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Abstract: To improve the weldability of 6061 aluminum alloy and improve the mechanical properties
of welded joints, ultrasonic was introduced into the welding process. The microstructure changes
of welded joints under different ultrasonic power were studied, and their effects on the mechanical
properties of welded joints were analyzed. The grain size was calculated, and the distribution of
precipitated phases was observed by the EBSD technique. The results show that the cavitation and
acoustic flow produced by ultrasonic vibration can refine the microstructure of welded joint, reduce
the grain size by nearly 50%. It promotes the transition of alloy elements to weld and eliminates
the segregation of the strengthening phase to the grain boundary, thus improving the mechanical
properties of the welded joint.
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1. Introduction

Hard aluminum alloy is an ideal lightweight structural material due to its high
strength, hardness, and low density. It is widely used in aerospace, automobile man-
ufacturing, and rail transit. However, because of the excellent thermal conductivity of
aluminum alloy, large heat input is required during welding. There is recrystallization in
the fusion zone of the weld and over-aging softening in the heat-affected zone, and the
strength coefficient of the welded joint is significantly reduced [1]. It was found that the
center microstructure of the heat-treated aluminum alloy weld zone was mainly equiaxed
grain, and the second phase was precipitated at the grain boundary. There was a segrega-
tion phenomenon of uneven chemical composition in the weld metal, the heat-affected zone
of the joint was obvious softened, and the microstructure near the weld zone was recrystal-
lized [2]. Thus, the joint strength usually does not exceed 60% of the base metal strength.

Schempp et al. [3] achieved grain refining by adding a commercial grain refiner
containing titanium and born to the GTA weld metal of aluminum alloy 6082. The weld
metal mean grain size could be reduced significantly from about 70 µm to a saturated size
of 21 µm. Aldalur et al. [4,5] through the gas metal arc welding (GMAW)-based WAAM
technical process to improve the weldability of aluminum alloy, it showed its ability for
the manufacture of parts by WAAM. However, WAAM technology also has problems
such as process installation and residual stresses, which restrict the surface roughness
and mechanical properties of parts. Lei et al. [6] used ultrasonic vibration-assisted laser
welding technology to weld AZ31B magnesium alloy. Ultrasonic vibration increases the
number of nucleation particles and refine grain, which improve the mechanical properties
of welded joint.

Applying vibration to alloy melt is one of the effective methods to improve the internal
structure and microstructure of metal materials. Ultrasonic wave is a kind of sound wave
with frequency higher than 20 kHz. It has good directionality, strong penetrating ability,
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and can easily obtain concentrated acoustic energy [7]. In the process of metal solidification,
the effects produced by ultrasonic vibration mainly include cavitation effect, acoustic flow
effect, mechanical effect, and thermal effect [8,9]. Acoustic cavitation is the main reason for
increasing nucleation rate and refining microstructure. Acoustic flow effect and mechanical
effect increase convection, reduce the temperature gradient in micro-area of melt, which is
conducive to refining the grain, eliminating segregation and affecting grain growth. Most
studies showed that ultrasound on the metal melt grain refinement mechanism is mainly the
result of the cavitation effect and acoustic flow effect together [10–12]. Numerous studies
at home and abroad put forward the following two theories on the basis of ultrasonic
cavitation [13–16]:

(1) Crushing theory: A large number of bubbles formed by high-energy ultrasound
collapse and generate shock waves under the action of sound pressure exceeding
a certain threshold, breaking the crystallized grown grains and making the grains
get refined.

(2) Undercooling nucleation theory: Some studies showed that the increase of cavitation
bubbles generated by ultrasonic waves and evaporation of internal liquid will reduce
the temperature of cavitation bubbles, which will lead to a decrease in the temperature
of metal melt on the surface of cavitation bubbles. Therefore, it is possible to form
crystal nucleus near the cavitation bubbles.

As they all involve the solidification process of metal and are all as-cast structure,
welding can be regarded as “micro-casting”, and ultrasonic vibration can be introduced
into the welding pool of aluminum alloy to improve welding defects. The current research
mainly focuses on the influence of ultrasonic on friction stir welding, and the influence
mechanism of ultrasonic vibration on fusion welding is still lacking. Combined with the
characteristics of conventional TIG welding and ultrasonic vibration-assisted welding, the
ultrasonic TIG composite welding method was proposed. In this work, an ultrasonic-
assisted welding work platform was designed, which was used as a fixture and also as an
ultrasonic vibration source, so as to introduce ultrasonic vibration into the welding pool.
ER5356 welding wire was used to perform ultrasound-assisted TIG flat-butt experiments
on 6061 aluminum alloy to investigate the effect of different ultrasonic powers on the
mechanical properties and microstructure of the welded joints [17].

