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Abstract: Self-assembled nanocomposites are attracting considerable attention owing to their control-
lable architectures and self-assembly processes, as well as the increase in worldwide environmental
effects and energy needs. Further understanding of the self-assembly procedure for improving
environmental and energy applications would advance the design and manufacture of nanomaterials
for various applications. These materials can be grouped into major categories for various application
fields, including powder photocatalysts, membrane photocatalysts, and thin-film thermoelectric
nanomaterials. These self-assembled nanomaterials can be used for environmental and energy appli-
cations, such as wastewater purification, hydrogen production by water splitting, energy storage,
and energy harvesting. In this review, a brief introduction to the definitions and classifications of
self-assembled nanocomposites is provided. We aim to provide a summary of the recent research
related to self-assembled nanocomposites and nanostructures used for environmental and energy
applications. Moreover, typical examples and discussions are aimed at demonstrating the advantages
of self-assembled nanostructures. At the end of each section, the structural properties and the appli-
cation of the nanocomposite or nanostructure are summarized. Finally, we provide perspectives for
future research on the design and fabrication of self-assembled nanocomposites and nanostructures.

Keywords: nanocomposites; nanostructures; self-assembled; photocatalyst; energy materials;
thermoelectric materials

1. Introduction

It is well known that self-assembled nanocomposites and nanostructures are a class
of molecules that spontaneously assemble directly through specific interactions or indi-
rectly through their environment without any human intervention [1,2]. The benefits of
self-assembled nanocomposites or nanostructures have been reported several times for
their prominent applications. Thus, they are attracting widespread attention in environ-
mental and energic fields, as are their special self-assembled structures. The obtained
nanocomposites and/or nanostructures have great potential in various applications [3–9].

There are a variety of reports about the methods and theories of self-assembly [10].
Furthermore, the types of self-assembled nanocomposites and nanostructures are diverse.
In this review, self-assembled nanomaterials are classified as powder nanostructures, mem-
brane photocatalysts, and thin-film thermoelectric nanomaterials.

Nanocomposites and nanostructures coupled to self-assembly processes can poten-
tially exhibit significant advantages in environmental and energy applications [11–18].
With regards to self-assembled nanocomposites and nanostructures for environmental ap-
plications, we provide typical examples, such as wastewater purification using powder and
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membrane nanomaterials and/or nanocomposites. Among them, TiO2 has been recognized
as one of the most promising materials for photocatalytic techniques due to its unique
characteristics. The photocatalytic techniques using TiO2 and TiO2-based materials have
demonstrated appealing practical value, including wastewater purification and hydrogen
evolution from water [19–23]. For energy applications, the self-assembly of nanocompos-
ites and nanostructures has been used in conventional batteries, Li-ion batteries, energy
storage, and energy harvesting. Self-assembled nanomaterials offer greatly improved ionic
transport and electronic conductivities compared with those of conventional batteries and
supercapacitor materials [24–26]. They can also occupy all available intercalation positions
in the particle volume, resulting in high specific capacity and rapid ion diffusion. Due to
these features, self-assembled nanomaterials are able to tolerate high currents, offering a
prospective solution for high-power energy storage, including waste heat conversion. In
this mini-review article, we mainly survey and discuss the classification of nanomaterials
and nanocomposites, their general synthesis approaches, their primary characterization,
and their special properties for environmental and energy applications. This review aims to
highlight the significance of self-assembled nanostructures for their proposed applications.
Finally, we conclude and present a future outlook for the further development of preferred
materials for environmental and energy applications.

