Sn-Doped Hydrated V2O5 Cathode Material with Enhanced Rate and Cycling Properties for Zinc-Ion Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Sn Doped V2O5·nH2O
2.2. Materials Characterizations
2.3. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Ming, F.; Liang, H.; Lei, Y.; Kandambeth, S.; Eddaoudi, M.; Alshareef, H.N. Layered MgxV2O5·nH2O as Cathode Material for High-Performance Aqueous Zinc Ion Batteries. ACS Energy Lett. 2018, 3, 2602–2609. [Google Scholar] [CrossRef] [Green Version]
- Pan, Q.; Dong, R.; Lv, H.; Sun, X.; Song, Y.; Liu, X.-X. Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries. Chem. Eng. J. 2021, 419, 129491. [Google Scholar] [CrossRef]
- Pang, Q.; He, W.; Yu, X.; Yang, S.; Zhao, H.; Fu, Y.; Xing, M.; Tian, Y.; Luo, X.; Wei, Y. Aluminium pre-intercalated orthorhombic V2O5 as high-performance cathode material for aqueous zinc-ion batteries. Appl. Surf. Sci. 2021, 538, 148043. [Google Scholar] [CrossRef]
- Qi, Z.; Xiong, T.; Chen, T.; Shi, W.; Zhang, M.; Ang, Z.W.J.; Fan, H.; Xiao, H.; Lee, W.S.V.; Xue, J. Harnessing oxygen vacancy in V2O5 as high performing aqueous zinc-ion battery cathode. J. Alloy. Compd. 2021, 870, 159403. [Google Scholar] [CrossRef]
- Qiu, N.; Yang, Z.; Xue, R.; Wang, Y.; Zhu, Y.; Liu, W. Toward a High-Performance Aqueous Zinc Ion Battery: Potassium Vanadate Nanobelts and Carbon Enhanced Zinc Foil. Nano Lett. 2021, 21, 2738–2744. [Google Scholar] [CrossRef]
- Lübke, M.; Ning, D.; Armer, C.F.; Howard, D.; Brett, D.J.L.; Liu, Z.; Darr, J.A. Evaluating the Potential Benefits of Metal Ion Doping in SnO2 Negative Electrodes for Lithium Ion Batteries. Electrochim. Acta 2017, 242, 400–407. [Google Scholar] [CrossRef]
- Song, H.; Liu, C.; Zhang, C.; Cao, G. Self-doped V4+–V2O5 nanoflake for 2 Li-ion intercalation with enhanced rate and cycling performance. Nano Energy 2016, 22, 1–10. [Google Scholar] [CrossRef]
- Sun, R.; Qin, Z.; Liu, X.; Wang, C.; Lu, S.; Zhang, Y.; Fan, H. Intercalation Mechanism of the Ammonium Vanadate (NH4V4O10) 3D Decussate Superstructure as the Cathode for High-Performance Aqueous Zinc-Ion Batteries. ACS Sustain. Chem. Eng. 2021, 9, 11769–11777. [Google Scholar] [CrossRef]
- Suresh, R.; Giribabu, K.; Manigandan, R.; Munusamy, S.; Kumar, S.P.; Muthamizh, S.; Stephen, A.; Narayanan, V. Doping of Co into V2O5 nanoparticles enhances photodegradation of methylene blue. J. Alloy. Compd. 2014, 598, 151–160. [Google Scholar] [CrossRef]
- Wang, H.; Ye, W.; Yang, Y.; Zhong, Y.; Hu, Y. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives. Nano Energy 2021, 85, 105942. [Google Scholar] [CrossRef]
- Song, M.; Tan, H.; Chao, D.; Fan, H.J. Recent Advances in Zn-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1802564. [Google Scholar] [CrossRef]