2. Materials and Methods
2.1. Materials and Welding Process

In the experiment, 6061-T6 (solution treatment + artificial aging) aluminum alloy
was selected as the base material, the main component was Al-Mg-Si, the plate size was
125 mm × 125 mm × 5 mm, the mechanical properties were shown in the Table 1. ER5356
welding wire was used for welding, its Mg content was ~5%. The transition to metal weld
in the form of droplets can increase the hardness of weld joints, which had a great effect
on improving the softening of weld joints. The increase of Ti element content was also
beneficial to grain refinement. The chemical compositions of base metal and welding wire
were shown in the Table 2.

The welding machine used in the experiment was the WES-500 inverter argon arc
welding machine. The welded joint was in the form of a butt joint, with a welding current
of 110 A and argon flow rate of 12 L/min. In addition, an ultrasonic vibration auxiliary
system was added as shown in Figure 1. Ultrasonic vibration was added to the inside of
the molten pool during the welding process. The ultrasonic wave was directly introduced
into the molten pool through the base metal, which overcomes the shortcomings of arc
instability and low utilization rate of ultrasonic energy in the arc ultrasonic method, and
can have a beneficial effect on the microstructure and mechanical properties of the weld to
a greater extent.
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Table 1. Mechanical property of 6061 alumina alloy.

Tensile
Strength/Mpa

Yield
Strength/Mpa Elongation/% Hardness/HV

Standard value 310 275 12 95
Measured value 315 295 14 100

Table 2. Chemical composition of base metal and welding wire.

Material Si Fe Cu Mg Mn Zn Ti Cr Al

6061 0.22 0.44 0.10 2.63 0.11 0.10 - 0.28 margin
ER5356 0.05 0.13 0.01 4.89 0.15 0.01 0.01 0.12 margin
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Figure 1. Schematic diagram of ultrasonic vibration auxiliary system.

The ultrasonic output powers of 0 W, 160 W, 320 W, 480 W, 640 W, and 800 W were
applied to the back of the base metal for welding. The ultrasonic source was eight ultrasonic
transducers with the same power connected in parallel to increase the total ultrasonic output
power and were synchronously adjusted by the KMD-K1 ultrasonic power supply. The
model of the ultrasonic transducer is KMD-28100. The transducer was divided into two
layers—upper and lower layers—and the middle was two ceramic vibrating plates. The
piezoelectric effect of the ceramic plates converted the electrical energy is into mechanical
energy (i.e., ultrasonic wave), and then transmitted the ultrasonic wave through the upper
cover. Under the high-frequency AC power supply, high-frequency mechanical vibration
can be generated, and the vibration frequency was fixed at 28 kHz. Due to the low
attenuation coefficient of ultrasonic waves in copper and the fast heat dissipation rate
of copper, the softening effect of thermal cycling on the heat-affected zone was reduced.
The ultrasonic vibration was transmitted into the molten pool through the copper pad,
and it was used as a fixture to fix the base metal to prevent the deforming of aluminum
alloy sheet.

2.2. Mechanical Properties Test

Hardness and tensile tests were mainly used to test the mechanical properties of
welded joints. The tensile property test was an important index to reflect the mechanical
properties of materials. It mainly tested the tensile strength and elongation of materials, and
then measures the softening degree of 6061 aluminum alloy welded joints. The experiment
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referred to the ISO 4136-2012 destructive tests on welds in the metallic materials-transverse
tensile test for sample selection [18]. In order to ensure that there was no large error in the
tensile test, each state parameters to take two specimens. The tensile test was carried out
using the WDW-100 Electronic Universal Tester (Changchun Kexin, Changchun, China).

