffraction pattern, curve 3 corresponds to scattering by the amorphous phase,
curve 4 describes diffraction reflections from nanocrystals, and curve 2 is the sum of
curves 3 and 4. In the complete X-ray diffraction pattern of the microwires (Figure 2a),
diffraction reflections were indexed. They corresponded to the bcc phase with the parameter
a = 2.845 Å and a Fe(Si) solid solution. One can see that the intensity of the diffraction
reflections (curve 4) in Figure 2a was significantly higher than that of the diffraction
reflections in Figure 2b. The analysis of the reflection intensities showed that the fraction
of the precipitated nanocrystalline phase in the microwires was 20% higher than that in
the ribbons. The half-widths of the diffraction reflections in Figure 2a,b were also different,
which was the evidence of different sizes of the nanocrystals. The size of the nanocrystals
in the microwires was determined using the Scherrer equation as 16 nm, and that in the
ribbons was 6 nm.
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Figure 2. X-ray diffraction patterns of the microwires (a) and ribbons (b) of Fe73.8Si13B9.1Cu1Nb3.1

composition annealed at 753 K for 1 h (1—experimental curve, 3—scattering from the amorphous
phase, 4—diffraction reflections from nanocrystals, 2—summary of curves 3–4).

To estimate the degree of mechanical stress relaxation under annealing, in the assump-
tion that the initial internal stresses in a microwire decrease with the temperature at the
same rate as ribbons induced under bending do, an experiment on the estimation of the
degree of bending stress relaxation was performed.

Figure 3 depicts the change in the parameter γ with time. One can see that about
20 min later, bending stresses were almost completely relaxed. To facilitate further calcula-
tions, γ = 0.1 was selected as the “effective” value.
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4. Discussion

We shall assume that nanocrystals nucleate by a homogeneous mechanism. As is well-
known, Cu clusters are formed in this alloy under heating, which can act as heterogeneous
nucleation centers [29]. However, under consideration of the first approximation, we will
not take into account their effect on the kinetics of the Fe(Si) nanocrystal nucleation.

To consider the effect of the internal stresses of the microwire on nucleation frequency,
one should first modify the expression for the Gibbs energy ∆G of a spherical nucleus with
the radius r, proposed in [16–22]:

∆G = − 4/3πr3(∆Gch + Eε) + 4πr2σ (1)

where ∆Gch is the driving force of crystallization from an amorphous state, Eε is the elastic
energy that includes deformation contributions from internal stresses and the emergence of
a nanocrystal different from the amorphous density matrix, and σ is the surface energy.

We shall write the elastic energy in more detail [30], assuming that the shear component
of deformation γ is absent:

Eε = πGε(x)2/4 (2)

where G = E/(2(1 + ν)) is the shear modulus, and E = 139 GPa is Young’s modulus at
753 K. Under normal conditions, the value of Young’s modulus is 154 GPa [31]; however,
considering the temperature effect, there is a decrease by about 10% [32], ν is the Poisson’s
ratio that is taken to be 0.3 [33,34], x, is the radial from the microwire axis, and ε(x) is the
normal component of deformation. It is presented in the form:

ε(x) = ∆V/3V + γσ(x)/E (3)

where σ(x) = σrr + σθθ + σzz is the sum of diagonal components of a stress tensor of the
metallic core of a microwire with respect to the sign, calculated according to [6,8], γ is the
effective value of the stress relaxation parameter, obtained from an experiment with the
ribbons. ∆V/V is the value of a bulk effect calculated from the difference between densities
of amorphous material and formed nanocrystals:

∆V/V = (ρam − ρcr)/ρam (4)

where ρam,cr are the densities of an amorphous alloy and nanocrystals, respectively. Accord-
ing to [14], the density of the amorphous Fe73.5Si13.5B9Cu1Nb3 alloy was 7.14·103 kg/m3,
the density of nanocrystals of a solid solution of 25% Si in Fe, Fe3Si, was 7.39·103 kg/m3 [15],
and the density of Fe was 7.87·103 kg/m3. Considering that density changes linearly with
a change in Si concentration, the density of nanocrystals was taken to be 7.55·103 kg/m3 at
Si content of 16.5% [35].

