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Abstract: Photoresponsive photoalignable liquid crystalline polymers composed of phenyl benzoate
terminated with N-benzylideneaniline were evaluated. These polymers are capable of axis-selective
photoreaction, photoinduced orientation, and surface relief grating formation. Polarization hologra-
phy using an He-Cd laser beam at a wavelength of 325 nm demonstrated the formation of a surface
relief grating with a molecularly oriented structure based on periodic light-induced reorientation and
molecular motion. Electrical switching of diffracted light using an electric field response of twisted-
nematic cell containing a low-molecular-weight liquid crystal in combination was also demonstrated.

Keywords: liquid crystalline polymer; axis-selective photoreaction; holography; beam diffraction

1. Introduction

Surface alignment patterning of optically anisotropic materials has attracted sub-
stantial attention from the perspective of science and technology because of its potential
application in photonic devices for polarized light communication. In particular, polarizing
gratings (PGs) have been researched and developed widely in the field of polarized beam
manipulation because of their high diffraction efficiency and polarization selectivity [1,2].
These are likely to be applied to beam steering [3–6], imaging [7,8], and near-eye dis-
plays [9,10], as well as 3D displays and virtual reality/augmented reality (VR/AR) [4,11–14].
A PG is a diffractive optical element in which the in-plane anisotropic orientation varies
linearly along the surface and the magnitude of anisotropy is constant [15–23]. It is fab-
ricated by methods such as optical orientation by two-flux interference exposure [24],
micro-rubbing [25,26], photomasking [27], and direct beam writing [8,28]. In these meth-
ods, the diffraction efficiency is improved by increasing the variation in refractive index in
the film or the non-uniform structure of the film. Liquid crystal polymers are suitable as
materials for PGs because their birefringence can be modulated substantially by external
stimuli. On this, various structures have been evaluated.

In the previous study, we studied the formation of PGs by two-flux interference
exposure using azobenzene [29,30] and N-benzylideneaniline (NBA) [31,32]. PGs are
formed under interference exposure owing to the periodic distribution of light intensity
and polarization state. When exposed to a polarized light beam, the azobenzene and NBA
portions parallel to the polarization direction of the light beam undergo photoisomerization,
followed by a trans-cis-trans reorientation process to form an oriented structure. At this
time, small optical anisotropy is generated in the liquid crystal polymer film. On the other

Crystals 2022, 12, 273. https://doi.org/10.3390/cryst12020273 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst12020273
https://doi.org/10.3390/cryst12020273
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0001-9780-3261
https://doi.org/10.3390/cryst12020273
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst12020273?type=check_update&version=1


Crystals 2022, 12, 273 2 of 9

hand, there is a significant increase in optical anisotropy when the photoirradiated film is
heated above the glass transition temperature due to self-assemble mesogenic moiety with
high mobility [33]. Furthermore, the NBA can be functionalized by a polymer reaction to
deactivate the photoresponsive part or to increase the heat resistance by cross-linking [34].
In addition, NBA is more transparent to the visible light region than azobenzene, whereby
it is more suitable for use in optical devices.

Recently, we reported an NBA polymer with a high orientation, birefringence, and high
heat resistance [35]. This polymer has the capability to replace components with higher
birefringence while maintaining orientation [36]. However, its application as a PG material
has not been investigated. Herein, we prepared PG using this material and evaluated its
diffraction properties.

2. Materials and Methods
2.1. Material

Polymethacrylate P1 coupled with phenyl benzoate terminated with NBA via a hex-
amethylene spacer was used (Figure 1a). P1 was synthesized by the method described
in the previous literature [35]. The polymer exhibited a glass transition temperature (Tg)
of 100 ◦C and retained its liquid crystalline phase above 295 ◦C. The films of the poly-
mer were prepared by spin-coating a dichloromethane solution of the polymers onto
quartz substrates.
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ing the photoirradiated film in the air at a specified temperature for 10 min. 

Figure 1. (a) Chemical structure of NBA liquid crystalline polymer P1. Experimental setup for
(b) axis-selective photoreaction and (c) holographic exposure. ES, shutter; HW, half-wave plate;
M, mirror; BS, beam splitter; QW, quarter wave plate; SS, sample stage; PC, personal computer.