- Wang, H.; Jing, R.; Shi, J.; Zhang, M.; Jin, S.; Xiong, Z.; Guo, L.; Wang, Q. Mo-doped NH4V4O10 with enhanced electrochemical performance in aqueous Zn-ion batteries. J. Alloy. Compd. 2021, 858, 158380. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, J.; Sarapulova, A.; Zhu, L.; Missyul, A.; Welter, E.; Luo, X.; Ding, Z.; Knapp, M.; Ehrenberg, H.; et al. Electrochemical performance and reaction mechanism investigation of V2O5 positive electrode material for aqueous rechargeable zinc batteries. J. Mater. Chem. A 2021, 9, 16776–16786. [Google Scholar] [CrossRef]
- Geng, H.; Cheng, M.; Wang, B.; Yang, Y.; Zhang, Y.; Li, C.C. Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior High-Rate and Low-Temperature Zinc-Ion Batteries. Adv. Funct. Mater. 2019, 30, 1907684. [Google Scholar] [CrossRef]
- He, Z.; Jiang, Y.; Zhu, J.; Li, Y.; Jiang, Z.; Zhou, H.; Meng, W.; Wang, L.; Dai, L. Boosting the performance of LiTi2(PO4)3/C anode for aqueous lithium ion battery by Sn doping on Ti sites. J. Alloy. Compd. 2018, 731, 32–38. [Google Scholar] [CrossRef]
- Kuang, M.; Han, P.; Huang, L.; Cao, N.; Qian, L.; Zheng, G. Electronic Tuning of Co, Ni-Based Nanostructured (Hydr)oxides for Aqueous Electrocatalysis. Adv. Funct. Mater. 2018, 28, 1804886. [Google Scholar] [CrossRef]
- Liu, R.; Liang, Z.; Gong, Z.; Yang, Y. Research Progress in Multielectron Reactions in Polyanionic Materials for Sodium-Ion Batteries. Small Methods 2018, 3, 1800221. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.H.; Park, C.; Kim, H.S.; Park, J.H.; Chung, K.Y.; Ahn, H. Controlling Vanadate Nanofiber Interlayer via Intercalation with Conducting Polymers: Cathode Material Design for Rechargeable Aqueous Zinc Ion Batteries. Adv. Funct. Mater. 2021, 31, 2100005. [Google Scholar] [CrossRef]
- Ni, S.; Liu, J.; Chao, D.; Mai, L. Vanadate-Based Materials for Li-Ion Batteries: The Search for Anodes for Practical Applications. Adv. Energy Mater. 2019, 9, 1803324. [Google Scholar] [CrossRef]
- Venkatesan, R.; Bauri, R.; Mayuranathan, K.K. Zinc Vanadium Oxide Nanobelts as High-Performance Cathodes for Rechargeable Zinc-Ion Batteries. Energy Fuels 2022, 36, 7854–7864. [Google Scholar] [CrossRef]
- Li, R.; Xing, F.; Li, T.; Zhang, H.; Yan, J.; Zheng, Q.; Li, X. Intercalated polyaniline in V2O5 as a unique vanadium oxide bronze cathode for highly stable aqueous zinc ion battery. Energy Storage Mater. 2021, 38, 590–598. [Google Scholar] [CrossRef]
- Lv, T.-T.; Liu, Y.-Y.; Wang, H.; Yang, S.-Y.; Liu, C.-S.; Pang, H. Crystal water enlarging the interlayer spacing of ultrathin V2O5·4VO2·2.72H2O nanobelts for high-performance aqueous zinc-ion battery. Chem. Eng. J. 2021, 411, 128533. [Google Scholar] [CrossRef]
- Tang, B.; Zhou, J.; Fang, G.; Guo, S.; Guo, X.; Shan, L.; Tang, Y.; Liang, S. Structural Modification of V2O5 as High-Performance Aqueous Zinc-Ion Battery Cathode. J. Electrochem. Soc. 2019, 166, A480–A486. [Google Scholar] [CrossRef]
- Moretti, A.; Giuli, G.; Trapananti, A.; Passerini, S. Electrochemical and structural investigation of transition metal doped V2O5 sono-aerogel cathodes for lithium metal batteries. Solid State Ion. 2018, 319, 46–52. [Google Scholar] [CrossRef]