Hardness can reflect the strength of materials. The higher the hardness value of
metal materials, the higher the plastic deformation resistance and the higher the strength.
Before measurement, the surface of the tested sample was polished with 2000 mesh
sandpaper [19,20]. 6061-T6 was subjected to solution strengthening and artificial aging
treatment in the production process. Therefore, during the welding process, the welded
joint was prone to softening, which often appeared in the weld zone, fusion zone, and
heat-affected zone [21]. To reflect the overall hardness distribution of welded joints, the
hardness test was carried out along the direction perpendicular to the weld. The schematic
diagram of the hardness test points is shown in Figure 2.
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Figure 2. Distribution of hardness test points.

The hardness test was detected by THVS-5 Vickers hardness tester, adopted a load
force of 0.2 kg, and the holding time was 15 s. During the test, the diagonal length of
rhombic indentation was recorded, and then the hardness value (HV) was calculated by
Formula (1):

HV = 1.8544
F

d1d2
(1)

where d1 and d2 are diagonal degrees of indentation (mm).

2.3. Microstructure Observation

The microstructure of the 6061 aluminum alloy welded joint was observed by Hitachi
SU8010 field emission scanning electron microscope (Tokyo, Japan), while the energy
spectrometer was used to carry out compositional analysis to determine the chemical
element composition and content of the weld matrix and the second phase. The measured
surface should contain a complete welded joint perpendicular to the weld. The scanning
samples were subjected to rough grinding, fine grinding, polishing, and corroding. The
corrosion agent was Keller reagent (2.5% HNO3 + 1.5% HCl + 1% HF + 95% H2O).

In order to further determine the phase composition of the microstructure of the
welded joint under different process conditions, the phase analysis of the weld was carried
out by XRD-7000 X-ray diffractometer (SHIMADZU, Kyoto, Japan), and the scanning angle
range was 20–100.

Nordlys Nano EBSD detector was used to analyze the weld grain size and observe the
distribution of precipitates. The samples were polished by sandpaper and electropolishing
at −25 ◦C for 1–2 min at 40 V in HClO4:C2H5OH = 1:9 (vol.) solution. The EBSD character-
ization was carried out on GeminiSEM 300 field emission scanning electron microscopy
(Zeiss, Jena, Germany) using a scanning step length of 1.5 µm. Channel5 software was used
to analyze the EBSD data.

3. Results
3.1. Influence of Ultrasonic Power on Mechanical Properties
3.1.1. Analysis of Tensile Strength and Elongation

Figure 3 shows the trend of tensile strength and elongation of ER5356 welded joint
assisted by ultrasonic. All tensile specimens were broken in the weld zone. Compared
with the welded joint without ultrasonic vibration, both tensile strength and elongation are
improved. When the ultrasonic output power is 0 W, the tensile strength and elongation of
welded joints are the lowest, which is 154.23 Mpa and 4.17%. When the ultrasonic output
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power is 800 W, the tensile strength and elongation are the highest, which is 175.02 Mpa
and 4.52%. It is speculated that with the increase of ultrasonic output power, the effect
of cavitation and acoustic flow maybe more obvious, and the microstructure of the weld
maybe finer, so the mechanical properties of the weld are continuously enhanced.
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Figure 3. Tensile strength and elongation of ER5356 welded joint assisted by ultrasound. (a) Tensile
strength. (b) Elongation.

3.1.2. Hardness Analysis

Figure 4a shows the trend of the hardness of welded joints with different ultrasonic
powers. The hardness of the weld center almost did not change when the ultrasonic output
power was 160 W, and it was 78.4 HV. As the increase of ultrasonic output power, the
hardness of the weld center had been increasing. and reached the maximum value of
83.5 HV when the ultrasonic output power was 800 W.
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Figure 4. Hardness of welded joints with different ultrasonic powers. (a) Change trend of weld center
hardness. (b) Hardness distribution of welded joints.

It was speculated that the increase of ultrasonic power made ultrasonic vibration
increases continuously, and the effect on welding pool metal became more and more
sufficient. In the solidification process of the weld pool metal, the ultrasonic vibration broke
the growing grain to form more nucleation cores. At the same time, the ultrasonic vibration
also injects energy into the weld pool to promote the formation of nuclei, which in turn
played a role in refining the grains, and the hardness of the weld center increases naturally.