2.2. Equipment

The photoinduced orientation behavior was evaluated by irradiating a 325 nm He-Cd
laser (Kimmon IK3501R-G-S) (Tokyo, Japan) with the optical setup displayed in Figure 1b.
Since the linearly polarized UV laser was emitted from the He-Cd laser source, the polar-
ization direction of the actinic beam was controlled by a half-wave plate (HW) mounted
on the rotational stage. The intensity of the laser beam was 210 mW/cm2. The molec-
ular orientation after linearly polarized light irradiation was evaluated using polarized
absorption spectra (HITACHI U3900H) (Tokyo, Japan) and polarized light microscopy
(Olympus BH-51) (Tokyo, Japan). The thermally annealed film was obtained by heating the
photoirradiated film in the air at a specified temperature for 10 min.

Polarization holographic recording was performed using the experimental setup il-
lustrated in Figure 1c. The laser beam was divided into two writing beams by a beam
splitter (BS). The two writing beams with equal intensities crossed at an angle of 3.28◦ and
impinged on the P1 films on a sample stage (SS). The resulting grating period of the polar-
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ization holographic grating was estimated to be approximately 4.8 µm. The polarization
states of the two writing beams were controlled individually by two quarter-wave plates.
The polarization holographic gratings were written using two orthogonally circularly po-
larized, mutually coherent He-Cd laser beams. The intensity of the interference beam was
420 mW/cm2. The He-Ne laser with a wavelength of 633 nm was used as a probe light to
evaluate the diffraction behavior, and the diffraction efficiency was calculated using the
following equation:

DE = Id/II

where Id and II are the intensities of the diffracted and incident beams, respectively.
The laser intensity measurement, irradiation position, and dose control were per-

formed using a serial communication program. The surface topography was measured us-
ing an interferometer-type surface profiler (Ryoka Systems, R3300H) (Osaka, Japan). A TN
cell coated with indium tin oxide (ITO) and polyimide was used for the beam switching.
A liquid crystal with a low molecular weight (Merck, ZLI4792: (∆n = 0.09, ∆ε = 5.3) [37])
(Darmstadt, Germany) was injected into a TN cell (EHC KSRT-04/B211PINSS05) (Tokyo,
Japan) with a cell gap of 4 µm. The orientation was controlled by applying a DC voltage of
2 V using a function generator (Hokuto Denko HB-111) (Tokyo, Japan).

3. Results and Discussion
3.1. Photoalignment Behavior in Thin Films

Figure 2 shows the variation in the polarized absorption spectra of the P1 film with a
thickness of 140 nm when irradiated with a single linearly polarized laser beam for 10 s
as shown in Figure 1b. The absorption at 340 nm originating from the π–π* transition of
NBA decreased in the direction parallel to the polarization of the laser and increased in the
perpendicular direction. This indicated that the NBA moiety was rearranged perpendicular
to the electric field vector of the polarized light by trans-cis-trans reorientation.
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Figure 2. Polarized absorption spectra of P1 after spin-coating, irradiation with linearly polarized 
UV-laser, and annealing at 160 °C for 10 min. The spectra are color-coded as black for initial, blue 
Figure 2. Polarized absorption spectra of P1 after spin-coating, irradiation with linearly polarized
UV-laser, and annealing at 160 ◦C for 10 min. The spectra are color-coded as black for initial, blue for
irradiation, and red for annealing, respectively. The absorption spectra for the directions parallel and
perpendicular to the polarization direction of the laser beam are indicated by solid and dashed lines,
respectively.

When heated to a temperature above the glass transition temperature, the optical
anisotropy was enhanced perpendicular to the polarization direction of the laser beam.
The amplified anisotropy was almost the same when the film was heated above 160 ◦C,
while it showed a small value when the film was heated below 160 ◦C. The anisotropy in-
duced by heat treatment tended to decrease for films exposed for more than 10 s. This may
be due to undesired photoreactions (crosslinking or rearrangement reactions) and self-
organization (out-of-plane orientation or aggregation) caused by prolonged exposure.
The absorption spectra after annealing are plotted in red in Figure 2. These results are simi-
lar to those obtained under exposure to linearly polarized light from a mercury lamp [35].
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Diffraction gratings were fabricated using interference exposure. Figure 3 plots the
change in diffraction efficiency as a function of exposure time (solid line) and the change
in diffraction efficiency of P1 films annealed at various temperatures after exposure to
interference light (dashed line). The diffraction efficiency was dependent on the exposure
time, increasing for exposure times shorter than 5 s and slowly decreasing for longer
exposure times. The diffraction efficiency of the P1 film was stable after switching off
the interfering beams though the diffraction efficiency after irradiation was very low
(<0.5%). On the other hand, it was remarkably improved by heating above the glass
transition temperature. The diffraction efficiency increased to 3.8% for the film exposed
for 5 s at 240 ◦C. These can be attributed to the amplification of orientation and the
expansion of birefringence modulation by heating and polarized laser irradiation. However,
the diffraction efficiency was marginal (<5%), possibly due to the small film thickness.
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The surface morphology of the heat-treated films was also evaluated. Periodic ir-
regularities with a pitch of approximately 4 µm and a height difference of approximately
40 nm were observed after heat treatment. This indicated that the height difference was
caused by the diffraction grating formation (Figure 4a). The surface relief was formed by
the mass transfer of NBA upon light irradiation. This mechanism is identical to that of
azobenzene and indicates that the diffractive structure is formed by a behavior identical to
that of conventional NBA polymers. Figure 4b shows a polarized light micrograph of the
diffraction grating. Periodic bright stripes are observed along the diffraction grating vector.
This indicates that the NBA is arranged periodically and that the refractive index varies
periodically. To investigate the optical anisotropy caused by the molecular arrangement,
the grating was observed by rotating the polarizer and analyzer simultaneously by 30◦