It is assumed in Equation (3) that compressive stresses are negative, and tension
stresses are positive. From (1), we obtain the Gibbs energy of a critical nucleus:

∆G* = 16πσ3/(3(∆Gch + Eε)2) (5)

The next assumption is that the value of internal stresses in a ribbon is significantly
lower than that in a microwire [4]. Therefore, the second term in (3) could be neglected for
calculations in a ribbon. The difference between free energies of the alloy in amorphous
and crystalline states was calculated according to [36]:

∆Gch = 2T∆Hcr∆Tρam/(Tm(Tm + T)) (6)

where ∆Hcr = 58 J/g is the crystallization enthalpy [37], Tm is the melting temperature taken
to be 1450 K [38], T is the temperature of heat treatment at 753 K, and ρam is the density
of the amorphous matrix at 7.14·103 kg/m3. Here, we assumed that the crystallization
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enthalpy for ribbons and microwires was the same and did not depend on internal stresses.
Then, ∆Gch is 0.14 GJ/m3.

The growth rate was calculated by the formula [39,40]:

uc =
f D
a0

[
1 − exp

(
−(∆Gch + Eε)

kT

)]
(7)

where f ≈ 1 and D is the diffusion coefficient. The growth rate for the ribbon was
2.23·10−11 m/s, assuming that only the bulk effect was presented and σ(x) = 0 in (3).
By using the stress distribution σ(x) as a function of the distance to the microwire axis
calculated according to [6,8], as well as Equation (2), the distribution uc(x) was calcu-
lated (Figure 4). The obtained values of nanocrystal growth rate were within the range of
2.22·10−11–2.30·10−11 m/s.
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It follows from the data of the X-ray diffraction studies that the content of nanocrystals
in the microwire was 20% higher than that in the ribbon. Assuming that, at the initial
crystallization stages, the growth rate and nucleation frequency of the nanocrystals did not
change with time, we used the well-known expression for the crystallized volume fraction
X = 1 − exp

(
−π

3 Iu3
c t4) [41], and wrote a ratio for the crystallized fractions in a microwire

and ribbon:
Xwire

Xribbon
=

[
1 − exp

(
−π

3 Iu3
c t4)]

wire[
1 − exp

(
−π

3 Iu3
c t4
)]

ribbon
(8)

The left side of Equation (8) is the relative fraction of nanocrystals determined ex-
perimentally, with the average over the volume fraction resulting in the microwire. On
the right side, there are unknown values of nanocrystal nucleation frequencies, which,
in turn, contain an unknown value of surface energy. The value of σ was determined
from the condition that the value on the left side of (8) determined experimentally, which
corresponded to the value of the final expression on the right side of (8) with a precision of
approximately 1%.

The nucleation frequency was determined according to [17]:

I =
DNV

a2
0

exp
(
−∆G∗

kT

)
(9)

where D is the diffusion coefficient, NV = ρNA/M is the average atomic concentration,
M is the average molar mass, and a0 is the average interatomic spacing. The diffusion
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coefficient was estimated using the technique from [42]; it turned out to be 3.6·10−20 m2/s.
The average atomic concentration NV was 8.66·1028 m−3. The average interatomic spacing
was estimated from the Ehrenfest equation for a radius of the first coordination sphere,
a0 = 2.5 Å. The values necessary for further calculations are summarized in Table 1.

Table 1. Data used for the calculations.

Parameter Value
Xwire

Xribbon
1.2

uribbon
c 2.23·10−11 m/s

∆Gch 0.14 GJ/m3

Eε(σ = 0) 15.3 MJ/m3

D 3.6·10−20 m2/s
NV 8.66·1028 m−3

a0 2.5 Å

Taking into account Equations (5) and (9) can be rewritten as:

I =
DNV

a2
0

exp

(
−16πσ3

3kT[∆Gch + Eε]
2

)
(10)

Calculations using (10) showed that the nucleation frequency of the ribbon was
1.9·1017 m−3s−1, with a surface energy of 0.072 J/m2. The value of surface energy es-
timated in [18] for a Fe crystal in the amorphous environment at room temperature was
0.13 J/m2. This difference may be related to the purely homogeneous mechanism of crystal
nucleation assumed in this work. However, nanocrystals are formed in this alloy not only
by a homogeneous mechanism, but also by nucleation on Cu clusters. The estimated values
of nucleation frequencies were quite close in the order of magnitude to (10 ± 5)·1019 m−3s−1

obtained under heat treatment at 763 K [24]. The distribution of nucleation frequencies
over the microwire radius calculated from (12) is demonstrated in Figure 5.
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The obtained distributions of the nucleation frequency and growth rate of the nanocrys-
tals allowed for calculating the distribution of the crystallized volume fraction X over the
microwire radius (Figure 6). One can see from Figure 6 that the volume fraction of the
formed nanocrystals significantly increased in the near-surface region, where the value of
compressive stresses can reach 2 GPa [6,8]. At that region, the average volume fraction
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of nanocrystals in the microwire, calculated from the distribution in Figure 6, was about
29%. For the ribbon, the content of nanocrystals, calculated using the expression for the
crystallized volume fraction X, was 24%, which was about 20% lower and corresponded to
the experimentally revealed differences.
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As one can see from Figure 2, at the initial crystallization stages, microwires crystal-
lized more rapidly than ribbons. The obtained estimates suggested that, at early stages,
nanocrystallization in microwires occurred predominantly in the microwire part where
compressive inner stresses prevailed, i.e., in a small, near-surface region, which was about
2–2.5 µm for the microwire with a diameter of 16.8 µm. In addition, one of the reasons for
the predominant crystallization of the surface layer could be not only compressive stresses,
but also defects on the microwire surface.

