Electromagnetically Modified Wettability and Interfacial Tension of Hybrid ZnO/SiO2 Nanofluids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of ZnO/SiO2 NPs
2.3. Nanofluid Preparation
2.4. Stability Analysis of the Hybrid Nanofluid (ZnO/SiO2)
2.5. Rheology, IFT, and Wettability Measurement
3. Results and Discussion
3.1. Characterization
3.1.1. Morphology and Hybrid Formation of ZnO/SiO2 NPs
3.1.2. XRD Analysis of ZnO/SiO2 NPs
3.1.3. FTIR of ZnO/SiO2 NPs
3.2. Rheological Analysis
3.3. IFT and Wettability Analysis without EM Waves Involvement
3.4. Effects of ZnO/SiO2 NPs on IFT and Wettability Supported by EM Waves
3.5. Mechanism of Nanofluid under EM Waves Enticement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adam, A.A.; Dennis, J.O.; Al-Hadeethi, Y.; Mkawi, E.M.; Abdulkadir, B.A.; Usman, F.; Hassan, Y.M.; Wadi, I.A.; Sani, M. State of the Art and New Directions on Electrospun Lignin/Cellulose Nanofibers for Supercapacitor Application: A Systematic Literature Review. Polymers 2020, 12, 2884. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Y.M.; Guan, B.H.; Zaid, H.M.; Hamza, M.F.; Adil, M.; Adam, A.A.; Hastuti, K. Application of Magnetic and Dielectric Nanofluids for Electromagnetic-Assistance Enhanced Oil Recovery: A Review. Crystals 2021, 11, 106. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Chen, G.; Gai, Z. Application of nanoparticles in enhanced oil recovery: A critical review of recent progress. Energies 2017, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Adil, M.; Zaid, H.M.; Chuan, L.K. Influence of Electromagnetic Waves on Viscosity and Electrorheology of Dielectric Nanofluids-Scale-Based Approach. J. Teknol. 2016, 78. Available online: https://journals.utm.my/jurnalteknologi/article/view/8974 (accessed on 12 June 2016).
- Hassan, Y.M.; Zaid, H.M.; Guan, B.H.; Hamza, M.F.; Adam, A.A. Effect of Annealing Temperature on the Crystal and Morphological sizes of Fe2O3/SiO2 Nanocomposites. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Bangkok, Thailand, 16–18 July 2021. [Google Scholar]
- Hassan, Y.M.; Guan, B.H.; Chuan., L.K.; Zaid, H.M.; Hamza, M.F.; Adam, A.A.; Usman, F.; Oluwatobi, Y.A. Effect of annealing temperature on the rheological property of ZnO/SiO2 nanocomposites for Enhanced Oil Recovery. Mater. Today Proc. 2021; in press. [Google Scholar]
- Halilu, A.; Ali, T.H.; Sudarsanam, P.; Bhargava, S.K. Synthesis of Fuel Grade Molecules from Hydroprocessing of Biomass-Derived Compounds Catalyzed by Magnetic Fe(NiFe)O4-SiO2 Nanoparticles. Symmetry 2019, 11, 524. [Google Scholar] [CrossRef] [Green Version]
- Adil, M.; Zaid, H.M.; Chuan, L.K. Electromagnetically-induced change in interfacial tension and contact angle of oil droplet using dielectric nanofluids. Fuel 2020, 259, 116274. [Google Scholar] [CrossRef]
- Yahya, N.; Kashif, M.; Nasir, N.; Akhtar, M.N.; Yusof, M.N. Cobalt ferrite nanoparticles: An innovative approach for enhanced oil recovery application. J. Nano Res. 2012, 17, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Engeset, B. The Potential of Hydrophilic Silica Nanoparticles for EOR Purposes: A Literateur Review and an Experimental Study; Institutt for Petroleumsteknologi og Anvendt Geofysikk: 2012. Available online: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/239771 (accessed on 30 November 2021).