2. Self-Assembled Nanostructures Suitable for the Photocatalysis Process
2.1. Self-Assembled Nanostructured Powder Photocatalysts for Wastewater Treatment

With economic development and technological progress, water pollution has become
a worldwide problem. Domestic sewage, agricultural sewage, and industrial wastewater
have become significant sources of water pollution. Among them, industrial wastew-
ater contains many forms of pollutants, creates large emissions, and is not easy to pu-
rify [19]. Traditional treatment methods mostly use physical deposition or chemical adsorp-
tion [20,27], are expensive, and have limited effectiveness. The photocatalytic degradation
of organic pollutants as a new wastewater treatment technology has become a popular
research topic in recent years [28,29], and metal oxide nanoparticles (titanium dioxide,
zinc oxide, and iron oxide), carbon nanotubes, nanocomposites, and many other types
of nanomaterials have been used as catalysts for wastewater treatment [30–33]. More
specifically, some self-assembled nanophotocatalytic systems have been designed to de-
grade heavy metal ions, pharmacological waste, toxic organic molecules, volatile oxygen
compounds (VOCs), etc., from waste water [34–42]. For example, Sun et al. prepared self-
assembled BiOI/BiOCl microflowers by a coprecipitation method, which showed higher
photocatalytic efficiency in photocatalytic oxidation of gas-phase mercury [37].

Liu et al. successfully prepared CdS@MoS2 heterostructured nanocomposites with
branching nanostructures by a hydrothermal method [29]. The advantages of the hy-
drothermal method are obvious [43]. They carried out degradation tests of methyl bromide
under visible light and studied the photocatalytic activities of pure CdS, pure MoS2, and
CdS@MoS2 (5%) nanoparticles prepared with different Mo and Cd molar ratios through
the photodegradation of methyl bromide (Figure 1a,b). The best photocatalytic perfor-
mance was achieved by CdS@MoS2 (5%) (Figure 1d,e), which exhibited a strong adsorption
capacity (up to 36%) for methyl bromide with excellent long-term stability (Figure 1c).

Saif et al. prepared pure anatase titanium dioxide with a heterogeneous nanomor-
phology and micromorphology by controlling the hydrothermal reaction time [44]. The
hydrothermal treatment of TiO2 sols in aqueous acetic/nitric acid solutions enhanced the
absorption of solar radiation, and they found that 24 h was the optimum preparation time
for TiO2 nanoparticles; the complexation of photogenerated electrons and holes could be
most effectively suppressed when the TiO2 photooxidation activity was at its highest.

In addition to this, metal-based hybrid nanostructures are being increasingly used as
photocatalysts for wastewater treatment, and research into the combination of graphene
and its derivatives with metal nanoparticles to form highly stable catalysts is receiving
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increasing attention. Due to the large surface area of graphene, the dispersion of metal
nanoparticles is effectively enhanced, thus improving the stability of the catalysts [45–47].
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methyl blue (MB) by visible light irradiation and (d) corresponding linearized kinetics. (e) Different
cycles of photocatalytic degradation of methyl bromide by CdS@5%MoS2 HSNPs under visible light
irradiation. Copyright © 2020 American Chemical Society.

Wang et al. prepared self-assembled phytic acid-graphene oxide composite foam
(PAGF) @Au&Fe3O4 catalysts using a self-assembly technique with a hydrothermal method [48].
The larger surface area of graphene facilitated the loading of gold nanoparticles and im-
proved their dispersion, and the stability of the catalysts was greatly enhanced by the addi-
tion of Fe3O4. A new porous ACS-ZnO nanocomposite was prepared by a self-assembly
technique with a hydrothermal reaction by loading ZnO nanoparticles onto the porous
skeleton of Halocystis sp. [49]. The nanocomposites with different ZnO contents were
put into three dyes, methyl blue (MB), rhodamine B (RhB), and neutral red (NR). The
photodegradation effects of the Artemia cyst shell -ZnO (ACS-ZnO) nanocomposites were
significantly stronger than those of the pure ZnO nanoparticles, and the composite with
40% ZnO content had the strongest catalytic ability for the three dyes. An eight-cycle
experiment showed the high stability and sustainable use of this composite.

