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Abstract: This paper presents a structure for refractive index sensors in the terahertz (THz) band.
The THZ sensor is studied in simulation, utilizing the strong local electromagnetic field intensity
produced by the enhanced extraordinary optical transmission. Depending on the different sensing
positions of the sensor, their sensing basis is also different, such as Mie scattering, surface plasmon
polaritons, etc. The sensing sensitivity based on Mie scattering can reach 51.56 GHz/RIU; meanwhile
the sensing sensitivity based on surface plasmon polaritons is only 5.13 GHz/RIU. The sensor can
also detect the thickness of the analyte, with the lowest detectable height of 0.2 µm. Additionally, we
find that the sensitivity can be increased by replacing the silicon particle with the analyte.

Keywords: refractive index sensor; extraordinary optical transmission; terahertz; surface plasmon po-
laritons

1. Introduction

“THz wave” refers to an electromagnetic wave with a 0.1 THz–10 THz frequency. The
photon energy of 1 THz is only about 4.14 meV, which means that it will not ionize biological
molecules and will cause little radiation damage to tissues and organs in living organisms.
Ref. [1] reports that THz waves are of great research value in the biological field. Based on
the excellent characteristics of the THz band, the THz sensor is an important technology
that has developed in recent years, to the extent that it now touches many areas from
fundamental science to real-world applications, such as biomedicine [2,3], food safety [4,5],
environmental monitoring [6], industry and agriculture [7,8]. The terahertz metamaterials
sensor is an emerging technology, which is based on a surface plasmon polaritons (SPPs)-
like effect, which explains the possibility of generating SPPs in the terahertz frequency
range. Pendry et al. proposed a method of forming an array of periodic slits and holes
on the metal surface to achieve spoof surface plasma [9]. The dispersion relationship
of spoof surface plasma can be adjusted by adjusting the structure and size of devices,
which has gradually become a research hotspot in the field of THz sensing. Ng B. et al.
used metal groove arrays with subwavelength periods to excite spoof surface plasma to
measure THz spectrum phase and amplitude changes of gasoline, and obtained a high
sensitivity. In Ref. [7] Ying et al. used terahertz metamaterials to detect the pesticide
chlorpyrifos methyl and achieved a sensing accuracy of 0.204 mg/L. In Ref. [4], Chau et al.
proposed a refractive index sensor of multimode Fano resonance based on cavity/gap
plasmon resonance, achieving remarkable high-sensitivity. In Ref. [10], by taking full
advantage of the properties of surface plasmons, the performance of THz sensors can
be effectively improved. Extraordinary optical transmission (EOT) refers to the resonant
transmission of electromagnetic radiation through a metal film with a subwavelength
aperture. According to the theory of diffraction by small holes, if the hole radius r is
much smaller than the incident wavelength, the transmittance is close to zero [11–20]
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However, in practice, if the incident light passes through a subwavelength metal hole,
the transmittance is much higher than the theory predicts, which is called EOT. [16–25]
The extraordinary optical transmission (EOT) phenomenon results from SPPs, which are
a type of surface electromagnetic wave. SPPs are generated by coupling excitation of
clusters of oscillating free electrons propagating along the metal-dielectric surface and
can greatly improve transmittance [13] The enhanced extraordinary optical transmittance
(EEOT) phenomenon can be realized by placing two silicon particles on both sides of
subwavelength hole arrays [16–25], because the energy coupled by silicon particles can be
effectively coupled with the SPPs and improve the transmittance.

If low-loss silicon particles are placed symmetrically on both sides of the hole, the
enhanced extraordinary optical transmittance (EEOT) phenomenon will be greater. The
silicon particles can be regarded as magnetic dipole antennas, which effectively guide
the incoming electromagnetic waves to the subwavelength aperture and then transmit
them to the free space through Mie resonance coupling. The top silicon particle can couple
electromagnetic energy, the hole array excites the SPPs and the bottom silicon particle can
distribute the energy. Although the radius of the hole array is much less than the incident
wavelength, there is still a large transmittance [16,17]. Low energy THz waves can be
enhanced by the EEOT phenomenon. In the structure using two silicon resonators, the
enhanced transmittance peak is sensitive to the external dielectric environment, as there is a
very strong electromagnetic field inside the hole. Small changes in the analyte can produce
a large frequency shift in the transmittance peak, which can be applied to the development
of THz sensors [1,11–17].

In this work, we propose a THz sensor, taking advantage of the EEOT phenomenon.
We tested by placing the analytes in three different positions: over a silicon particle, to
one side of a particle and in between two particles. The transmittance was greatest when
the analyte was covering a particle. The radius of the hole array also had an impact on
the sensitivity Sn. As the radius increased, the sensitivity decreased. In addition, as the
height of the analyte changed, the frequency of the transmittance peak changed. The lowest
detectable height change was 0.2 µm. Moreover, we found that, if a silicon particle was
replaced with the analyte, forming an analyte-hole-silicon particle asymmetric structure,
there was better sensitivity. This enables the sensing of small volume analytes, which have
a significant application potential in biomedical sensing.

