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Abstract: We prepared cocrystals of DL-2-Hydroxy-2-phenylacetic acid (D, L-H2ma) with the
pyridinecarboxamide isomers, picolinamide (pic) and isonicotinamide (inam). They were char-
acterized by elemental analysis, single crystal and powder X-ray, IR spectroscopy and 1H and 13C
NMR. The crystal and molecular structures of (pic)-(D-H2ma) (1), (nam)-(L-H2ma) (2) and (inam)-
(L-H2ma) (3) were studied. The crystal packing is stabilized primarily by hydrogen bonding and in
some cases through π-π stacking interactions. The analysis of crystal structures reveals the existence
of the characteristic heterosynthons with the binding motif R2

2(8) (primary amide–carboxilic acid)
between pyridinecarboxamide molecules and the acid. Other synthons involve hydrogen bonds
such as O-H(carboxyl)···N(pyridine) and O-H(hydroxyl)···N(pyridine) depending on the isomer. The pack-
ing of 1 and 3 is formed by tetramers, for whose formation a crystallization mechanism based on
two stages is proposed, involving an amide–acid (1) or amide–amide (3) molecular recognition in
the first stage and the formation of others, and interdimeric hydrogen bonding interactions in the
second. The thermal stability of the cocrystals was studied by differential scanning calorimetry and
thermogravimetry. Further studies were conducted to evaluate other physicochemical properties
of the cocrystals in comparison to the pure coformers. Density-functional theory (DFT) calculations
(including NCIplot and QTAIM analyses) were performed to further characterize and rationalize the
noncovalent interactions.

Keywords: pyridinecarboxamides; cocrystals; mandelic acid; X-ray structure; DFT calculations

1. Introduction

Crystal engineering is the rational design of functional molecular solids from neutral
or ionic building blocks, using intermolecular interactions in the design strategy [1]. This
field has its origins in organic chemistry and in physical chemistry. The expansion of crystal
engineering during the last years as a research field parallels significant interest in the
origin and nature of intermolecular interactions and their use in the design and preparation
of new crystalline structures [2].

The concept of crystal engineering, mainly cocrystal, is gaining an extensive interest of
pharmaceutical researchers of both academia and industry during the last decade [3], the
prominent reason being its ability to enhance the physicochemical and biopharmaceutical
properties of active pharmaceutical ingredients without altering chemical structure, thus
maintaining its therapeutic activity. With the new guidelines issued by United States Food
and Drug Administration and European Medicines Agency for the regulatory aspect of
cocrystal, the development of pharmaceutical cocrystal has gained a high impetus [4].
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A supramolecular synthesis is used to prepare cocrystals, and the design of homo and
supramolecular heterosynthons is particularly one of the most exploited [5,6]. Although
the preparation of cocrystals does not involve great complexity, the selection of the solvent
can be critical in obtaining a particular crystal phase of cocrystal. The role of the solvent in
the nucleation of crystals and cocrystals is still far from being completely understood.

The three isomers of pyridinecarboxamide: 2-pyridine carboxamide or picolinamide
(pic), 3-pyridinecarboxamide or nicotinamide (nam) and 4-pyridinecarboxamide or isoni-
cotinamide (inam) (Scheme 1), are a class of medicinal agents that can be classified as GRAS
compounds (generally regarded as safe). Nicotinamide and isonicotinamide are popular
cocrystal formers, nam is vitamin B3 and therefore of pharmaceutical relevance [7], whilst
isonicotinamide is one of the most effectively used cocrystallizing compounds [8], as the
pyridine N atom of the isonicotinamide molecule readily acts as a hydrogen bond acceptor
when faced with good hydrogen bond donors such as carboxylic acids and alcohols [9]. In
fact, the carboxylic acid···pyridine hydrogen bond has been identified as a robust yet versa-
tile hydrogen bond and persists even in the presence of other good donors [10]. Cocrystals
of picolinamide are rarely seen in the literature, despite being a structural isomer of nam
and inam and a strong inhibitor of poly(ADP-ribose)synthetase [11], showing important
biological activity with a coenzyme called NAD (nicotinamide adenine dinucleotide),
which plays important roles in more than 200 amino acid and carbohydrate metabolic reac-
tions [12]. Apart from pharmaceutical value, in general, pyridinecarboxamides are excellent
cocrystallizing compounds. The amide group features two hydrogen bond donors and two
lone pairs on the carbonyl O atom. A second hydrogen bond acceptor is the lone pair on the
N atom of the pyridine ring. Consequently, these molecules are very versatile for a variety
of hydrogen bonding interactions, especially in pharmaceutical cocrystals [13]. The crystal
and molecular structures of the three isomers have been the subject of recent studies, and
from the crystal structure point of view, all isomer compounds exhibit polymorphism. Two
polymorphs are known of picolinamide [14] nicotinamide, which is a highly polymorphic
compound with nine solved single-crystal structures [15], and isonicotinamide has six
polymorphs in monoclinic and orthorhombic forms [16–19].
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DL-Mandelic acid (Scheme 1) is a useful precursor to various drugs, for example
homatropine and cyclandelate, which are esters of mandelic acid, and it is also known
to have antibacterial properties [20]. Generally, the profile of DL-H2ma allows us to
envisage this compound as an excellent coformer for cocrystals with the aforementioned
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carboxamides. Indeed, given that DL-H2ma is a substituted carboxylic acid containing a
hydroxyl group on the adjacent carbon, it also possesses a set of sites capable of hydrogen
bonding, both of donor and acceptor character.

For racemate of mandelic acid DL-H2ma and its enantiomers L-H2ma and D-H2ma,
different polymorphs are known. Racemic DL-H2ma occurs as orthorhombic form I and
also as polymorph II, monoclinic, metastable at normal conditions [21,22]. From D-H2ma
only one monoclinic form is known [23] and for L-H2ma two polymorphs are known, both
monoclinic [22].