Liu et al. prepared a polyvinyl alcohol (PVA)/polyacrylic acid (PAA)/silver-nanoparticle-
modified carboxy-functionalized graphene oxide (PVA/PAA/GO-COOH@AgNPs) by
electrostatic spinning and heat treatment techniques [50]. In this novel multifunctional cata-
lyst, the nanofiber structure effectively prevented the agglomeration of silver nanoparticles
and improved the stability of the photocatalysis. The strong π-π forces in the graphene
oxide (GO) sheets and the highly negatively charged carboxyl groups immobilized within
the GO nanosheets promoted the diffusion of the target dye and enhanced the catalytic
degradation of MB through strong adsorption and strong electrostatic interactions, and
the catalytic amount of MB was maintained at ca. 26.32 mg/g after eight consecutive
cycles for the PVA/PAA/GO-COOH@AgNPs nanocomposite film (ca. 99.8% compared to
26.36 mg/g in the first catalytic process), demonstrating its remarkable catalytic activity,
undergoing eight catalytic degradation cycles at room temperature, thus indicating its
promising application in wastewater treatment.

The main disadvantages of using nanomaterials in wastewater treatment are the
separation step and the high operational costs. To improve the recycling of nanocatalysts,
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researchers have proposed magnetic nanoparticles or nanocomposites [51]. Magnetic
nanomaterials are easy to separate, highly recyclable, and do not lose their photocatalytic
activity in different applications.

Yang et al. successfully prepared an Fe3O4 magnetic fluid and an amorphous Fe-B
magnetic fluid by chemical reduction and applied them to the deep treatment of high-
concentration organic wastewater [52]. The removal rate of the amorphous Fe-B magnetic
fluid for organic matter in the wastewater was up to 96%, and the decolorization effect was
increased by 20% compared to that of the Fe3O4 magnetic fluid, mainly due to the high
activity of amorphous Fe-B nanoparticles. The catalytic activity was enhanced by its surface
and special amorphous structure; this increases the efficiency of wastewater treatment.

2.2. Self-Assembled Nanostructured Powder Photocatalysts for Photocatalytic Hydrogen
Production

The development of pollution-free technologies for environmental management and al-
ternative clean energy supplies is an urgent task for the sustainable development of society.

In 1972, Fujishima and Honda first discovered the photodegradation of water to
produce hydrogen at a TiO2 electrode. This opened up the possibility of using solar energy
to decompose water to produce hydrogen, and since then, researchers have been working
on the development of various oxide photocatalysts [19]. Of these, transition metal oxide
semiconductors (TiO2 and ZnO) have been widely used as photocatalysts due to their
safety, low costs, narrow bandgaps, and environmental stability, but their low absorption
in visible light has hindered their application in photocatalysis [14]. Enhancing their visible
light absorption and photocatalytic efficiency has become an important research direction.

Peng et al. investigated the capture of CdS nanoparticles in TiO2 nanotubes treated
at different temperatures and showed that the CdS nanoparticles captured in the TiO2
nanotubes had better hydrogen production activity than CdS nanoparticles loaded on
the outside of the TiO2 nanotubes [27]. The CdS nanoparticles captured in the TiO2
nanotubes had good TiO2 crystallinity, and they are a promising photocatalyst for visible-
light hydrogen production.

Yendrapati et al. proposed a method for efficient hydrogen precipitation using tunable
ZnO nanorods modified with Cu composites and prepared ZnO@CuS heterogeneous
nanostructures using a simple hydrothermal reaction (Figure 2a,b) that still exhibited
significantly enhanced photocatalytic hydrogen precipitation activity without the use of
any noble metal cocatalysts [28]. While characterizing their optical and photophysical
properties, the pristine ZnO nanorods were compared, and it was found that zinc oxide
nanorods (ZCS2) with the addition of 2% CuS nanoparticles could enhance absorption in
the visible region (Figure 2c) and could significantly increase the photocatalytic hydrogen
production (10,113.59 µmol/g·h) (Figure 2d), which was nearly 35 times that of the pristine
ZnO photocatalyst. The results indicated that in terms of the charge migration mechanism,
the construction of heterojunctions can achieve a visible light response, efficient separation
of electron holes, and improved photocatalytic hydrogen production activity. The excellent
photocatalytic activity of the material was mainly due to the improved light capture
capability, the effective charge separation during photocatalysis, and the synergistic effect
of CuS and ZnO in the nanostructure assembly. The transport of the photoexcited charge
through the heterojunction between ZnO and CuS facilitated the rapid movement of the
photoexcited charge [29,53], which resulted in the enhancement of catalytic hydrogen
production activity.