- Sikiru, S.; Yahya, N.; Soleimani, H.; Ali, A.M.; Afeez, Y. Impact of ionic-electromagnetic field interaction on Maxwell-Wagner polarization in porous medium. J. Mol. Liq. 2020, 318, 114039. [Google Scholar] [CrossRef]
- Yusuff, A.O.; Yahya, N.; Zakariya, M.A.; Sikiru, S. Investigations of graphene impact on oil mobility and physicochemical interaction with sandstone surface. J. Pet. Sci. Eng. 2021, 198, 108250. [Google Scholar] [CrossRef]
- Sikiru, S.; Rostami, A.; Soleimani, H.; Yahya, N.; Afeez, Y. Graphene: Outlook in the enhance oil recovery (EOR). J. Mol. Liq. 2021, 321, 114519. [Google Scholar] [CrossRef]
- Adil, M.; Chuan, L.K.; Zaid, H.M.; Shukur, M.F.A.; Manaka, T. Effect of nanoparticles concentration on electromagnetic-assisted oil recovery using ZnO nanofluids. PLoS ONE 2020, 15, e0244738. [Google Scholar] [CrossRef] [PubMed]
- Hendraningrat, L.; Torsæter, O. Metal oxide-based nanoparticles: Revealing their potential to enhance oil recovery in different wettability systems. Appl. Nanosci. 2014, 5, 181–199. [Google Scholar] [CrossRef] [Green Version]
- Joonaki, E.; Ghanaatian, S. The application of nanofluids for enhanced oil recovery: Effects on interfacial tension and coreflooding process. Pet. Sci. Technol. 2014, 32, 2599–2607. [Google Scholar] [CrossRef]
- Hendraningrat, L.; Torsæter, O. Understanding fluid-fluid and fluid-rock interactions in the presence of hydrophilic nanoparticles at various conditions. In Proceedings of the SPE Asia Pacific Oil & Gas Conference and Exhibition, Perth, Australia, 25–27 October 2016. [Google Scholar]
- Esfandyari, B.A.; Junin, R.; Samsuri, A.; Piroozian, A.; Hokmabadi, M. Impact of metal oxide nanoparticles on enhanced oil recovery from limestone media at several temperatures. Energy Fuels 2014, 28, 6255–6266. [Google Scholar] [CrossRef]
- Haroun, M.R.; Alhassan, S.A.; Ansari, A.; Al-Kindy, N.; Sayed, N.A.; Ali, B.; Sarma, H. Smart nano-EOR process for Abu Dhabi carbonate reservoirs. In Proceedings of the Abu Dhabi international Petroleum Conference and Exhibition, Abu Dhabi, United Arab Emirates, 28–30 May 2012. [Google Scholar]
- Sikiru, S.; Soleimani, H.; Shafie, A.; Kozlowski, G. Simulation and Experimental Investigation of Dielectric and Magnetic Nanofluids in Reduction of Oil Viscosity in Reservoir Sandstone. J. Pet. Sci. Eng. 2021. 109828. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0920410521014479 (accessed on 30 November 2021).
- Adil, M.; Chuan, L.K.; Zaid, H.M.; Latiff, N.R.A. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR). PLoS ONE 2018, 13, e0193518. [Google Scholar] [CrossRef]
- Ali, J.A.; Kolo, K.; Manshad, A.K.; Stephen, K.D. Potential application of low-salinity polymeric-nanofluid in carbonate oil reservoirs: IFT reduction, wettability alteration, rheology and emulsification characteristics. J. Mol. Liq. 2019, 284, 735–747. [Google Scholar] [CrossRef]
- Kazemzadeh, Y.; Sharifi, M.; Riazi, M. Rezvani; H., Tabaei, M. Potential effects of metal oxide/SiO2 nanocomposites in EOR processes at different pressures. Eng. Asp. 2018, 559, 372–384. [Google Scholar] [CrossRef]
- Kazemzadeh, Y.; Dehdari, B.; Etemadan, Z.; Riazi, M.; Sharifi, M. Experimental investigation into Fe3O4/SiO2 nanoparticle performance and comparison with other nanofluids in enhanced oil recovery. Pet. Sci. 2019, 16, 578–590. [Google Scholar] [CrossRef] [Green Version]
- Zargar, G.; Arabpour, T.; Manshad, A.K.; Ali, J.A.; Sajadi, S.M.; Keshavarz, A.; Mohammadi, A.H. Experimental investigation of the effect of green TiO2/Quartz nanocomposite on interfacial tension reduction, wettability alteration, and oil recovery improvement. Fuel 2020, 263, 116599. [Google Scholar] [CrossRef]