while maintaining the grating fixed. The results showed that the rotation of the polarizer
and analyzer caused the bright stripes to shift along the grating vector and recovered to the
initial pattern at 180◦. This indicates that the polarization direction of the linearly polarized
light is modulated periodically by the interference of two orthogonal circularly polarized
beams (Figure 4c) [38].
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Figure 4. (a) Surface profile of P1 after irradiation with interference beams following thermal
annealing (5 s, 240 ◦C). (b) Polarizing micrographs observed as a function of the rotation angle
of the polarizer and analyzer, θ. (c) Alignment of mesogens induced in holograms. The arrows
indicate the direction of mesogens. The white and gray areas correspond to the bright and dark areas,
respectively, in (c).

3.2. Photoalignment Behavior in Thick Films

Figure 5a shows the polarization absorption spectra of a 460 nm-thick film after
irradiation with LP-325 nm and heat treatment. Similar to the 140 nm film, the absorption
in the direction parallel to the polarization field decreased with UV irradiation. However,
a marginal amplification was induced by thermal annealing. Figure 5b shows the diffraction
efficiencies of the films after interference exposure for various times. The diffraction
efficiency after irradiation with the interference beam increased compared with that of
the thin film. However, the increase after thermal treatment was marginal. Figure 5c
shows the polarized light micrographs of the diffraction gratings. These show periodic
bright stripes along the grating vectors as in the 140 nm film. However, the periodic
structure is disrupted marginally after thermal treatment. The surface morphology of the
film shows that the surface layer of the film became rougher after heat treatment. When this
experiment was conducted using a significantly thicker film (900 nm), diffraction structures
disappeared after heat treatment (data not shown). These results indicate that the thicker
film increases the number of areas in the deeper layers of the film that are not involved
in optical orientation. This, in turn, induces unintended self-organization and orientation
(e.g., out-of-plane orientation), thereby resulting in surface roughening and a decrease in
anisotropy. Meanwhile, reorientation is partially induced in the surface layer of the film
by heat treatment. This is expected to increase the diffraction efficiency. It is necessary to
reexamine the composition of the film (e.g., the transmittance and the introduction of a
structure that facilitates reorientation) to increase the diffraction efficiency.
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Figure 5. (a) Polarized absorption spectra of P1 film with a thickness of 460 nm after spin-coating,
irradiation with linearly polarized UV-laser, and annealing at 160 ◦C for 10 min. The spectra are color-
coded as black for initial, blue for irradiation, and red for annealing, respectively. The absorption
spectra for the directions parallel and perpendicular to the polarization direction of the laser beam
are indicated as solid and dashed lines, respectively. (b) Variation in +1st diffraction efficiency of P1
film with a thickness of 460 nm as a function of exposure time (solid line) and 1st diffraction efficiency
of P1 film after thermal annealing at 160 ◦C. (c) POM image (top) and surface profile (bottom) of P1
film with thickness of 460 nm after irradiation (left) and thermal annealing (right).