Wu et al. synthesized cross-linked microporous three-dimensional (3D) reduced
graphene (rGO) hydrogels embedded with copper nanoparticles using graphite and copper
acetate as raw materials by in situ photoreduction [54]. An 11.3% content of copper
nanoparticles contributed to photocatalytic activity and achieved an optimum hydrogen
precipitation rate of 16.92 mmol/g·h, indicating the potential use of copper nanoparticles
in photocatalytic hydrogen production processes.
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Metal nanoparticles have weak interactions and a single form, and thus, they are
difficult to orientate and self-assemble. Compared to monometallic nanoparticles, bimetal-
lic nanoparticles show good catalytic properties due to the synergy between the two
metals [54,55].

Ding et al. obtained metal nanoparticles that were deposited at the edges of the
CaIn2S4 nanosteps, indicating that photogenerated electrons were more readily available
for reduction reactions at the edges of the nanosteps [51]. The ultraviolet (UV)–visible
(vis) absorption spectra (Figure 3c) showed that the different bimetallic nanostructures
exhibited different absorption properties. Pure CaIn2S4 had an absorption range from
approximately the UV region to around 450 nm. Au0.5/CaIn2S4 had a larger absorption
range, mainly due to the metal surface plasmon resonance effect of the gold nanoparticles.
Cu0.5/CaIn2S4 was weaker in the visible range, which was caused by the scattering effect
of the Cu nanoparticles. For the alloyed A4C1/CIS composites, the addition of Cu forms
an AuCu alloy structure where the visible absorption weakens and the Au blue-shifted
SPR peak reaches shorter wavelengths due to the reduced size and content of the Au
nanoparticles, and for the core–shell C1/A4/CIS composites, the Au nuclei are covered by
the Cu shell layer, the Au SPR band disappears, and the optical contribution of the Au nuclei
is substantially reduced. The Au-Cu alloy structure was more favorable for the effective
absorption of visible light than the AuCu core–shell structure, and the alloy structure
of AuCu bimetallic nanoparticles (452.8 µmol/h) was more favorable for photocatalytic
hydrogen production than the core–shell structure (205.7 µmol/h).
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3. Self-Assembled Nanostructured Membranes for Photocatalysis
3.1. Self-Assembled Nanostructured Membrane Photocatalysts for Wastewater Treatment

Over the past few decades, membrane technology has proven to be a reliable and
excellent alternative to traditional treatment technologies for clean water purification and
wastewater treatment [56]. Nanomembrane materials are highly reusable, with membrane
technology able to break down contaminants and leave little residue [57]. In particular,
semiconductors like titanium dioxide (TiO2) are of great interest due to their ability to
mineralize all organic compounds under UV irradiation.

Liu et al. prepared titanium dioxide films via a layer-by-layer self-assembly technique
to immobilize TiO2 nanoparticles using polyurethane (PU) and increase the adsorption ca-
pacity of the photocatalyst [58]. In addition, the photocatalytic performance and reusability
of the films were investigated by the decomposition of MB under UV irradiation, and it
was shown that the catalytic efficiency of the prepared films was still as high as 94.56%
after five cycles and they could be reused six times without affecting the photocatalytic
activity. Synthetic membranes are therefore promising candidate materials for wastewater
treatment applications.