2. Materials and Methods

A subwavelength hole with radius r of 4.5 µm in a gold film is shown in Figure 1a. The
Au film thickness was 1 µm, which is much larger than the skin depth and opaque to the
incident plane wave. The Au film length and width were both 50 µm. Ref. [16] The sensor
is shown in Figure 1b. The silicon particles are placed on the upper and lower sides of the
hole and the analyte covers the upper silicon particle. The silicon particle height h0 was
4 µm and the silicon particle width w0 and length l0 were both 12 µm. The optical constants
of Au and Si are quoted from the CRC model and the Palik model, respectively [26]. The
analyte height h was 5 µm, width w was 12 µm and length l was 50 µm.

Our work depends on a commercial piece of software, the finite-difference time-
domain (FDTD) solutions 2020, which uses a discrete method to turn Maxwell’s equations
into difference equations [14]. A perfectly matched layer boundary condition was used in
the x direction and periodic boundary conditions were placed in the y and z directions.
A spatial step discretization of 0.8 × 0.8 × 0.1 µm3, a running time of 800 ps and an auto-
shutoff minimum of 1 × 10−6 in the simulations were adopted to trade off accuracy and
running time. A plane wave source propagated along the x direction with an electric field
polarized along the y direction [16]. In order to reflect the sensing performance, we took
sensitivity Sn as a measure, which is defined as Sn = ∆f0/∆n [13] or Sn = ∆f0/∆h, where
∆f0 is the frequency shift of the transmittance peak, ∆n is the refractive index shift for
different analytes and ∆h is the height change for the same analytes.
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Figure 1. A structural unit. (a) A subwavelength hole of radius r (4.5 µm) in a gold film. (b) The
sensor, with silicon particles above and below (blue). The electromagnetic wave propagates along the
x direction with an electric field polarized along the y direction.

3. Results and Discussion

The transmittance characteristics of the EEOT structure are shown in Figure 2a. The
blue line shows the transmittance of the hole-only structure of Figure 1a, which shows
that light can hardly get through. According to the theory of hole transmittance, the
transmission efficiency through a small hole scales with the ratio of r/λ. Refs. [4,7] The
red line shows the transmittance of the silicon-hole-silicon structure. The transmittance
peak can achieve 0.68, which is much larger than hole transmittance theory predicts. The
transmittance peak occurs at 4.61 THz.
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Figure 2. (a) The transmittance characteristics of the EEOT structure (Resonator-resonator structure)
and Hole-only structure, when Au film thickness is 1 µm, and length and width are both 50 µm. The
hole radius is 4.5 µm. The silicon particle height h0 is 4 µm, and width w0 and length l0 are both
12 µm. (b) Electric field intensity distribution diagram. The red and yellow parts are at the edges of
the metal array hole. The white dotted lines show the position of the silicon particles.

The electric field distribution is shown in Figure 2b. As shown in the figure, there is a
larger electric field intensity at the edge of the metal hole and between the silicon particles.
Surface plasmon polaritons (SPPs), which are an electromagnetic surface wave traveling
along the interface separating a dielectric and a metal, play a key role in the production of
EOT [16–25]. The metal hole reflects a high electric field intensity. The energy collected by
Mie resonance can usefully be coupled with SPPs and generate a high electric field intensity
in the coupling area. The silicon can be considered as a magnetic dipole antenna, which
can couple incident THz waves, collect the energy of the incident wave, and guide it to
the metal hole array and exciting LSP. The upper surface plasmon polaritons excite the
local surface plasmon polaritons of the underlying metal on both sides of the hole. The
bottom silicon particle can release the energy of the electromagnetic wave. The internal
current between the silicon particles and the subwavelength holes depicts the excitation
of the circulating current throughout the structure, which ultimately suggests that the
magnetic dipole resonance generated in the silicon particles and the excited SPPs near the
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hole array together contribute to the EEOT. So the silicon particles reflect a high electric
field intensity [16,21,22,27].

The analyte and silicon particles were arranged in three different configurations and
the transmittance measured and compared. As shown in Figure 3a–c, by increasing the
refractive index n of the analyte, the resonance frequencies exhibited a remarkable red-
shift. This shows that frequency shift can indicate the refractive index of the analyte.
The analyte height h is 5 µm, width w is 12 µm, and length l is 50 µm. As shown in
Figure 3d, the frequency shift changes relatively smoothly as the analyte refractive index
increases from 1.1 to 1.6. Comparing the three configurations, it can be seen that, when the
analyte is covered with the silicon particles, the sensitivity is greatest. As the refractive
index changes from 1.1 to 1.6, the frequency shift is 25.78 GHz and the sensitivity Sn is
about 51.56 GHz/RIU. When the analyte is placed on either side of the silicon particle,
as in Figure 3c, the sensitivity approaches zero. When the refractive index changes from
1.1 to 1.6, the frequency shift is 1.09 GHz, and the sensitivity Sn is about 2.18 GHz/RIU.
When the analyte is on one side of a silicon particle, as in Figure 3b, the parameters are
in the middle. The refractive index of typical biomedical samples is between 1.3 and
1.4. [6,28]. When the refractive index of the analyte is between 1.3 and 1.4, the sensitivity of
the analyte-covered silicon structure and analyte-silicon structure is 5.13 GHz/RIU and
3.82 GHz/RIU. The frequency of transmittance peak shift is clear. The sensor can therefore
act as a super-sensitive biosensor [28–36].
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Figure 3. (a) Transmittance spectra of analyte covered with a silicon particle. (b) Transmittance
spectra of the analyte when placed beside a silicon particle. (c) Transmittance spectra of the an-
alyte when placed on either side of the silicon particle. (d) Comparison of transmittance for the
three arrangements.