3.3. Diffraction Control Using TN Cell

The combination of a field-driven cell and quarter-wave plate enables switching of the
laser [39,40]. In particular, an optical system combining a field-driven TN cell and quarter-
wave plate can switch the diffracted light from the +1st order to the −1st order, or vice versa,
by controlling the voltage applied to the TN cell [4]. In this method, multiple diffraction
angles can be obtained by cascading multiple PGs, and simultaneous wavelength control
is feasible. Two-dimensional directional control is also likely to be feasible owing to the
transmission type and cascade connection capability. Figure 6a,b shows the diffraction
images of the voltage-off and voltage-on states, respectively (support Video S1). For the
polarization grating, we used a 140 nm P1 film after thermal annealing. As expected, the
diffraction order varies from +1 to −1 and vice versa. Since it is intended to be controlled
by a single-board computer, DC voltage control is used; however, simple AC voltage (4 V,
60 Hz) can also be used for control (support Figure S1). Efficient switching is likely to be
achieved by improving the diffraction efficiency. This is presently under study.



Crystals 2022, 12, 273 7 of 9
Crystals 2022, 12, x FOR PEER REVIEW 7 of 9 
 

 

 
Figure 6. Schematic diagram (top) and photograph of diffraction (bottom) of proposed optical 
switch based on PG at (a) voltage-off state and (b) voltage-on state. 

4. Conclusions 
Axis-selective photoreaction, photoinduced orientation, and surface relief grating 

formation were evaluated using liquid crystalline polymers composed of phenyl benzoate 
terminated with NBA. Heat treatment greatly amplifies the molecular arrangement in the 
photo-reactive thin film, while the amplification is small in the photo-reactive thick film. 
The formation of a polarization grating with a molecularly oriented structure based on 
periodic light-induced reorientation and molecular motion was demonstrated. We 
demonstrated the electrical switching of diffracted light using a TN cell. Although the 
transmission of zero-order light could not be prevented in this study, more efficient beam 
control is likely to be achieved by biasing the diffraction of first-order light through the 
formation of a more efficient diffraction grating. It is necessary to reexamine the compo-
sition of the film, such as the transmittance and the introduction of a structure that facili-
tates reorientation. 

Supplementary Materials:  The following are available online at www.mdpi.com/xxx/s1, Figure 
F1: Diffraction photographs of an optical switch using an AC input (4 V, 60 Hz), Video M1: Switch-
ing of diffracted beam using field-driven cell. 

Author Contributions: Conceptualization, N.K. and M.K.; Methodology, M.K.; Software, M.K.; Val-
idation, K.F., M.K.; Investigation, K.F.; Optical setup, H.O., T.S., M.S.; Resources, N.K.; Writing—
original draft preparation, M.K.; Writing—review and editing, N.K.; Visualization, M.K.; Supervi-
sion, N.K. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Acknowledgments: Acknowledgments: This work was supported by Japan Science and Technol-
ogy Agency (CREST JPMJCR2101).  

Conflicts of Interest: The authors declare no conflict of interest. 

Reference 
1. Lin, T.; Xie, J.; Zhou, Y.; Zhou, Y.; Yuan, Y.; Fan, F.; Wen, S. Recent Advances in Photoalignment Liquid Crystal Polarization 

Gratings and Their Applications. Crystals 2021, 11, 900. https://doi.org/10.3390/cryst11080900. 
2. Nersisyan, S.R.; Tabiryan, N.V.; Steeves, D.M.; Kimball, B. Optical Axis Gratings in Liquid Crystals and their use for Polarization 

insensitive optical switching. J. Nonlinear Opt. Phys. Mater. 2009, 18, 1–47. https://doi.org/10.1142/S0218863509004555. 
3. Oh, C.; Kim, J.; Muth, J.; Serati, S.; Escuti, M.J. High-Throughput Continuous Beam Steering Using Rotating Polarization Grat-

ings. IEEE Photonics Technol. Lett. 2010, 22, 200–202. 

Figure 6. Schematic diagram (top) and photograph of diffraction (bottom) of proposed optical switch
based on PG at (a) voltage-off state and (b) voltage-on state.

4. Conclusions

Axis-selective photoreaction, photoinduced orientation, and surface relief grating
formation were evaluated using liquid crystalline polymers composed of phenyl benzoate
terminated with NBA. Heat treatment greatly amplifies the molecular arrangement in the
photo-reactive thin film, while the amplification is small in the photo-reactive thick film.
The formation of a polarization grating with a molecularly oriented structure based on
periodic light-induced reorientation and molecular motion was demonstrated. We demon-
strated the electrical switching of diffracted light using a TN cell. Although the transmission
of zero-order light could not be prevented in this study, more efficient beam control is likely
to be achieved by biasing the diffraction of first-order light through the formation of a
more efficient diffraction grating. It is necessary to reexamine the composition of the film,
such as the transmittance and the introduction of a structure that facilitates reorientation.
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