Taking into account the previous considerations, the main objective of this work is the
preparation, characterization, study of physicochemical properties, and identification of
recurrent supramolecular patterns, within a new set of multicomponent pharmaceutical
crystals that involve the three isomers of pyridinecarboxamide with DL-mandelic acid as
coformer (Scheme 1), as well as to evaluate the effect of position isomerism of cocrystal
formers on the formation and robustness of the supramolecular structures and subsequent
physicochemical properties of cocrystals.

2. Experimental Part
2.1. Materials and Physical Measurements

DL-Mandelic acid and the pyridinecarboxamide isomers were purchased from Sigma-
Aldrich (Sigma-Aldrich. Inc., Tres Cantos, Madrid, Spain). Commercially available solvents
were used as received without further purification. Melting points were determined on
a Büchi melting point apparatus (Büchi Labortechnik AG-Flawil, Switzerland) and are
uncorrected. Elemental analyses for carbon, hydrogen and nitrogen were performed with a
Fisons-Carlo Erba 1108 microanalyser (CARLO ERBA Reagents SAS, Chaussée du Vexin,
France). 1H NMR and 13C NMR spectra in DMSO-d6 were run on a Varian Mercury 300
instrument (Varian Medical Systems, Inc., Palo Alto, CA, USA), using TMS as the internal
reference. IR spectra were recorded as KBr pellets (4000–400 cm–1) on a Bruker IFS-66v
spectrophotometer (Bruker Corporation, Billerica, MA, USA). TGA experiments were car-
ried out on a Shimadzu Thermobalance TGA-DTG-50H Instrument (TA Instruments, New
Castle, DE, EE. UU.) from room temperature to 700 ◦C in a flow of air (100 mL min–1) and
series of FTIR spectra (20–30 per sample) of evolved gasses were recorded using a coupled
FT–IR Nicolet Magma 550 spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). Differential scanning calorimetry (DSC) was conducted on a DSC Q100 apparatus
of TA Instruments. Accurately weighed samples (1–2 mg) were placed in hermetically
sealed aluminum crucibles (40 mL) and scanned from 0 to 350 ◦C at a heating rate of
10 ◦C min–1 under a dry nitrogen atmosphere. Powder X-ray diffraction (XRPD) patterns
were collected on a Philips PW1710 (Philips Engineering Solutions, Aachen, Germany) with
a Cu-Kα radiation (1.5406 Å). The tube voltage and amperage were set at 40 kV and 30 mA,
respectively. Each sample was scanned between 2 and 50◦ 2θ with a step size of 0.02◦. The
instrument was previously calibrated using a silicon standard.

2.2. Cocrystal Screening

Compounds were prepared by cocrystallization via solvent-drop grinding: Stoichio-
metric amounts of DL-H2ma with pic, or inam were ground with a mortar and pestle for ca.
5–7 min with the addition of 10 µL of Ethyl acetate per 50 mg of cocrystal formers. The clear,
nonsaturated resulting solutions were poured into a 5 mL vial and left to evaporate slowly
under ambient conditions until cocrystals formed. The single crystals of (pic)-(D-H2ma) (1)
and (inam)-(L-H2ma) (3), suitable for X-ray diffraction studies, were obtained in 2–15 days
from Ethyl acetate.

Preparation of the cocrystals was also attempted with other solvents, such as
dichloromethane, formamide, DMF, chloroform, acetonitrile, isopropyl alcohol, cyclo-
hexane, ethanol, methanol, CCl4, THF and toluene, but the yield was lower.
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2.3. Cocrystal Synthesis

(pic)-(D-H2ma) (1). DL-mandelic acid (0.152 g, 1.0 mmol) and picolinamide (0.122 g,
1.0 mmol). Ethyl acetate (3 mL). Colorless crystals after one day. M.p. (◦C): 88–92. Elemental
analysis: Found: C, 59.72; H, 5.10; N, 10.27. Calculated (%) for C14H14N2O4: C, 61.31; H,
5.45; N, 10.21. IR (νmax/cm–1): 3471–3435 ν(NH2), ν(OH), 3282 ν(NH2), 1695–1633 ν(C=O),
1589, 1570, 1418 ν(CN), 1293, 1269, 1187, 1107, 1066–1012 ν(C-O), 995, 755, 725, 697, 645–616
α(CCC), 600. 1H NMR (DMSO-d6, ppm): 12.50 (br, 1H, COOH), 8.62 (m, 1H, py), 8.12 (s,
1H, NH2), 8.05–7.97(m, 2H, py), 7.64 (s, 1H, NH2), 7.65–7.58 (m, 5H, ring), 5.86 (s, 1H, CH),
5.02 (s, 1H, OH). 13C NMR (DMSO-d6, ppm): 174.3 (C1), 166.3 (C11), 150.4 (C12), 140.4 (C3),
137.8 (C14), 128.3 (C3, C7), 127.8 (C6), 126.8 (C4, C8), 126.6 (C15), 122.0 (C13), 72.4 (C2).

(inam)-(L-H2ma) (3). DL-mandelic acid (0.152 g, 1.0 mmol) and isonicotinamide
(0.122 g, 1.0 mmol). Ethyl acetate (11 mL). Colorless crystals after one day. M.p. (◦C): 107–
114. Elemental analysis: Found: C, 59.89; H, 4.85; N, 10.55. Calculated (%) for C14H16N2O4:
C, 61.31; H, 5.45; N, 10.21. IR (νmax/cm–1): 3424–3379 ν(NH2), ν(OH), 3162 ν(NH2), 1729,
1694–1604 ν(C=O), 1555, 1420–1407 ν(CN), 1303, 1227, 1188, 1065–1018 ν(C-O), 756, 737,
695, 647 α(CCC), 606. 1H NMR (DMSO-d6, ppm): 12.53 (br, 1H, COOH), 8.70–8.60(m, 2H,
py), 8.22 (s, 1H, NH2), 7.75–7.70 (m, 3H, py) 7.40 (s, 1H, NH2), 7.37–7.23 (m, 5H, ring), 5.82
(s, 1H, CH), 4.99 (s, 1H, OH). 13C NMR (DMSO-d6, ppm): 174.3 (C1), 166.5 (C11), 150.4
(C14, C16), 140.3 (C12), 128.2 (C3, C7), 127.7 (C6), 126.7 (C4, C8), 121.5 (C13, C17), 72.4 (C2).