In some amorphous alloys, compressive stresses can lead to different effects [43–46].
Due to compressive stresses, the slowdown of the crystallization kinetics led to an increase
in the crystallization temperature in Pd-, La-, and Pr-based amorphous alloys. In such
alloys, the glass transition temperature is below the crystallization temperature, Tg < Tx.
This means that the crystallization of such alloys occurs from the supercooled liquid state,
not from the amorphous state. During the nucleation and growth of crystals from the
supercooled liquid state, the bulk effect may not affect the overall crystallization kinetics,
due to the low viscosity of the alloy and rapid relaxation. In this case, a decrease in the
diffusion coefficient (atomic mobility) may have played a decisive role. We assumed that
the bulk effect played a crucial role in our case, since in the Fe73.8Si13B9.1Cu1Nb3.1 alloy
Tg > Tx and crystallization occurs from the amorphous state, not from the supercooled
liquid state. In this case, the viscosity of the alloy remains high and the stresses do not have
time to relax. In addition, it should be noted that the effect of pressure on the crystallization
of alloys with Tg < Tx is not unambiguous. Thus, it was demonstrated in [17] that the
application of bending stresses of more than 1.5 GPa to a Pd40Cu30Ni10P20 ribbon led to
the fact that the tension side (above the neutral axis) of the glassy Pd40Cu30Ni10P20 ribbon
showed no crystallinity. At the same time, the compressed part of the ribbon thickness
showed the presence of nanocrystals. The bulk effect in Pd-based alloys is about 3 times
lower than that in the Fe73.8Si13B9.1Cu1Nb3.1 alloy. Therefore, we supposed that, in our
case, the influence of the bulk effect on the crystallization was stronger.

The crystallization of the Fe73.5Si13.5B9Cu1Nb3 alloy led to a simultaneous increase in
the magnetic permeability and a decrease in the saturation magnetostriction [2,3]. Since the
surface part of the microwire crystallized faster than its central part, the high-frequency
properties of the microwire were improved in the surface part. For instance, there is
the GMI effect, which is essentially an increase in the impedance Z of a soft magnetic
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conductor placed in a static magnetic field. The GMI ratio ∆Z/Z of annealed amorphous-
nanocrystalline Fe73.5Si13.5B9Cu1Nb3 [47] and Fe73.8Si13B9.1Cu1Nb3.1 [48] microwires in-
creased significantly (up to 200%) in a wide range of frequencies, in comparison with
as-prepared samples. It is noteworthy that the ∆Z/Z value depended on the depth of skin
layer; the alternating current flows effectively in the near-surface region. The selection
of heat treatment conditions could avoid the crystallization of the central part of the mi-
crowire during the crystallization of its surface part. In this case, the microwire would be a
semblance of layered composite, with enhanced soft magnetic properties (like magnetic
permeability) near the surface This opens up new prospects for varying the high-frequency
properties of Fe73.5Si13.5B9Cu1Nb3 microwires and their application in modern sensorics.

5. Conclusions

It has been determined experimentally that the sizes and volume fraction of nanocrys-
tals formed as a result of heat treatment at 753 K in the Fe73.8Si13B9.1Cu1Nb3.1 microwires
were greater than those in a ribbon. It was found that crystallization proceeded more
intensively in the near-surface region of the microwire. These data are the evidence of
different rates of crystallization processes in a microwire and a ribbon, which were caused
by the presence of a high level of internal stresses in microwires.

The estimated calculations of the dependence of the nucleation frequency of Fe(Si)
nanocrystals on mechanical stresses were carried out. Based on the performed calculations
and the experimental data, it was found that the nucleation frequency of the nanocrystals
in the near-surface region of a microwire increases significantly and reaches a maximum on
the surface. The average value of nucleation frequency in an amorphous microwire was
1.5 times larger than that in a ribbon and was 2.9·1017 m−3s−1.

The possibility of the formation of microwires during heat treatment with a predomi-
nant nucleation of nanocrystals in the near-surface region opens up broad prospects for
controlling the high-frequency properties of microwires, and for using them as sensitive
elements of strain and magnetic field sensors.
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