However, single nano-TiO2 photocatalysts have low specific surface area, poor adsorp-
tion capacity for pollutants, and are easily agglomerated and difficult to recover, resulting in
low catalytic efficiency for the photocatalytic degradation of low concentrations of organic
matter. The researchers found that composite nano-TiO2 materials can significantly improve
the defects of single nano-TiO2 materials which are prone to agglomeration. To overcome
the defects of nano-TiO2 particles, research and application of composite materials are
gaining increasing attention [21–23].
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Zhang et al. successfully coated TiO2 nanofibers onto ceramic hollow fiber membranes
using a simple dip-coating technique to form TiO2 nanofiber membranes with reticular
morphologies (Figure 4a), and they evaluated the performances of the TiO2 nanofiber
membranes in treating hyaluronic acid by monitoring the change in the total organic carbon
values in water [59]. After six cycles, there was no significant loss of activity of the TiO2
nanofiber hollow membrane (Figure 4c). Therefore, the TiO2 nanofiber hollow membranes
proposed possessed high stability during the removal of hyaluronic acid.
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Bai et al. successfully synthesized a novel multifunctional carbon nanotube/ZnO/TiO2
nanocomposite ultrafiltration membrane by hydrothermal synthesis and ultrasonic-assisted
acid treatment [60]. Chang et al. obtained self-assembled nanoporous Ti with a smooth
surface and many folds by a hydrothermal method using metallic titanium foam as the
raw material (Figure 5a,b) [61]. A self-assembled layer of a strongly adherent 3D Na2Ti3O7
nanowire network was grown on the surfaces of Ti particles and channels after alkaline
hydrothermal treatment in a NaOH solution (Figure 5c). The self-assembled TiO2 nanowire
networks were uniform, with lengths of 2–3 µm (Figure 5d) [61]. The self-assembled
nanowire network utilized the wastewater degradation device shown in Figure 5e for
two different types of dyes, RhB (20 mg/L, Figure 5f) and MB (20 mg/L, Figure 5g), both
of which showed good photocatalytic properties after UV irradiation for 60 min only,
reflecting its good degradation effects. The above results illustrate the high performance of
self-assembled nanoporous Ti as photoelectrolytic electrode materials.

In addition, Fe3O4-based nanocomposites can be used as good Fenton-like catalysts
for the degradation of organic pollutants in water [62]. The introduction of magnetic Fe3O4
nanoparticles provides another advantage for nanostructured composites, and the magnetic
properties of the prepared composites facilitate fast and easy separation during catalyst
recovery and reuse [63].
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Figure 5. (a,b) SEM images of porous Ti. (c) Na2Ti3O7/porous Ti. (d) SEM images of the cross-
section of TiO2/porous Ti with different magnifications. (e) Schematic diagram of the experimental
reactor system: 1—TiO2/porous Ti, 2—Pt wire electrode, 3—water inlet, 4—water outlet, 5—UV-
light-emitting diodes (LEDs), 6—peristaltic pump, 7—electrochemical workstation, 8—sewage pool,
and 9—recovered water pool. (f) Ct/C0 vs. t and (g) MB degradation (20 mg/L) using TiO2/porous
Ti under photoelectrocatalysis (PEC) conditions. Copyright © 2017 Elsevier B.V.

Wang et al. successfully prepared an Fe3O4/rGO/metal–organic framework (MOF)
composite with a dispersed interlayer structure by a hydrothermal method (Figure 6a)
and investigated the degradation performances of these composites on phenol [64]. They
found that the degradation of phenol was mainly dependent on the pH, and the degra-
dation efficiency of phenol reached 80% within 2 min at pH = 3. The degradation rate
of phenol decreased sharply when the pH was further reduced [65]. The phenol was
completely removed within 16 min for all pH conditions (Figure 6b). By exploring the
role of the catalyst components in Fenton-like reactions (Figure 6c), they found that the
excellent catalytic performances of the Fe3O4/rGO/MOF composites were mainly due
to the synergistic effect of the porous MOF shell and the internal Fe3O4/rGO [66]. The
reusability of Fe3O4/rGO/MOF was tested by recovering the catalyst at the end of the
reaction and reusing it in the next run. As shown, the catalytic activity of Fe3O4/rGO/MOF
was maintained at 96% after five reuses (Figure 6d).