2.4. Solubility Determination

The water solubility of each cocrystal was determined in triplicate, and compared with
that of the corresponding pyridinecarboxamides coformer. For this, a quantitative method
based on the saturation of solutions at room temperature was used as follows: An excess of
coformer or cocrystal was dispersed in 0.5 or 1 mL of Milli-Q water in Eppendorf tubes and
left stirring for a week at room temperature. The samples were centrifuged at 12,000 rpm
for 45 min, in each case the supernatant liquid was removed, and the corresponding solid
was dried and weighed. This led us first to determine the solubility for pic (S = 177 mg/mL),
nam (S = 500 mg/mL), inam (S = 192 mg/mL) and DL-H2ma (S = 159 mg/mL), and then
that of their respective cocrystals.

2.5. Theoretical Methods

Calculations of the noncovalent interactions were performed using the Gaussian-
16 [24] program and the PBE0-D3/def2-TZVP level of theory [25–27]. To evaluate the
interactions in the solid state, the crystallographic coordinates were used apart from the
positions of the H-atoms, which were optimized at the same level. The interaction ener-
gies were calculated with correction for the basis set superposition error (BSSE) using the
Boys–Bernardi counterpoise technique [28]. Bader’s quantum theory “atoms in molecules”
theory (QTAIM) and noncovalent interaction plot (NCIPlot) [29] were used to study the
interactions discussed herein by means of the AIMall calculation package [30]. The molecu-
lar electrostatic potential surfaces were computed using the Gaussian-16 software and the
0.001 a.u. cutoff for the isosurface.
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Table 1. Crystal data and structure refinement for cocrystals.

Compound (pic)-(D-H2ma) (1) HOGGOB [31] JILZOU01 (2a) [32] JILZOU (2b) [33] (inam)-(L-H2ma) (3)

Empirical formula C14H14N2O4 C14H14N2O4 C14H14N2O4 C14H14N2O4 C14H14N2O4
Formula weight 274.27 274.27 274.27 274.27 274.27
Temperature/K 100 (2) 100 (2) 100 (2) 150 (2) 100 (2)
Wavelength/Å 0.71073 1.54178 1.54178 0.71073 0.71073
Crystal system Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic

Space group P21/n P21 P21 C2 P21/c
a/Å 5.4240 (3) 5.390 (2) 5.2406 (3) 32.6557 (9) 5.2201 (8)
b/Å 26.1177 (14) 9.897 (3) 10.0477 (6) 5.4751 (10) 27.662 (4)
c/Å 9.3622 (5) 24.214 (6) 12.6006 (7) 14.9264 (5) 9.1862 (15)
α/º
β/º 104.715 (2) 90.699 (13) 95.678 (4) 99.400 (1) 99.935 (10)
γ/º

Volume/Å–3 1282.77 (12) 1291.6 (7) 660.24 (7) 2632.9 (5) 1306.6 (4)
Z 4 4 2 8 4

Calc.
density/Mg/m3 1.420 1.410 1.380 1.384 1.394

Absorp.
coefc./mm−1 0.106 0.876 0.857 0.103 0.104

F(000) 576 576 288 1152 576
Crystal size 0.34 × 0.18 × 0.12 0.25 × 0.10 × 0.03 0.28 × 0.18 × 0.16 0.46 × 0.07 × 0.07 0.54 × 0.26 × 0.16
θ range/º 2.381–27.484 1.82–66.57 3.52–67.60 3.77–27.43 2.368–29.571

Limiting indices/h,k,l −7/6, −33/33,
−12/12

−6/6, −11/11,
−28/28

−6/6, −9/11,
−15/14

−42/41, −6/7,
−15/19

−7/7, −38/38,
−12/12

Absorp. correct. Multiscan Multiscan Multiscan Multiscan Multiscan
Max. /min. transm. 1.000–0.946 1.000–0.832 1.000–0.909 1.000–0.569 1.000–0.913

Data/parameters 2926/196 4517/365 1235/183 5773/385 3655/196
Goodness-of-fit on F2 1.026 1.066 1.011 1.122 1.097

Final R indices R1 = 0.0378,
wR2 = 0.0871

R1 = 0.0271,
wR2 = 0.0695

R1 = 0.0430,
wR2 = 0.1138

R1 = 0.0550,
wR2 = 0.1278

R1 = 0.0468,
wR2 = 0.1149

R indices (all data) R1 = 0.0492,
wR2 = 0.0936

R1 = 0.0287,
wR2 = 0.0708

R1 = 0.0472,
wR2 = 0.1174

R1 = 0.0703,
wR2 = 0.1374

R1 = 0.0633,
wR2 = 0.1234

Largest dif.
peak/hole 0.305/−0.248 0.159/−0.189 0.306/−0.248 0.291/−0.298 0.444/−0.276

CCDC number 2072590 977791 904263 626647 2072591

3. Results and Discussion

The cocrystallization processes were carried out considering the pKa of the mandelic
acid and the pyridinecarboxamide isomers as coformers, having the pKa values of 3.85
(DL-H2ma), based on the carboxylic group [34], 2.10 (pic), 3.35 (nam) and 3.61 (inam),
based on pyridine nitrogen [35]. These compounds were chosen to evaluate the degree of
acid proton transfer to the coformers, according to the ∆pKa rule, which can contribute to
the study of the salt/cocrystal continuum and provide information related to the ability to
predict and control synthesis of cocrystals that contain mandelic acid [36]. According to
this rule, it is generally accepted that a salt is formed when the value of ∆pKa is greater
than 3, while a value of ∆pKa less than 0 should lead to the formation of cocrystals [37].
The values of ∆pKa (pKa(protonated base)-pKa(acid)) calculated for pic, nam and inam are
−1.75, −0.50 and −0.24, respectively, so the formation of cocrystals should be expected.