Figure 4b shows the hardness distribution of welded joints under different ultrasonic
output powers. Compared to the base material area, the hardness of the welded joint is
significantly reduced, and the softening of the heat-affected zone location was the most
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serious. The location of the heat affected zone was between 3.5 and 6 mm. It was found that
the hardness of heat-affected zone increased slightly but did not change much. The average
hardness of heat affected zone increased from 66.53 HV to 70.45 HV, only an increase of
2.45 HV. Under the same welding current, the heat input was constant, and the overall heat
dissipation capacity of the ultrasonic vibration platform was limited. The heat-affected
zone was mainly affected by the heat cycle, and the ultrasonic vibration had no effect on
the performance of the heat-affected zone.

3.2. Effect of Ultrasonic Power on Grain Size

The average grain size of welded joint under every ultrasonic power was calculated
by channel5 software, the results are shown in Figure 5. Before calculation, noise reduction
was carried out to decrease the error. With the increase of ultrasonic power, the grain size
gradually decreased, until the minimum value is reached 29.214 µm when the ultrasonic
power is 640 W. When the ultrasonic power is 800 W, the average grain size does not
continue to decrease. Ultrasonic vibration does refine the grain in the weld center, but
grain size does not decrease continuously with the increase of ultrasonic power, it has a
certain limit.
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The application of ultrasonic vibration in the cooling and solidification process of the
molten pool was conducive to promoting the occurrence heterogeneous nucleation and the
nucleation activity of solid particles, thereby increasing the nucleation rate [22–24]. The
grains that were growing up were broken, becoming nucleation particles in the center of
the molten pool, increasing the number of nucleation particles. Ultrasonic vibration inhibits
the growth of grains, so that the microstructure in the weld was fine.

Ultrasound with strong penetrating power may has cavitation effect, with cavitation
occurring when the acoustic pressure amplitude exceeds the Blake threshold [25]. The
Blake threshold is calculated from Formula (2).

pB = p0

1 +

√
4
27

S3

1 + S

 , S =
2σ

R0p0
(2)

where p0 is the ambient pressure, σ the interfacial tension and R0 is the initial radius
of the bubble, an interfacial tension for aluminium and air of σ = 1.1 N/m, and with
p0 = 101,325.0 Pa.
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However, the binding force between liquid molecules is very strong. The spontaneous
nucleation process of cavitation nuclei generated by ultrasound usually requires large
energy, the cavitation threshold is high, and the cavitation effect rarely occurs in theory. In
fact, pores are easy to occur during aluminum alloy welding. As shown in Figure 6, there
are many small bubbles and impurities in the molten pool, the continuity of the liquid is
destroyed, and the bubbles themselves can also be used as cavitation nuclei, resulting in a
greatly reduced cavitation threshold in the molten pool. Cavitation can occur under the
ultrasonic action of relatively small energy [26,27].
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Figure 6. Pores in aluminum alloy welded joints.

Figure 7 shows the grain structure by EBSD and the proportion of different grain
sizes at different ultrasonic powers. When ultrasonic vibration with power of 320 W was
added in the welding process, there are basically no large grains in the weld center with no
ultrasonic, and there is rather nucleation of new smaller grain and deformation for others
under the ultrasonic vibration. When the ultrasonic power reaches 640 W, the proportion
of smaller grains is larger, the weld metal mean grain size could be reduced significantly
from ~61.926 µm to a saturated size of 29.214 µm, which is only 47.176% when ultrasonic
vibration is not applied. When the ultrasonic power continues to increase to 800 W, the
average grain size does not continue to decrease, but the weld center is still small, and the
grain accounts for a large proportion.

The cavitation bubbles in liquid vibrate under the action of acoustic waves, and the
dynamic process of growth and collapse occurs when the acoustic pressure reaches a certain
value. The high-speed collapse of these cavitation bubbles will make the surrounding melt
generate high temperature and high pressure instantaneously. In this process, the instanta-
neous temperature and pressure increase the freezing point of the alloy, and accordingly
increase the condensate depression of the melt and promote nucleation. In addition, the
high temperature generated by cavitation will also make the grains fuse and increase the
number of nucleation cores, thus increasing the number of grains. It may also be that strong
acoustic waves break up the primary crystal and growing nucleus, thereby inhibiting the
growth of grains [28].
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Second is the acoustic flow effect of ultrasonic waves. The sine wave emitted by
ultrasonic causes the aluminum liquid to flow and spray, which prevents the growth of
the crystal nucleus and leads to grain refinement. The ultrasonic acoustic flow promotes
the heat transfer and diffusion of elements, and accelerates the re-solution of grains. Due
to the turbulent effect caused by the acoustic flow effect of ultrasonic vibration, the flow
at the edge of the molten pool is accelerated, and the elements gathered at the grain
boundary are stirred to the center of the molten pool. The composition in the molten pool is
uniform, which tends to make the temperature gradient in the liquid phase uniform [29,30].
The anisotropy of the crystal is suppressed, which is conducive to the growth of the
equiaxed crystal.