- Dahkaee, K.P.; Dahkaee, K.P.; Sadeghi, M.T.; Fakhroueian, Z.; Esmaeilzadeh, P. Effect of NiO/SiO2 nanofluids on the ultra interfacial tension reduction between heavy oil and aqueous solution and their use for wettability alteration of carbonate rocks. J. Pet. Sci. Eng. 2019, 176, 11–26. [Google Scholar] [CrossRef]
- Latiff, N.R.A.; Latiff, N.R.A.; Yahya, N.; Zaid, H.M.; Demiral, B. Novel enhanced oil recovery method using dielectric zinc oxide nanoparticles activated by electromagnetic waves. In Proceedings of the 2011 National Postgraduate Conference, IEEE, Perak, Malaysia, 19–20 September 2011. [Google Scholar]
- Ahmad, I.; Siddiqui, W.A.; Ahmad, T. Synthesis, characterization of silica nanoparticles and adsorption removal of Cu2+ ions in aqueous solution. Int. J. Emerg. Technol. Adv. Eng. 2017, 7, 439–445. [Google Scholar]
- El-Nahhal, I.M.; Salem, J.K.; Kuhn, S.; Hammad, T.; Hempelmann, R.; Al Bhaisi, S. Synthesis & characterization of silica coated and functionalized silica coated zinc oxide nanomaterials. Powder Technol. 2016, 287, 439–446. [Google Scholar]
- Widiyastuti, W.; Maula, I.; Nurtono, T.; Taufany, F.; Machmudah, S.; Winardi, S.; Panatarani, C. Preparation of zinc oxide/silica nanocomposite particles via consecutive sol–gel and flame-assisted spray-drying methods. Chem. Eng. J. 2014, 254, 252–258. [Google Scholar] [CrossRef]
- Ramasamy, M.; Kim, Y.J.; Gao, H.; Yi, D.K.; An, J.H. Synthesis of silica coated zinc oxide–poly (ethylene-co-acrylic acid) matrix and its UV shielding evaluation. Mater. Res. Bull. 2014, 51, 85–91. [Google Scholar] [CrossRef]
- Halliwell, C.M.; Cass, A.E.G. A factorial analysis of silanization conditions for the immobilization of oligonucleotides on glass surfaces. Anal. Chem. 2001, 73, 2476–2483. [Google Scholar] [CrossRef] [PubMed]
- Rostami, P.; Sharifi, M.; Aminshahidy, B.; Fahimpour, J. Enhanced oil recovery using silica nanoparticles in the presence of salts for wettability alteration. J. Dispers. Sci. Technol. 2019, 41, 402–413. [Google Scholar] [CrossRef]
- Ali, A.M.; Yahya, N.; Mijinyawa, A.; Kwaya, M.Y.; Sikiru, S. Molecular simulation and microtextural characterization of quartz dissolution in sodium hydroxide. J. Pet. Explor. Prod. Technol. 2020, 10, 1–16. [Google Scholar]
- Sikiru, S.; Afolabi, L.O.; Omran, A.A.B.; Elfaghi, A.M. Ionic Surface Dielectric Properties Distribution on Reservoir Sandstone. Int. J. Integr. Eng. 2021, 13, 258–265. [Google Scholar]
- Jiang, R.; Li, K.; Horne, R. A mechanism study of wettability and interfacial tension for EOR using silica nanoparticles. In Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, CA, USA, 8–10 May 2017. [Google Scholar]
- Ahmed, A.; Saaid, I.M.; Pilus, R.M.; Ahmed, A.A.; Tunio, A.H.; Baig, M.K. Development of surface treated nanosilica for wettability alteration and interfacial tension reduction. J. Dispers. Sci. Technol. 2018, 39, 1469–1475. [Google Scholar] [CrossRef]
- Soleimani, H.; Baig, A.H.; Yahya, N.; Khodapanah, L.; Sabet, M.; Demiral, B.M.R.; Burda, M. Synthesis of ZnO nanoparticles for oil–water interfacial tension reduction in enhanced oil recovery. Appl. Phys. A 2018, 124, 128. [Google Scholar] [CrossRef]
- Rezvani, H.; Riazi, M.; Tabaei, M.; Kazamzadeh, Y.; Sharifi, M. Experimental investigation of interfacial properties in the EOR mechanisms by the novel synthesized Fe3O4@ Chitosan nanocomposites. Colloids Surf. A Physicochem. Eng. Asp. 2018, 544, 15–27. [Google Scholar] [CrossRef]
- Esmaeilnezhad, E.; Choi, H.G.; Schaffie, M.; Gholizadeh, M.; Ranjbar, M.; Kwon, S.H. Rheological analysis of magnetite added carbonyl iron based magnetorheological fluid. J. Magn. Magn. Mater. 2017, 444, 161–167. [Google Scholar] [CrossRef]
- Sikiru, S. Ionic Transport and Influence of Electromagnetic Field Interaction Within Electric Double Layer in Reservoir Sandstone. J. Mol. Liq. 2021, 344, 117675. [Google Scholar] [CrossRef]