- Wu, S.; Liu, S.; Hu, L.; Chen, S. Constructing electron pathways by graphene oxide for V2O5 nanoparticles in ultrahigh-performance and fast charging aqueous zinc ion batteries. J. Alloy. Compd. 2021, 878, 160324. [Google Scholar] [CrossRef]
- Yu, H.; Rui, X.; Tan, H.; Chen, J.; Huang, X.; Xu, C.; Liu, W.; Yu, D.Y.; Hng, H.H.; Hoster, H.E.; et al. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries. Nanoscale 2013, 5, 4937–4943. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, Y.; Fang, G.; Shan, L.; Guo, J.; Zhang, W.; Wang, C.; Wang, L.; Zhou, J.; Liang, S. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 2018, 11, 3157–3162. [Google Scholar] [CrossRef]
- Sheng, X.; Li, Z.; Cheng, Y. Electronic and Thermoelectric Properties of V2O5, MgV2O5, and CaV2O5. Coatings 2020, 10, 453. [Google Scholar] [CrossRef]
- Xu, X.; Xiong, F.; Meng, J.; Wang, X.; Niu, C.; An, Q.; Mai, L. Vanadium-Based Nanomaterials: A Promising Family for Emerging Metal-Ion Batteries. Adv. Funct. Mater. 2020, 30, 1904398. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, M.; Xiong, Y.; Hou, Z.; Ao, H.; Liu, M.; Zhu, Y.; Qian, Y. Aqueous Rechargeable Li(+) /Na(+) Hybrid Ion Battery with High Energy Density and Long Cycle Life. Small 2020, 16, e2003585. [Google Scholar] [CrossRef]
- Zhu, K.; Wu, T.; van den Bergh, W.; Stefik, M.; Huang, K. Reversible Molecular and Ionic Storage Mechanisms in High-Performance Zn0.1V2O5.nH2O Xerogel Cathode for Aqueous Zn-Ion Batteries. ACS Nano 2021, 15, 10678–10688. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Sun, Z.; Tian, Z.; Li, S.; Wu, G.; Wang, M.; Tong, X.; Shen, F.; Xia, Z.; Tung, V.; et al. Regulating Oxygen Substituents with Optimized Redox Activity in Chemically Reduced Graphene Oxide for Aqueous Zn-Ion Hybrid Capacitor. Adv. Funct. Mater. 2020, 31, 2007843. [Google Scholar] [CrossRef]
- Han, L.; Dong, S.; Wang, E. Transition-Metal (Co, Ni, and Fe)-Based Electrocatalysts for the Water Oxidation Reaction. Adv. Mater. 2016, 28, 9266–9291. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Wang, J.; Ye, L.; Sun, H.; Wen, Y.; Wang, C.; Sun, X.; Wang, B.; Peng, H. A Deep-Cycle Aqueous Zinc-Ion Battery Containing an Oxygen-Deficient Vanadium Oxide Cathode. Angew. Chem. Int. Ed. 2020, 59, 2273–2278. [Google Scholar] [CrossRef]
- Wang, H.; Bi, X.; Bai, Y.; Wu, C.; Gu, S.; Chen, S.; Wu, F.; Amine, K.; Lu, J. Open-Structured V2O5·nH2O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries. Adv. Energy Mater. 2017, 7, 1602720. [Google Scholar] [CrossRef]
- Du, Y.; Wang, X.; Sun, J. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 2020, 14, 754–761. [Google Scholar] [CrossRef]
- Li, Y.; Yao, J.; Uchaker, E.; Zhang, M.; Tian, J.; Liu, X.; Cao, G. Sn-Doped V2O5 Film with Enhanced Lithium-Ion Storage Performance. J. Phys. Chem. C 2013, 117, 23507–23514. [Google Scholar] [CrossRef]