3.2. Self-Assembled Nanostructured Membrane Photocatalysts for Photocatalytic Hydrogen
Production

The use of solar energy for photocatalytic hydrolysis to produce clean energy is
currently an important means to address the depletion of fossil fuels. Achieving high
photocatalytic efficiency, effective charge separation, and increased photocatalytic activity
is currently a major problem. The common methods currently used are the construction
of heterojunctions [67], the introduction of impurity atoms to regulate the electronic struc-
ture [68], and changing the crystalline surface or shape of the photocatalyst to facilitate
space photocatalytic charge separation [69].
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Figure 6. (a) TEM image of the as-prepared Fe3O4/reduced graphene oxide (rGO)/metal–organic
framework (MOF). (b) Effect of initial pH on degradation of phenol. (c) Effect of catalyst dose on the
degradation of phenol. (d) Reusability of Fe3O4/rGO/MOF. Copyright © 2019 Taiwan Institute of
Chemical Engineers.

Photocatalyst modification using doped noble metal nanoparticles is an effective
method to improve the photocatalytic performance. Dal’Acqua et al. prepared a multilayer
composite by combining gold (Au) and titanium dioxide (TiO2) nanoparticles (NPs) into
self-assembled photocatalytic films (SAPFs) (Figure 7a) [70], forming a composite with
larger specific surface area compared to those of conventional nanostructured catalysts. This
facilitated the maximization of the photocatalytic activity. In this structured photocatalyst,
hydrogen is produced in the polymer/(TiO2-Au) nanoparticle network and also in the body
of the polymer/(TiO2-Au) NP assembly. Hydrogen is readily produced in large quantities
under radiation, and the amount of hydrogen produced by the structured photocatalyst
increased linearly with increasing UV irradiation time (Figure 7b). The SAPFs have great
potential for renewable energy development due to their simple preparation process and
excellent photocatalytic activity.

He et al. prepared nanoporous CoFe2O4 loaded with platinum and silver by dealloy-
ing [71]. They showed that the hydrogen precipitation rate of the resulting sample was
as high as 2.36 mmol/h/g under full-spectrum irradiation, which was 24 times that of
CoFe2O4 without platinum or silver (Figure 7c). The H2-releasing activity did not decrease
significantly after 32 h of continuous irradiation (Figure 7d), indicating the excellent sta-
bility of this photocatalyst. The analysis showed that the silver NPs had a strong surface
plasmon resonance (SPR) effect in visible light, resulting in effective visible light absorp-
tion. This effect expanded the range of light absorption and effectively improved light
utilization, while Pt could act as an effective electron trap for electron–hole pair separa-
tion, effectively inhibiting electron and hole complexation. In addition, the simultaneous
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loading of Pt and Ag on CoFe2O4 produced a synergistic effect that contributed to its
photocatalytic performance.
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Figure 7. (a) SEM images of self-assembled photocatalytic films (SAPF) with 60 layers on a silicon
substrate. (b) Hydrogen evolution in aqueous solution of methanol when films were irradiated
with a 300-W Xe/Hg lamp. Copyright © 2013 American Chemical Society. (c) Average photo-
catalytic hydrogen evolution rates of CoFe2O4, CoFe2O4/Pt0.08Ag0.10, CoFe2O4/Pt0.08Ag0.12, and
CoFe2O4/Pt0.08Ag0.14 under full-wave irradiation. (d) Cycling measurements of photocatalytic
hydrogen production of Pt0.08Ag0.12/CoFe2O4. Copyright © 2021 Springer Nature Switzerland AG.

The morphological modification of photocatalysts and the construction of heterojunc-
tions are considered to be the main means of significantly improving the performances of
photocatalytic hydrogen evolution [72,73].