- Sikiru, S.; Yahya, N.; Soleimani, H. Photon–phonon interaction of surface ionic adsorption within electric double layer in reservoir sandstone. J. Mater. Res. Technol. 2020, 9, 10957–10969. [Google Scholar] [CrossRef]
Samples | Wt.% | Density (g/cm3) | Average Particle Size (nm) | pH |
---|---|---|---|---|
ZnSi @ 500 | 0.05 | 1.0447 | 51 | 5.31 |
0.01 | 1.0138 | 51 | 5.02 | |
ZnSi @ 600 | 0.05 | 1.0381 | 46 | 6.41 |
0.01 | 1.0364 | 46 | 6.44 | |
ZnSi @ 700 | 0.05 | 1.0034 | 27 | 5.26 |
0.01 | 1.0143 | 27 | 5.18 | |
ZnO | 0.01 | 1.0179 | 60 | 5.80 |
SiO2 | 0.01 | 1.0179 | 33 | 5.80 |
Brine (NaCl) | 3 | 1.0182 | - | 5.80 |
Samples | Crystal Plane (h k l) | Crystal Size, D (nm) | d-Spacing (Å) | ||
---|---|---|---|---|---|
ZnO | 31 | (1 0 0) | 0.16 | 50 | 0.28 |
34 | (0 0 2) | 0.16 | 52 | 0.26 | |
36 | (1 0 1) | 0.18 | 45 | 0.25 | |
47 | (1 0 2) | 0.21 | 41 | 0.19 | |
57 | (1 1 0) | 0.13 | 65 | 0.16 | |
63 | (1 0 3) | 0.13 | 69 | 0.14 | |
67 | (1 1 2) | 0.14 | 70 | 0.14 | |
69 | (2 0 0) | 0.14 | 70 | 0.14 | |
ZnSi @ 700 | 31 | (1 0 0) | 0.42 | 20 | 0.28 |
34 | (0 0 2) | 0.46 | 17 | 0.26 | |
36 | (1 0 1) | 0.46 | 18 | 0.25 | |
47 | (1 0 2) | 0.70 | 12 | 0.19 | |
57 | (1 1 0) | 0.49 | 18 | 0.16 | |
63 | (1 0 3) | 0.68 | 14 | 0.15 | |
67 | (1 1 2) | 0.58 | 16 | 0.13 | |
69 | (2 0 0) | 0.94 | 10 | 0.13 |
Nanoparticles (nm) | Fluids | Interfacial Tension Improvement (IFT) (%) | Wettability Improvement (%) | Remark | Ref. |
---|---|---|---|---|---|
SiO2 | brine | 36 | 31 | Nanofluids have changed the wettability of limestone | [18] |
SiO2 | distilled water | 79 | 41 | Impact of quartz and calcite plates was analyzed | [36] |
SiO2 | brine | 9 | 71 | Wettability changed considerably | [15] |
SiO2 | brine | 23 | - | IFT was improved | [37] |
SiO2 | brine | 59 | 2 | EM waves influenced strongly on improving IFT | Present study |
ZnO | brine | 30 | - | ZnO adsorption on calcite was discovered | [38] |
ZnO | brine | 13 | 7 | Effectiveness of the EM waves was reported | [21] |
ZnO | brine | 67 | 8 | IFT was reduced considerably when subjected to EM waves | Present study |
Fe2O4@chitosan | chitosan | 42 | 38 | Coating of chitosan on Fe2O4 was reported | [39] |
TiO2/quartz | brine | 90 | 53 | Hybrid NPs enhanced IFT and wettability | [25] |
NiO2/SiO2 | distilled water | 95 | - | IFT vastly improved while employing hybrid NPs | [26] |
ZnO/SiO2 | seawater | 51 | 75 | Hybrid NPs enhanced the wettability of the carbonate rock | [22] |
ZnO/SiO2 | brine | 99 | 56 | IFT was extraordinarily enhanced during the EM waves exposure | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, Y.M.; Guan, B.H.; Chuan, L.K.; Khandaker, M.U.; Sikiru, S.; Halilu, A.; Adam, A.A.; Abdulkadir, B.A.; Usman, F. Electromagnetically Modified Wettability and Interfacial Tension of Hybrid ZnO/SiO2 Nanofluids. Crystals 2022, 12, 169. https://doi.org/10.3390/cryst12020169
Hassan YM, Guan BH, Chuan LK, Khandaker MU, Sikiru S, Halilu A, Adam AA, Abdulkadir BA, Usman F. Electromagnetically Modified Wettability and Interfacial Tension of Hybrid ZnO/SiO2 Nanofluids. Crystals. 2022; 12(2):169. https://doi.org/10.3390/cryst12020169
Chicago/Turabian StyleHassan, Yarima Mudassir, Beh Hoe Guan, Lee Kean Chuan, Mayeen Uddin Khandaker, Surajudeen Sikiru, Ahmed Halilu, Abdullahi Abbas Adam, Bashir Abubakar Abdulkadir, and Fahad Usman. 2022. "Electromagnetically Modified Wettability and Interfacial Tension of Hybrid ZnO/SiO2 Nanofluids" Crystals 12, no. 2: 169. https://doi.org/10.3390/cryst12020169
APA StyleHassan, Y. M., Guan, B. H., Chuan, L. K., Khandaker, M. U., Sikiru, S., Halilu, A., Adam, A. A., Abdulkadir, B. A., & Usman, F. (2022). Electromagnetically Modified Wettability and Interfacial Tension of Hybrid ZnO/SiO2 Nanofluids. Crystals, 12(2), 169. https://doi.org/10.3390/cryst12020169