The binary solid forms were characterized using NMR (Supplementary Information,
Figures S1–S11) and IR (Supplementary Information, Figures S13 and S14) spectroscopy,
powder X-ray diffraction (Supplementary Information, Figure S12), and thermal DSC tech-
nique. The (pic)-(D-H2ma) (1) and (inam)-(L-H2ma) (3) crystal structures were established
using the single crystal X-ray diffraction technique. The crystal data, experimental details
and refinement results are summarized in Table 1. Data of (nam)-(L-H2ma) (2) and its
crystal structure was taken from the bibliography (JILZOU01 [32]).

3.1. Crystal Structure Analysis

Cocrystallization of DL-H2ma and pic in 1:1 molar ratio from ethyl acetate produced
plate-shaped colorless crystals that belonged to a 1:1 cocrystal, a new polymorph that
differs from the one known with a 2:2 pic-D-H2ma ratio (HOGGOB, [31]). The crystal
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structure was solved in monoclinic space group P21/n. The crystallographic asymmetric
unit consists of one molecule each of D-H2ma and pic (Figure 1a). The crystal structure
features an acid–amide heterosynthon R2

2(8) between D-H2ma and pic involving O–H· · ·O
(2.547(1) Å, 168.3(2)◦) and N–H· · ·O (2.929(2) Å, 166.6(2)◦) hydrogen bonds (Table S1). The
anti-N–H of the pic forms an N–H· · ·O (2.948(2) Å, 126.3(1)◦) hydrogen bond with the
same carboxylic oxygen atom of a symmetrically related acid molecule, and the hydroxyl
O–H of the D-H2ma forms an O–H· · ·N (3.071(2) Å, 139.9(2)◦) hydrogen bond with the
adjacent pyridine N of the pic, forming a second heterosynthon of graph set R2

2(10). Thus, it
generates a four-component supramolecular plane unit that consists of each two molecules
of D-H2ma and pic, giving rise to a new ring motif R2

4(8) in the same way as in the other
polymorph [33] (Figure 1b).

Although little is known about the crystallization mechanisms involving the stages of
molecular aggregation to form cocrystals [38], in this case it is likely that the mechanism
is likely to include a first stage of molecular recognition between an acid molecule and
another of amides, the well-known amide–acid heterosynthon. In a second stage, two of
these heterodimers, symmetrically related, are associated by establishing new hydrogen
bonds, to form the above tetrameters (Figure 1b).
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Figure 1. (a) A view of the molecular structure of 1 showing atomic labeling and displacement
ellipsoids drawn at the 50% probability level, and (b) four-component supramolecular unit showing
the intermolecular interactions and the supramolecular synthons. Hydrogen bonds are shown as
orange dashed lines. See Table S1 for symmetry codes.

Another aspect to consider is the molecular conformation of each of the cocrystals and
the difference between them and with mandelic acid and the conformers. Conformational
flexibility of pyridinecarboxamides is related to the torsion angle of the amide group in
relation to the pyridine ring (θ1), and in mandelic acid to the torsion angles involving the
carbonyl group of the carboxylic acid (θ2) and the group hydroxyl of the alcohol group (θ3)
(Scheme 1). Table 2 compares the molecular conformations of pyridinecarboxamides and
mandelic acid in these cocrystals.
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Table 2. Torsional angles of pyridinecarboxamides and mandelic acid crystals and correspond-
ing cocrystals.

Compound Polymorph θ1 * θ2 * θ3 * Molecule

pic I −161.3
DL-H2ma I −105.0 −65.8
DL-H2ma II −122.1 −91.5 1

II −125.7 −42.5 2
1 −168.5 −111.0 −25.8

HOGGOB [31] −173.3 125.5 90.9 1
175.5 −79.2 54.3 2

nam α 157.6
ε 26.8
ι 151.5

D-H2ma −124.5 −80.5 1
−122.0 −30.5 2

JILZOU01 (2a) [32] −28.7 −106.1 −72.8
JILZOU (2b) [33] 35.3 −129.6 −48.2 1

12.0 −103.5 −41.6 2
inam I 30.5

III 30.9
V 19.6

L-H2ma I 119.4 22.9 1
120.1 −87.4 2

II 115.5 10.9 1
116.8 100.0 2

3 −0.5 112.4 73.5
* θ1, θ2 and θ3 are defined in Scheme 1; values of torsional angles were calculated from the crystal structures
in CSD.

In 1, the oxygen atom of the amide group is opposite the nitrogen atom of the pyridine
ring outside the pyridine plane, in a similar way to that of polymorph I of pure pic. In the
mandelic acid molecule, small conformational changes are also observed, more pronounced
in θ3, which are consistent with those existing in the second symmetrically independent
molecule of D-H2ma, and close to those of the second molecule of polymorph II of DL-
H2ma (Table 2). When these values are compared with those of the HOGGOB polymorph,
noticeable and more pronounced discrepancies are observed in the torsion angles of the
second symmetrically independent acid molecule, not only in θ3 but also in θ2, probably
due to the different hydrogen bonds in which the donor alcoholic OH groups participate.

In crystal packing, the flat units are arranged one next to the other in the plane “bc”,
without any interaction (Figure 2a), so that in the direction of the diagonal of the angle
between the axes “a” and “c” are arranged intercalated in opposite orientations to form
a 3D network with an internal zigzag-like orientation (Figure 2b). The absence of strong
interactions between tetramers may justify for some softer properties in the cocrystals,
compared to those of picolinamide.
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Figure 2. Packing diagram for 1, viewed (a) in the “bc” plane and (b) parallel to “b” axis.