- Wu, C.; Zhu, G.; Wang, Q.; Wu, M.; Zhang, H. Sn-based nanomaterials: From composition and structural design to their electrochemical performances for Li- and Na-ion batteries. Energy Storage Mater. 2021, 43, 430–462. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, C.; Liu, C.; Fu, H.; Nan, X.; Wang, K.; Li, X.; Ma, W.; Lu, X.; Cao, G. Enhanced Electrochemical Properties of Sn-doped V2O5 as a Cathode Material for Lithium Ion Batteries. Electrochim. Acta 2016, 222, 1831–1838. [Google Scholar] [CrossRef]
- He, D.; Peng, Y.; Ding, Y.; Xu, X.; Huang, Y.; Li, Z.; Zhang, X.; Hu, L. Suppressing the skeleton decomposition in Ti-doped NH4V4O10 for durable aqueous zinc ion battery. J. Power Sources 2021, 484, 229284. [Google Scholar] [CrossRef]
- Byeon, Y.W.; Ahn, J.P.; Lee, J.C. Diffusion Along Dislocations Mitigates Self-Limiting Na Diffusion in Crystalline Sn. Small 2020, 16, e2004868. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, Y.; Ruan, P.; Niu, X.; Zheng, D.; Xu, X.; Gao, X.; Cai, Y.; Liu, W.; Shi, W.; et al. Fe-doping enabled a stable vanadium oxide cathode with rapid Zn diffusion channel for aqueous zinc-ion batteries. Mater. Today Energy 2021, 21, 100842. [Google Scholar] [CrossRef]
- Zhao, H.; Fu, Q.; Yang, D.; Sarapulova, A.; Pang, Q.; Meng, Y.; Wei, L.; Ehrenberg, H.; Wei, Y.; Wang, C.; et al. In Operando Synchrotron Studies of NH4+ Preintercalated V2O5.nH2O Nanobelts as the Cathode Material for Aqueous Rechargeable Zinc Batteries. ACS Nano. 2020, 14, 11809–11820. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Liu, X.; Huang, S.; Li, L.; Wei, X.; Cao, J.; Yang, L.; Chu, P.K. Freestanding, Hierarchical, and Porous Bilayered NaxV2O5.nH2O/rGO/CNT Composites as High-Performance Cathode Materials for Nonaqueous K-Ion Batteries and Aqueous Zinc-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, Y.; Xu, L.; Gao, Z.; Zheng, J.; Wang, Q.; Meng, C.; Wang, J. Fabrication of (NH4)2V3O8 nanoparticles encapsulated in amorphous carbon for high capacity electrodes in aqueous zinc ion batteries. Chem. Eng. J. 2020, 382, 122844. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, K.; Cheng, W.; Liu, H.; She, W.; Wan, Y.; Wang, H.; Li, H.; Li, Z.; Zhong, X.; Ouyang, J.; et al. Sn-Doped Hydrated V2O5 Cathode Material with Enhanced Rate and Cycling Properties for Zinc-Ion Batteries. Crystals 2022, 12, 1617. https://doi.org/10.3390/cryst12111617
Guo K, Cheng W, Liu H, She W, Wan Y, Wang H, Li H, Li Z, Zhong X, Ouyang J, et al. Sn-Doped Hydrated V2O5 Cathode Material with Enhanced Rate and Cycling Properties for Zinc-Ion Batteries. Crystals. 2022; 12(11):1617. https://doi.org/10.3390/cryst12111617
Chicago/Turabian StyleGuo, Kai, Wenchong Cheng, Haiyuan Liu, Wenhao She, Yinpeng Wan, Heng Wang, Hanbin Li, Zidan Li, Xing Zhong, Jinbo Ouyang, and et al. 2022. "Sn-Doped Hydrated V2O5 Cathode Material with Enhanced Rate and Cycling Properties for Zinc-Ion Batteries" Crystals 12, no. 11: 1617. https://doi.org/10.3390/cryst12111617
APA StyleGuo, K., Cheng, W., Liu, H., She, W., Wan, Y., Wang, H., Li, H., Li, Z., Zhong, X., Ouyang, J., & Yu, N. (2022). Sn-Doped Hydrated V2O5 Cathode Material with Enhanced Rate and Cycling Properties for Zinc-Ion Batteries. Crystals, 12(11), 1617. https://doi.org/10.3390/cryst12111617