In order to further study the factors affecting sensitivity, the transmittance spectra were
simulated for a metal hole array with diameter d of 7 µm, 9 µm, and 11 µm (Figure 4a–c).
As observed above, this shows that the refractive index can be sensed by frequency shift.
The frequency shift also depends on the metal hole diameter. As Figure 4d shows, as d
increased, the sensitivity Sn decreased. Furthermore, if the diameter is reduced to increase
sensitivity, the transmittance peak will decrease, which will improve recognition difficulty.
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If the radius of the hole increases, the local coupling area increases, and the transmittance
will increase (according to the theory of diffraction by small holes) [20,27]. In addition, if
the local coupling area decreases, the coupling between SPPS and SPR is strengthened, the
local electric field near the metal hole is enhanced, and the metal hole will be more sensitive
to external electric field changes. The available range of the hole diameter is about 5–15 µm.
The performance of this EEOT THz sensor shows great promise.
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We also found a possibility of detecting the height h of the analyte. As Figure 5a shows,
the lowest detectable height change was 0.2 µm. When the height changed from 4.0 µm to
5.0 µm, the frequency shift was 9.72 GHz and the sensitivity Sn was about 9.72 GHz/µm.
We found it easy to distinguish different substances using the frequency of transmittance
peak shift. The high sensitivity to small height changes means this sensor can sense analytes
of the size of cell tissues, which are always submicron. The EEOT sensor has the potential
for applications in biological sensing. If the height changes from 4.0µm to 9.0µm as in
Figure 5b, the frequency shift is 38.27 GHz and the sensitivity Sn is about 7.65 GHz/µm.
Moreover, when the height is relatively large, there is a smaller Sn, which means the sensor
is not applicable to a larger analyte.

Based on the principle of EEOT, we found the possibility of increasing Sn. The top
silicon particle works as an antenna. So if the top silicon particle is replaced with the
analyte, there will be a significant frequency of transmittance peak shift and transmittance
peak shift. As the Figure 6 shown, when the analyte refractive index changed from 1.1 to
1.6, the frequency shift was 56.59 GHz and the Sn was 113.18 GHz/RIU. Additionally, the
transmittance was weak. The particle acted as a receiving antenna to efficiently capture
the incident energy, generating a strong magnetic field in the center of the silicon particle.
Due to the lack of a magnetic dipole resonator on the other side of the hole, the asymmetric
structure could not couple all the localized electromagnetic fields, so the energy transmitted
through the subwavelength aperture was relatively weak. A part of the energy that was
localized in the particle was absorbed, reflected, or lost during the propagation between the



Crystals 2022, 12, 1616 6 of 8

particle and the hole [16]. Moreover, the transmittance peak will increase as the refractive
index increases, which may offer a new method for sensing. However, the structure is
difficult to build and the volume of the analyte is small, which means this structure can be
further improved.
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Figure 6. The transmittance spectra of the sensor when replacing the top silicon particle with
the analyte.

4. Conclusions

By placing two low-loss silicon particles symmetrically on either side of subwavelength
holes, greatly enhanced THz EOT has been obtained. The Mie resonance coupling between
a pair of magnetic dipole resonators can effectively localize electromagnetic fields. A
THz refractive index sensor is proposed based on the EEOT. Compared with two other
arrangements, the arrangement of analyte covered with the silicon particle showed the best
sensing performance. The sensitivity Sn achieved 51.56 GHz/RIU. When the metal hole
array radius increased from 3.5 µm to 5.5 µm, the sensitivity decreased but transmittance
peak increased, indicating that sensitivity may be sacrificed to improve recognition. This
sensor also has good sensitivity to analyte height: the lowest detectable height shift was
0.2 µm, and this offers the prospect of an application in sensing small volume change.
Furthermore, we found that, when the top silicon particle was replaced with the analyte,
there was better sensitivity, and the transmittance peak also reflected a sensing ability. All in
all, this THz sensor based on EEOT phenomenon has many promising characteristics. For
example, it can sense the change of small volume analyte with a relatively good sensitivity
and, due to the excellent transmittance peak of EEOT structure, the sensing results are clear.
This work offers a scientific reference for potential sensing applications.
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