Zhang et al. successfully synthesized ZnS nanocrystals with different morphologies
using cysteine as the sulfur source at different heating temperatures using a template-free
method (Figure 8a,d) and evaluated the photocatalytic performances of the samples [74].
After a series of catalytic experiments, it was found that the inherent self-absorption
and photon recirculation of photoluminescence played a key role in the photocatalysis
(Figure 8e). The photocatalytic activity was investigated by the degradation of RhB so-
lutions. It is well known that the morphology of a material has an important influence
on its properties. As shown by the photocatalytic results (Figure 8f) and the morphologi-
cal images, ZnS-200 exhibits a simpler surface structure and better catalytic activity than
ZnS-100 and ZnS-150, suggesting the idea that defect-rich edge states are advantageous in
providing reactive sites and broadening the absorption range.

Bhirud et al. prepared hierarchical nanostructures of cubic-spinel-structured CdIn2S4
selectively by a hydrothermal method [75]. The effects of surfactants on the morphology
and microstructure of cadmium sulfide were investigated using polyvinylpyrrolidone
(PVP) and cetyltrimethylammonium bromide as surfactants. The cadmium sulfide samples
prepared with PVP as the surfactant exhibited excellent photocatalytic activities, with a
maximum hydrogen production rate of up to 3238 µmol/h.
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4. Self-Assembled Nanocomposites for Energy Storage
4.1. Self-Assembled Nanocomposites for Lithium-Ion Batteries

Lithium-ion batteries are widely used in various energy storage applications due
to their good cycling performances and high energy densities. Traditional lithium-ion
batteries mainly use graphite as the anode material, the surfaces of which are prone to the
formation of lithium dendrites. Dendrite formation leads to a reduction of cycling stability
and affects the service life of the battery. Thus, the development of electrode materials
with high energies, high functional densities, and good cycling performances has become
a popular research subject [76,77]. The electrode materials of new lithium batteries are
often transition metals [78] which have large storage capacities, but their severe volume
expansion during charging and discharging and poor electrical conductivities limit their
practical application [79,80]. The high surface-to-volume ratio and high surface free energy
of nanostructures are the keys to solving these issues [81,82]. Nanostructures can provide a
shorter path for the transport of electrons and lithium ions, resulting in good conductivity
and fast charge/discharge rates.



Crystals 2022, 12, 274 12 of 23

Deng et al. reported a simple wet chemistry route for the large-scale synthesis of nearly
monodispersed self-assembled SnO2 nanospheres by direct hydrogen peroxide oxidation
of bulk tin (Sn) metal in deionized water (DIW) with the assistance of polyvinylpyrrolidone
(PVP) and ethylenediamine (EDA) at room temperature, using PVP as a spatial stabi-
lizer to limit the nanocrystal-to-nanocrystal contact, effectively preventing aggregation of
nanocrystals [83] and causing particle aggregation to form nanospheres by minimizing the
energy. The amount of PVP in the reaction system could lead to the controlled growth and
self-assembly of SnO2 nanocrystals. This study contributed to the large-scale synthesis of
self-assembled functional oxide nanostructures. Man et al. prepared SnO2 porous nan-
otubes (PNTs) by electrostatic spinning self-assembly (Figure 9a) [84]. The hollow structure
and nano-SnO2 particles effectively increased the contact area between the electrolyte and
the active material, alleviated the defects caused by volume expansion, and improved their
electrochemical properties. It was found through testing that the SnO2-PNTs had excellent
rate performances (Figure 9b). After charge/discharge tests, the coulombic efficiency ex-
ceeded 99% and could still provide a reversible capacity of 1045 mAh/g after 160 cycles
(Figure 9c). As shown in the SEM images, there were no cracks on the electrode surface
after cycling (Figure 9d), indicating its excellent structural stability.
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Figure 9. (a) SEM image of SnO2 porous nanotubes (SnO2-PNTs). (b) Rate performances of SnO2-
PNTs and commercial SnO2 microspheres (SnO2-MSs). (c) SEM image of SnO2-PNTs after 100 cycles;
the inset shows the partially enlarged view. (d) Cycling performances of SnO2-PNTs and SnO2-MSs
at a current density of 200 mA/g. Copyright © 2008 American Chemical Society.