According to Formula (3), if the flow is assumed to be frictionless, the liquid phase
flow rate caused by acoustic flow can be obtained [31]. When the ultrasonic frequency
is 28 kHz and the amplitude is 15µm, the maximum rate of liquid phase generation can
be 1.866 m/s.

V =
√

2πfA (3)

In which V is the maximum velocity of liquid phase flow (m/s), f is the ultrasonic
frequency (Hz), and A is the amplitude (µm).

According to Hall–Petch formula (4), ultrasonic vibration acts on the molten pool,
under the effect of cavitation and turbulence, the flow rate is accelerated, the nucleation rate
is increased, and the growth of crystal nucleus is inhibited. The grain size is reduced [32], the
grain boundary is increased, the resistance to slip increases, and the mechanical properties
of the weld joint are enhanced.

σy = σo +
ky√

d
(4)

In this formula, σy is the yield limit of weld metal (MPa), σo is the resistance of a
single lattice when moving dislocations (MPa), ky is the Hall–Petch coefficient, and d is the
average grain diameter.

Combined with the experimental results of mechanical properties, the fine grain
reinforcement improved the tensile strength and hardness of the welded joint, but the
grain refinement increased the grain boundaries and hinders the slip of the dislocations,
resulting in the increase of elongation was not obvious. The grain size hardly continued to
decrease after reaching 29.214 µm, but the tensile strength and hardness of the welded joint
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continued to increase, indicating that ultrasonic vibration should have other mechanisms
to improve mechanical properties.

3.3. Influence of Ultrasonic Power on Precipitated Phase
3.3.1. SEM and EDS Analysis

Figure 8 is SEM analysis of ER5356 Al-Mg welded joint weld. Comparing the SEM
and EDS of the matrix and precipitates of ER5356 welded joint before and after ultrasonic
vibration, it was found that the types of precipitates in the weld do not change, but their
distribution is affected by ultrasonic vibration. The specimen with ultrasonic output power
of 800 W was selected for analysis. Figure 8a is the SEM image of the weld zone of the
welded joint without ultrasonic vibration. After analyzing the image, it can be seen that
most of the precipitates in the weld are distributed along the grain boundary. Figure 8b
is the SEM image of the weld area of the welded joint after applying 800 W ultrasonic
vibration. Compared with Figure 8a, it can be seen that the precipitates in the weld are
more evenly distributed. Under the action of ultrasonic vibration, the precipitates are no
longer biased at the grain boundary and redistributed.
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Figure 8. ER5356 SEM analysis diagram of the weld seam of aluminum-magnesium welded joint.
(a) P = 0 W(×200 ML). (b) P = 800 W(×200 ML). (c) P = 0 W(×500 ML). (d) P = 800 W(×500 ML).

In order to make the results of chemical analysis, the morphological organization
was enlarged and selected for EDS inspection by high magnification scanning, as shown
in Figure 8c,d. After EDS inspection and analysis of the weld structure, it was found
that the elements in the weld were nearly identical to those in the base metal, but the
main elements were Al, Mg, Si, Cr, and Fe due to the influence of welding filler elements
on the weld elements. Si and Fe in the ER5356 welded joint were mainly from the base
metal, and Mg was mainly from the ER5356 Al-Mg welding wire. The transition of the
Mg element can supplement the burning loss at high current. At the same time, Mg was a
strengthening element, forming a strengthening phase, so that the strength of the welded
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joint was improved. Table 3 shows the energy spectrum analysis of matrix and precipitated
phase of the welded joint. In order to ensure the accuracy of the data, the results in Table 3
are derived from the average value of five points and calculation the errors by Origin
software. The analysis results show that the content of Mg and Al was the highest in the
weld matrix, and Mg not only formed the precipitation phase, but also dissolved in the
matrix, which proved that Mg was dispersed in ER5356 welded joint and played the role of
intracrystalline strengthening role.

Table 3. Energy spectrum analysis of matrix and precipitated phase of welded joint
(atomic fraction,%).