From the cocrystallization of DL-H2ma and nam are known several structures of
different stoichiometries in ratios 1:1, 2:1, 2:2 and 1:4 [23]. In this laboratory, the same
(nam)-(D-H2ma) (1:1) cocrystal was prepared by crystallization from ethyl acetate. Crys-
tal structure analysis of 2 revealed that the cocrystal belongs to monoclinic, P21 space
group with one molecule each of D-H2ma and nam in the crystallographic asymmetric
unit (Figure 3a). The crystal structure features an heterosynthon between the α-hydroxyl
carbonyl group of D-H2ma and the amide group of nam involving O–H· · ·O (2.708(1) Å,
143.3(2)◦) and N–H· · ·O (3.002(1) Å, 155.4(2)◦) with ring motif R2

2(9) (Table S1). These het-
erodimers are further joined by hydrogen bonds through O–H carboxyl acid and pyridine
N atom (2.684(1) Å, 175.0(2)◦), which is accompanied by a stabilizing C−H···O hydrogen
bond (H···O, 2.342 Å; C···O, 3.103 Å), resulting in a supramolecular synthon of graph
set R2

2(7). In addition, the amide anti-N–H and hydroxy O atom N–H· · ·O (2.921(1) Å,
144.9(1)◦) form heterosyntons of graph set R3

4(11), to originate a new four-component
supramolecular unit that is repeated along infinite ribbons (Figure 3b). In the 3D network,
these heterodimers are further joined by hydrogen bonds to form independent layers along
“b” axis (Figure 4a) [32], extending in the “ca” plane simulating a zigzag chain that, unlike
1 (Figure 2b), all molecules are oriented in the same way (Figure 4b).
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In the 2 system, taking as reference the data of the structure of the polymorph ε
(NICOAM07, from the CSD), in the crystals of pure nam it is observed that the O atom of
the amide group is on the same side of the atom nitrogen of the pyridine ring (θ1, 26.8◦),
which is the same conformation adopted by the polymorphs JILZOU01 [32] (−28.7◦) and
JILZOU [33] (35.3 and 12.0◦). It should be noted that this conformation is opposite to that
described above for the cocrystals of 1. Regarding the D-H2ma molecule in the cocrystal,
differences in conformation are also observed, as can be seen in the values of θ2 and θ3
compared with those of the two symmetrically independent molecules of the acid, although
they do not differ in excess of those found in HOGGOB molecule 1 [31] (Table 2).

The new cocrystals of DL-H2ma with inam in a 1:1 ratio, prepared by crystallization
in ethyl acetate, have also been previously obtained in warm ethanol [6]. The crystal
structure revealed that cocrystals 3 belong to the monoclinic space group, P21/c with
one molecule of each coformer in the asymmetric crystal unit (Figure 5a). L-H2ma and
inam interact with each other via an acid–pyridine heterosynthon involving O–H· · ·N
(2.624 Å, 177.3◦) hydrogen bond (Table S1). As in 2, the Npy···H−O hydrogen bond is
accompanied by a complementary C−H···O hydrogen bond (H···O, 2.640 Å; C···O, 3.131 Å,
CHO 127.9◦). The amide group forms a amide–amide homosynthon dimers of typical
ring motif R2

2(8) between inam molecules involving N–H· · ·O (2.881(1) Å, 179.7(2)◦). At
the same time, these dimers are attached to L-H2ma molecules in two ways. One is
through a O–H· · ·O bond formed between the hydroxyl O–H and the amide O of a nearest
neighboring acid molecule (2.775(1) Å, 162.9(2)◦) whereas the second one is via N–H· · ·O
(2.949(1) Å, 141.7(1)◦) between the amine anti-N–H and the hydroxy oxygen of the L-
H2ma (Figure 5b), which is reinforced by a hydrogen bond C−H···O in which carbonyl
participates, originating a heterosynthon of graph set R2

2(10) (Figure 5b).
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Figure 5. (a) A view of the molecular structure of 3 showing atomic labeling and displacement
ellipsoids drawn at the 50% probability level, and (b) primary hydrogen-bond interactions in 3.
Hydrogen bonds are shown as orange dashed lines. See Table S1 for symmetry codes.

In 3, inam is practically planar (θ1, −0.5◦), which contrasts with the values of this
torsion angle found in polymorphs I, III and V of the pyridinecarboamide (Table 2). Con-
formational differences are also observed in the L-H2ma molecule. Note especially that the
four molecules of the two polymorphs of L-H2ma have substantially different conforma-
tions from those found in the cocrystal, particularly θ3.

Another way to describe the hydrogen bond interactions in the crystal packing is
considering two self-complementary amide–amide pairwise homosynthon dimers between
inam mutually parallel molecules linked through two molecules of mandelic acid each by
hydrogen bonds of O−H···O type between OH of the alcohol group and the carbonyl O
atom of each symmetrically related amide, giving rise to a supramolecular dimer of graph
set R4

4(12), in the direction of the “a” axis (Figure 6a), and also in the plane “bc” by means of
a carboxylic acid–pyridine interaction forming supramolecular heterosynthons of graph set
R4

6(28) (Figure 6b). The set of these interactions gives rise to a crystal network constituted
by independent layers parallel to the “a” axis (Figure 6c).

In the formation of cocrystals of 3, the probable mechanism must include a first stage of
molecular recognition between two amide molecules to form the well-known amide–amide
homosynthon. In a second stage, two of those homodimers, symmetrically related, are
associated by hydrogen bonds, to form the aforementioned tetrameters (Figure 6a,b).
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3.2. Supramolecular Synthons

Supramolecular synthons are spatial arrangements of intermolecular interactions
between complementary functional groups, and constitute the core of the retrosynthetic
strategy for supramolecular structures [39]. With crystal structures defined as networks
with the molecules as the nodes and the supramolecular synthons as the connections be-
tween them, retrosynthesis can be performed on network structures to produce appropriate
molecular structures. The advantage of such an approach in crystal engineering is that
comparisons between seemingly different crystal structures are facilitated. If we apply this
observation to the systems studied here, we can establish some differences between them
that can be attributed to the different constituent isomers.