Al Error Mg Error Si Error Fe Error Cr Error

A 96.43 4.23 3.03 0.11 0.37 0.03 0.00 0.00 0.17 0.04
B 95.24 3.12 3.58 0.16 0.53 0.05 0.32 0.02 0.33 0.06
C 95.99 4.18 3.15 0.11 0.26 0.07 0.26 0.05 0.34 0.05
D 86.83 2.89 5.56 0.39 2.73 0.12 1.46 0.09 3.42 0.13

By comparing the element content of the weld before and after the application of
ultrasonic vibration, the change in element contents was due to the transition from the base
metal to the weld pool, because the base metal and welding wire were unchanged and
no other components were added to the weld. According to the principle of cavitation, at
the junction of the molten pool and the base metal, ultrasonic cavitation produces high-
temperature point melting and impact, which promoted the dissolution of the base metal
side of the fusion zone to the molten pool. At the same time, due to the continuous scouring
of the base metal by acoustic flow, it will also lead to the transition of Si, Fe, Cr, and other
elements in the base metal to the molten pool. Under the stirring of the two effects, the
temperature gradient in the molten pool is uniform, and the elements in the weld are evenly
distributed, but it does not affect the types of precipitates in the weld.

3.3.2. Phase Analysis

The phase composition of 6061 aluminum alloy weld was measured by X-ray as
shown in Figure 9. The elements in the weld area did not change before and after ultra-
sonic vibration. The types of precipitated phases were completely consistent under each
ultrasonic powers. The weld zone mainly contained α-Al solid solution, Mg2Si, and FeCr
precipitated phases, which was in line with the speculated results in EDS. The Mg element
in ER5356 excessively entered the weld through the droplets, supplemented the burning
loss of Mg element caused by high temperature and formed Mg2Si strengthening phases
with Si element, thus avoiding the formation of cracks in the imbalance between Si and Fe
in aluminum alloy. Meanwhile, Cr element can form a small granular Fe-Cr phase with Fe
element as reinforcement to avoid the existence of Fe in the weld as needle-like hard and
brittle phase, which can reduce the brittleness of the structure.

As an Al-Mg-Si alloy, the aging process of 6061 aluminum alloy is SSSS (supersaturated
solid solution) -α (Al)→ Cluster→ GP zone (solute atom enrichment zone)→ β”→ β’
(metastable phase)→ β (equilibrium phase) -Mg2Si (+Q), and the Mg2Si phase is the main
strengthening of this alloy [33]. During the Al-Mg-Si alloy limitation process, it grows up
rapidly and becomes needle- or rod-like along the [100] direction of the matrix, which is
called the β’ transition phase. The β’ phase keeps a completely coherent relationship with
the matrix and produces a co-lattice distortion during the transition to the β equilibrium
phase, forming a strong stress field, hindering the motion of the dislocation, and improving
the strength and hardness of the alloy. The main composition of 6061 aluminum alloy is
α (Al) + Mg2Si two-phase eutectic. However, under the influence of the welding thermal
cycle, the increase in temperature makes the β phase transform into the β’ transition phase
which is locally coherent with the matrix, and the hindrance to dislocation movement
decreases. The peak value of hardness and strength of the alloy appears at the end of
the β phase and the beginning of the β’ phase, and then its strength and hardness begin
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to decrease. At last, the β (Mg2Si) stable phase is formed at the interface between the
β’ transition phase and the matrix by consuming β’ transition phase. However, the co-
herent relationship between β (Mg2Si) phase and matrix is destroyed, and the coherent
distortion also disappears. With the increase of temperature and time, the particles of the
β (Mg2Si) phase gather and coarsen, the strengthening effect disappears, and the strength
and hardness of the alloy further decrease, resulting in averaging softening [34].
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Figure 9. XRD spectra of welded joints with different ultrasonic powers.