With the structural data of the cocrystals studied here, we compare the main synthons
that they present in their 3D network, which are displayed in Scheme 2. In cocrystal 1, two
heteromeric interactions are observed that give rise to two heterosynthons between syn-
amide with carboxylic acid (B) and between pyridine amide with hydroxy carboxylic acid
(E). In cocrystal 2, two heteromeric interactions are also observed, causing two heterosyn-
thons, one between pyridine and carboxylic acid (C) and the other between syn-amide
and hydroxy carboxylic acid (D). In cocrystal 3, on the contrary, a homomeric interaction
corresponding to typical amide–amide homosinton (A) and two heteromeric interactions
stand out, one is the heterosinton pyridine with carboxylic acid (C), also observed in the
cocrystals of 2, and the other anti-amide with hydroxy carboxylic acid (F).
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3.3. Theoretical DFT Study

To analyze and understand the different modes of interaction observed in the solid
state of the cocrystals, a density functional theory (DFT) study at the PBE0-D3/def2-
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TZVP level of theory was carried out. The recurrent motifs observed in the solid-state
X-ray structures are analyzed herein, focusing on the calculation of the individual H-bond
energies and also the unconventional stacking interactions in compounds 1 and 3 that
include the H-bonded arrays as described below.

Figure 7 shows the molecular electrostatic potential (MEP) surfaces of all coformers
(pyridylcarboxamides and mandelic acid) studied in this work. The MEP surface analysis is
useful to investigate the electron-rich and electron-poor regions of the crystal coformers. It
can be observed that the most positive region corresponds to the H-atom of carboxylic acid
(+58 kcal/mol) in mandelic acid followed by the H-atoms of the carboxamide groups. These
are more positive in nicotinamide and isonicotinamide due to the influence of the aromatic
H-atom in ortho (+52 and +53 kcal/mol for nicotinamide and isonicotinamide, respectively).
Moreover, the most negative regions correspond to the O-atoms of the carboxamide group
(ranging from −38 to −43 kcal/mol). The MEP values are also large and negative at the
O-atom of the carboxy group in mandelic acid and the aromatic N-atom of nicotinamide
and isonicotinamide rings (ranging from −30 to −35 kcal/mol). Finally, the MEP is slightly
less negative at the aromatic N-atom of picolinamide (−17 kcal/mol) and hydroxyl group
of mandelic acid (−27 kcal/mol). This analysis provides evidence that the carboxy group
of mandelic acid is the strongest H-bond donor and the O-atom of the carboxamide group
the best H-bond acceptor.
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The hydrogen bond and formation energies of the assemblies were estimated using the
QTAIM method and the value of the Lagrangian kinetic G(r) contribution to the local energy
density of electrons at the critical point (CP). The dissociation energy of each individual
H-bonding interaction was estimated using the approach proposed by Vener et al. [40],
which was specifically developed for HBs (Energy = 0.429 × G(r) at the bond CP).

Figure 8 represents the distribution of bond CPs and bond paths for the tetrameric
assembly observed in the picolinamide–mandelic acid cocrystal exhibiting a network of
H-bonds. The existence of a bond CP and bond path connecting two atoms is a universal
indication of an interaction [41]. The QTAIM analysis of the tetrameric assembly repre-
sented in Figure 8a shows the presence of appropriate bond CPs (red spheres) and bond
paths connecting the N/O-atoms to the H atoms in the H-bonding interactions. Moreover,
several ring CPs (yellow spheres) also emerge upon complexation due to the formation
of supramolecular rings. The distribution also shows the existence of weak C–H· · ·O
interactions between one aromatic C–H group and the hydroxyl O-atom of the mandelic
acid. The dissociation energy of the tetrameric assembly is large (39.7 kcal/mol), thus con-
firming the importance of this H-bonding network. Figure 8b also includes the individual
energy of each H-bond that is indicated in blue next to the bond CP that characterizes
each H-bond. In agreement with the MEP analysis, the H-bonds involving the carboxy



Crystals 2022, 12, 142 13 of 21

group as H-bond donor (O–H···O) are the strongest (11.0 and 7.8 kcal/mol). Moreover,
several structure-guiding motifs are observed in the solid state structure of compound 1.
These are R2

2(8) and R4
4(8), involving only the carboxy and carboxamide groups, In addition,

a R2
2(10) motif is also important, where the pyridine N-atom and the hydroxyl groups

participate in addition to the dominant carboxy and carboxamide groups. We also evalu-
ated energetically the formation of a different tetrameric assembly where two R2

2(8) motifs
are stacked (see Figure 8c) in an antiparallel fashion. The binding energy computed as a
dimerization energy of two R2

2(8) motifs is −9.7 kcal/mol, thus revealing the strong nature
of this unconventional π-stacking interaction. The NCIplot index analysis is represented
in Figure 8c, showing large and green (meaning attractive interaction) isosurfaces located
between the carboxy and carboxamide groups of both crystal coformers, thus suggesting
that the interaction involves the π-system of both groups (πCOOH···πCONH2). The NCI
isosurface is dark blue for the OH···O and light blue for the NH···O H-bonds of the R2

2(8)
motifs, thus confirming the strong nature of the OH···O bonds in line with the QTAIM
dissociation energy and the MEP surface analysis.
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For compounds 2a (JILZOU01) and 2b (JILZOU), a similar study was performed,
where we selected a representative tetrameric assembly for each one including the most
important interactions and motifs. The QTAIM analyses are shown in Figure 9, where each
H-bond is characterized by a bond CP connecting the O/N-atoms to the H-atoms. Similar to
1, the distribution shows the existence of weak C–H· · ·O interactions between H-atoms of
nicotinamide ring and the O-atoms of the hydroxyl groups in 2a or carboxamide group in 2b.
Moreover, a recurrent R2

2(7) motif is observed in both compounds where the carboxy group
of the mandelic acid forms a strong OH···Npy H-bond (8.4 and 10.4 kcal/mol in 2a and 2b,
respectively) combined with a much weaker C–H···O H-bond (2.6 and 1.7 kcal/mol in 2a
and 2b, respectively). In 2a, a R2

2(9) motif is observed where the hydroxyl group of mandelic
acid establishes a moderately strong H-bond (5.7 kcal/mol) with the carboxamide group
of the coformer. An interesting R2

2(8) motif is observed in 2b involving the carboxamide
groups (4.5 kcal/mol each H-bond) and leading to the formation of a self-assembled
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dimer. The formation energies of the selected tetramers are similar (24.6 kcal/mol in 2a
and 26.9 kcal/mol in 2b).
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and bond paths obtained for the H-bond tetrameric assemblies of compounds 2a and 2b. The
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In compound 3, the tetrameric assembly shown in Figure 10a was analyzed, where
the isonicotinamide molecule forms self-assembled dimers via two equivalent N–H···O
bonds (R2

2(8) motif) with a total dissociation energy of 10.4 kcal/mol. In addition, the
recurrent R2

2(8) motif described above in 2a and 2b is also observed in 3 with a dissociation
energy of 13.8 kcal/mol, thus revealing that the combination of the strong OH···H and
weak CH···O H-bonds is energetically favored over the two symmetric NH···O H-bonds
between the carboxamide groups. This tetrameric assembly, which presents a very large
dissociation energy (37.0 kcal/mol) self-assembly, forming π-stacking octamers in the solid
state, as represented in Figure 10b. The NCIplot index analysis shows a much extended
isosurface that embraces the whole assembly and explaining the large dimerization energy
(−27.3 kcal/mol). The isosurfaces clearly show that the H-bonded arrays are also involved
in the stacking interaction, as previously observed in the literature [42]. Actually, it has
been demonstrated that the formation of H-bonded arrays is energetically enhanced over
aromatic surfaces [43].
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Table 3 summarizes the interaction energies for the H-bonding assemblies represented
in Figures 8–10 computed using the supramolecular approach (BSSE corrected) and esti-
mated using Verner’s equation. In general, there is a good agreement between the BSSE
corrected energies and those derived from QTAIM, giving reliability to Verner’s approach.
In some cases, such as the pentameric assembly of compound 1 (Figure 8a) and the tetramer
of compound JILZOU (Figure 9b), the interaction energies are greater (in absolute value)
than the formation energies derived from the QTAIM approach. This is due to an extra
stabilization in those assemblies caused by van der Waals forces and other long-range inter-
actions due to the approximation of the bulk of the molecules. In any case, the H-bonding
interactions are clearly dominant.

Table 3. Interaction energies of the HB assemblies derived from the supramolecular approach
(BSSE corrected) and derived from the QTAIM (EBSSE and ΣEHB, respectively) in kcal/mol at the
PBE0-D3/def2-TZVP level of theory.

Compound EBSSE ΣEHB

(pic)-(D-H2ma) (1) (Figure 8a) −42.7 39.7
(pic)-(D-H2ma) (1) (Figure 8b) −17.0 16.9

JILZOU01 (2a) (Figure 9a) −22.5 24.6
JILZOU (2b) (Figure 9b) −32.3 26.9

(inam)-(L-H2ma) (3) (Figure 10a) −39.5 37.0

3.4. X-ray Powder Diffraction (XRPD) Analysis

The formation of cocrystals could be verified by XRPD. In Figure 11, each XRPD pattern
of mandelic acid cocrystals is different from either that of D, L-H2ma or the corresponding
coformer. All of the peaks displayed in the measured XRPD patterns of the D, L-H2ma
cocrystal bulk powder are in close accordance with those in the simulated patterns acquired
from single-crystal diffraction data, which confirm the formation of high-purity phases.
Similarly, in both cocrystals, the XRPD patterns simulated from the single-crystal structures
matches well with the XRPD patterns of powder obtained (Figure S12).
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3.5. DSC Analysis

The thermal behavior of coformers and cocrystals was tested using differential scan-
ning calorimetry (DSC). The DSC heating curves and melting temperatures are represented
in Figure 12.

The melting point of the cocrystals, DL-Mandelic acid and pyridinecarboxamides are
listed in Table 4. H2ma, pic, nam and inam exhibit a sharp melting endotherm followed
by decomposition, and do not show any phase change/transformation on heating before
melting. Similarly, the (pic)-(D-H2ma) (Figure 12a), (nam)-(L-H2ma) (Figure 12b) and
(inam)-(L-H2ma) (Figure 12c) binary solids exhibit melting, followed by decomposition.
There is no phase change before melting on heating. The cocrystals displayed a lower
melting point than the pure mandelic acid and the coformers. The thermal analysis of the
cocrystals and their comparison to that of the coformers revealed that in (1) and (3) there is
a direct correlation between the melting points of the coformers and the cocrystals (Table 4):
the higher the melting point of the coformer, the higher the melting point of the cocrystal.
However, in (nam)-(L-H2ma) this trend is broken and its melting point is the lowest of the
three cocrystals, probably because the strength of the hydrogen bonds is also the weakest.
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Figure 12. DSC analyses of the resulting powders of pure components and the cocrystals 1, 2a and 3.

Table 4. Melting points (M. p.) of coformers * and prepared cocrystals.

Coformer M. p. (◦C) Cocrystal M. p. (◦C)

DL-Mandelic acid (D,L-H2ma) 118–121

D/L-Mandelic acid (L-H2ma) 131–135

Picolinamide (pic) 104–108 (pic)-(D-H2ma) (1) 91.4

Nicotinamide (nam) 128–131 (nam)-(L-H2ma) (2) [25] 85.2

Isonicotinamide (inam) 155–157 (inam)-(L-H2ma) (3) 112.0
* Taken from http://www.chemspider.com/.

3.6. Thermal Analysis

To determine the thermal stability of cocrystals, thermogravimetric analysis (TGA) was
performed under a stream of air in the range 25–300 ◦C. Considering that the compounds are
thermally stable until a 10% weight loss of the sample occurs, it can be seen that (1) is stable
up to 179 ◦C, very similar to mandelic acid, while (3) undergoes a 10% weight loss when
209 ◦C is reached, so that its stability is comparable to that of isonicotinamide (Figure 13).
Above these temperatures a slow weight loss is observed up to 300 ◦C, decomposing and
releasing CO, CO2 and various nitrogen oxides, not resulting in final solid waste. The
phase purity of the as-synthesized samples could be confirmed by the PXRD pattern, where
the characteristic peaks match well with those of the simulated PXRD pattern based on the
single crystal data (Figure S10).

http://www.chemspider.com/
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3.7. FT–IR Spectroscopy