3.3.3. Analysis of Phase Distribution

Figure 10 shows the distribution of each precipitated phase in the center of the weld
under different ultrasonic power, in which red is α (Al) matrix, yellow is Mg2Si, and green is
FeCr. Figure 10a shows the distribution of precipitated phases when ultrasonic vibration is
not applied, with few precipitated phases and segregation phenomenon. With the increase
in ultrasonic power, the precipitated phases gradually increase; the proportion of each
phase under different ultrasonic power is shown in Table 4. A large number of precipitated
phases had appeared in the weld center at 320 W, compared with no ultrasonic vibration;
Mg2Si increased from 0.18% to 1.23%, and FeCr increased from 1.42% to 4.46%. However,
the segregation phenomenon was very obvious, Mg2Si phase was distributed in individual
grains, and the FeCr phase is obviously gathered at grain boundaries. With the increase of
ultrasonic power, the number of precipitated phases gradually tends to be flat, and they
are uniformly distributed in the crystal and grain boundary as finely dispersed particles.

Table 4. Proportion of each phase in the center of welded joint under different ultrasonic power.

0 W 160 W 320 W 480 W 640 W 800 W

Mg2Si 0.18 0.72 1.23 2.33 2.37 2.32
FeCr 1.42 2.38 4.46 4.38 4.65 4.01

Al (α) 98.40 96.90 94.13 93.29 92.98 93.67
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Ultrasonic vibration propagates in the liquid phase to produce acoustic streaming and
form a turbulence effect. When propagating in the liquid phase, there will be energy loss
and form a sound pressure gradient. This effect was formed at the solid–liquid interface
and propagates from the solid phase to the liquid phase, which can increase the plastic flow
of metal and stir the micron-sized medium evenly [35]. In addition, the action of ultrasonic
can accelerate the reaction speed of substances, reduce the requirements of environmental
conditions required for chemical reactions, initiate reactions that were generally difficult to
produce, shorten the reaction induction time, or improve the reaction yield. The influence
of ultrasonic vibration on precipitated phase is divided into two stages. The first stage is to
increase the number of the precipitated phase. Because ultrasonic vibration improves the
fluidity of the molten pool, the alloy elements in the base metal transition to the weld, and
the number of precipitated phase increases. The next stage is to change the distribution
of precipitates. Because the second phase is easier to form at the grain boundary and
aggregate to cause segregation, the stirring effect of ultrasonic vibration on the molten pool
makes the second phase evenly distributed, and the precipitates at the grain boundary are
gradually evenly distributed into the crystal. Therefore, with the increase of ultrasonic
power, the alloying element degree of the base metal passing through the weld increases
gradually, and the number of precipitates formed in the weld increases gradually, and the
distribution is gradually uniform.

Combined with the experimental results on mechanical properties, dispersion strength-
ening also had an effect on the strength and hardness of the welded joint. When the grain
size did not continue to decrease, dispersion strengthening played a major role in the
improvement of mechanical properties. However, the precipitation of the second phase
had a pinning effect on the dislocations and hindered the improvement of the plasticity of
the welded joint. The change in mechanical properties of the welded joint was the result of
the combined effect of fine grain strengthening and dispersion strengthening.

4. Conclusions

In this research, the ultrasonic vibration assisted welding of 6061 aluminum alloy
sheet is studied, and the conclusions are as follows:

Applying ultrasonic vibration to TIG welding can improve the mechanical properties
of welded joints. When the ultrasonic output power reaches 800 W, the tensile strength
of the weld is 173.02 Mpa, and the hardness of the weld center is 83.5 HV, but it has little
effect on the heat affected zone.

Ultrasonic-assisted TIG welding can produce cavitation effect and sound flow in
the weld pool and refine the weld grain. When the ultrasonic power is 640 W, the grain
size decreases by nearly 50%, and the ultrasonic power continues to increase, but the
grain size will not continue to decrease. Grain refinement can enhance the strength and
hardness of the weld, but grain refinement increases the grain boundaries, hinders the slip
of dislocations, and makes the toughness of the weld change less.

In the welding process, the sound flow generated by the external ultrasonic vibration
in the molten pool accelerates the flow of the molten pool, makes the base metal transfer
more elements to the inside of the weld, increases the number of precipitates in the weld,
and makes the precipitates in the weld evenly distributed. As a strengthening phase, the
precipitates improve the softening of the weld area.

In summary, adding ultrasonic vibration during fusion welding can improve the
mechanical properties of aluminum alloy welded joints, and there is an ultrasonic power
to minimize the grain size in the weld center. In future studies, the influence of ultrasonic
vibration-assisted welding on the weldability of aluminum alloy can also be analyzed to
determine whether ultrasonic vibration can improve the welding defects of aluminum alloy
such as thermal cracks and pores.
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