The IR spectra of cocrystals 1 and 3 are depicted in Figures S13 and S14, respectively. A
comparison with the spectra of its coformers is represented in Figure 14. Regions 3500–3000
and 1700–600 cm−1 are important sources of information about the molecular interac-
tions, because these two regions are associated with hydrogen bonding interaction. In
solid DL-mandelic acid, these bands correspond to 3397 cm−1, ν(OH), 1716 cm−1, ν(C=O)
and 1078–1064 cm−1, ν(C-O) [44], while that in pyridine carboxamides appear at 3414
and 3164 cm−1, ν(NH2), 1658 cm−1, ν(C=O), 1603 cm−1, δ(NH2), 1386 cm−1, ν(CN) and
640–629 cm−1, α(CCC), in picolinamide; and 3362 and 3178 cm−1, ν(NH2), 1655 cm−1,
ν(C=O), 1622 cm−1, δ(NH2), 1390 cm−1, ν(CN) and 668–614 cm−11, α(CCC), in isonicoti-
namide [45]. Consequently, in cocrystals, the absorb peaks around 3400 and 3200 cm−1

attribute to stretching vibrations of OH and NH2 groups of the acid and of pyridine car-
boxamides, where the wavenumbers for the asymmetric stretching vibration of NH2 in
cocrystal 1 are about 3435 cm−1, while cocrystal 3 shows absorb peaks at about 3379 cm−1

due to stronger hydrogen bond interactions than in 1. In the ν(NH2) symmetric stretching
vibrations, the same behavior is observed for 3 respective to 1. For the two cocrystals, the
wavenumbers at around 3450 cm−1 indicate the O−H···O hydrogen bond interactions be-
tween them, while the slight differences of the wavenumbers for NH2 groups may attribute
to the different hydrogen bond interaction experienced by it. While for the region around
1700–600 cm−1, which are corresponding to C=O group, the almost identical plots for the
two cocrystals, at 1700–1600 cm−1, indicate similar hydrogen bond interactions around
the C=O groups for pic, and inam in cocrystals 1 and 3, respectively, but in 3 the band of
mean intensity at 1729 cm−1 corresponds to the C=O of H2ma that does not take part in
hydrogen bonding, which are in accordance with the structural analysis. We also point
out the presence of two new bands at 2506 and 1913 cm−1 for 1 and 2465 and 1891 cm−1

for 3 that result from the O−H···Npy hydrogen bond. This provides clear proof that the
hydroxyl or carboxylic group of H2ma interacts with the aromatic nitrogen of pyridine
carboxamides [46]. A similar behavior is deduced when observing the position of in-plane
and out-of-plane ring deformation bands of pyridinecarboxyamides in the cocrystals, which
reflect a greater strength of the O−H···N interaction in 3 than in 1 (Table S1), since while in
1 it is O−H(hydroxyl)···N(py) with a distance O···N of 3.071 Å, in 3 is 2.624 Å for that distance
in O−H(carboxylic)···N(py).
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3.8. Solubility and Dissolution

Drug solubility occurs under a dynamic equilibrium state, which determines the
maximum concentration in a saturated solution when excess solid is present in the media.
The dissolution rate is a kinetic process that measures the drug concentration, which passes
into the media with respect to time. These two parameters are determined by the solvation
of the molecular components and the strength of the crystal structure lattice [47]. To
improve the drug solubility, the solvent affinity must be increased and/or lower the lattice
energy. These can be altered via cocrystal formation, although it is also influenced by the
coformer solubility [48]. Since the aqueous solubility values pyridinecarboxyamides are
greater than those of D, L-H2ma, the presence of coformers may appear to improve the
dissolution profile of mandelic acid (Figure 15).
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4. Concluding Remarks

The synthesis and X-ray characterization of two new cocrystals of mandelic acid
and pyridylcarboxamides are reported herein. There is competition and interplay of the
hydrogen bonding functional groups during binary cocrystallization. The results observed
suggest that the hydroxy carboxylic acid forms reliable synthons to afford cocrystals with
the pyridinecarboxamides. For the formation of tetramers in 1 and 3, a two-stage-based
crystallization mechanism is proposed. The first of acid–amide or amide–amide molecular



Crystals 2022, 12, 142 19 of 21

recognition, respectively, and the second per association, by hydrogen bond, heterodimers
or homodimers, are symmetrically related. The energetic features of the H-bonds were
studied using the QTAIM and MEP surface analyses evidencing that the COOH···N, O
H-bonds are the strongest. Some recurrent motifs, such as R2

2(7) between carboxy group
and the pyridine ring and the self-assembled R2

2(8) motif between the carboxamide groups,
are described and analyzed energetically. We believe that the estimation of individual
contributions by means of QTAIM analysis reported herein is useful in terms of rationalizing
the interactions and for future design and synthesis of cocrystals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12020142/s1, Figure S1: 1H NMR spectra in DMSO-d6 of
cocrystals 1 (upper) and 3 (lower) comparative with their coformers; Figure S2: 1H NMR spectrum
of DL-H2ma; Figure S3: 1H NMR spectrum of pic; Figure S4. 1H NMR spectrum of (pic)-(D-H2ma)
(1); Figure S5: 1H NMR spectrum of inam; Figure S6: 1H NMR spectrum of (inam)-(L-H2ma) (3);
Figure S7: 13C NMR spectrum of DL-H2ma; Figure S8: 13C NMR spectrum of pic; Figure S9: 13C
NMR spectrum of (pic)-(D-H2ma) (1); Figure S10: 13C NMR spectrum of inam; Figure S11: 13C NMR
spectrum of (inam)-(L-H2ma) (3); Figure S12: XRPD patterns of the solid forms of 1 and 3, obtained
at room temperature. The XRPD patterns of the cocrystals match well with the simulated XRPD.
Table S1: Hydrogen bond parameters [Å, ◦] for cocrystals. Letters included as superscripts refer to
symmetry codes shown in text and figures; Figure S13: IR spectrum of (pic)-(D-H2ma) (1); Figure S14:
IR Spectrum of (inam)-(L-H2ma) (3).
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