Molybdenum disulfide (MoS2) is a layered transition metal disulfide that has also
attracted interest as an electrode material for lithium batteries due to its important mechan-
ical, electrical, and optical properties. It has been found that the addition of carbon-based
conductive additives to MoS2 can significantly improve the recyclability and testability of a
material [85,86]. Das et al. prepared MoS2-carbon hierarchical nanostructures with different
carbon compositions by hydrothermal self-assembly and investigated the application of the
composite as a high-energy electrode for lithium-ion secondary batteries [87]. When the
material was used as an electrode for lithium batteries, the binding of carbon provided sig-
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nificantly improved cycling stability and the carbon skeleton effectively inhibited particle
agglomeration. Figure 10a shows that the MoS2-carbon nanocomposite exhibited excellent
stability, with the MoS2-carbon nanocomposite containing 22% carbon (MS-22) showing
the best stability.
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Carbon coatings usually cover the surface of an active material tightly and do not
effectively release the large strain from the volume expansion, which in turn leads to
increased resistance for the lithium ions to reach the active material inside. Graphene
is used as a nanostructured electrode material for energy applications due to its special
structure, excellent electrical conductivity, large surface area, and chemical stability [88].

Sun et al. realized the large-scale preparation of MoO2/graphene nanocomposites by
uniformly encapsulating MoO2 nanocrystals in graphene sheets and testing them as the
positive electrodes of lithium-ion batteries. They found that the electrode material synthe-
sized from MoO2/graphene nanocomposites had a significantly higher electrochemical
performance than the bare MoO2 electrode material [89]. The electrochemical performance
of the MoO2/graphene nanocomposite was found to be significantly higher than that of the
bare MoO2 electrode material, with high cyclability and increasing reversible capacity. The
coulomb efficiency approached 100% at high current densities, and the capacity reached up
to 407.7 mAh/g after 70 cycles and up to 848.6 mAh/g at low current densities (Figure 10b).
The morphology remained pristine, further demonstrating the high stability of the graded
nanostructures, excellent cycling performances, and good rate capability.

MOFs or porous coordination polymers have received special attention as a new
class of hybrid nanoporous materials because of their high surface areas and unique
structure [90,91]. Zhu et al. prepared porous ZnO/Co3O4 nanocomposite clusters by
self-assembly [92], with an initial discharge capacity of up to 2049 mAh/g, which showed
high reversible capacity of 957 mAh/g after 100 cycles.

4.2. Self-Assembled Nanostructured Supercapacitor Materials

The excessive use of fossil fuels, such as coal, oil, and natural gas, has led to a combi-
nation of energy growth and environmental problems, which has attracted attention [93].
Therefore, it is necessary to improve power generation efficiency and develop clean and
efficient energy conversion and storage methods, and supercapacitors have the potential to
meet the huge energy demand and advanced technical requirements [94–96]. The impor-
tance of supercapacitors has become increasingly prominent, and considerable in-depth
research on their manufacturing technology and applied materials has been performed.
Metal oxide supercapacitor electrodes are expensive and have low conductivities and
poor stabilities, which limit their practical application. The research on self-assembled
nanomaterials provides solutions to these problems. This section introduces the nanostruc-
tures based on self-assembly technology applied to supercapacitors, such as nanothickness
MnO2 nanosheets, carbon nanotubes, graphene, silicon carbide nanowires, activated carbon
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films, Sm2O3 nanoparticles (SMNs), and deoxyribonucleic acid (DNA)-like double helix
WO3−X/C superstructures.

A composite of polycation-functionalized reduction of graphene oxide (FRGO-p)
and MnO2 nanosheets (FRGO-p-MnO2) was synthesized by the electrostatic precipitation
method [97] (Figure 11). Since the self-assembly of the MnO2 sheet effectively prevented the
aggregation of MnO2, this material showed a strong capacitive performance and retained
more than 89% of its initial capacitance after 1000 cycles. The layered nanostructure was
prepared by an electrostatic self-assembly method [98]. The capacitance of the graphene
supercapacitor was increased by more than 70%, the high-power density was increased
by 15%, and the cycle life was increased. A graphene/carbon nanotube hybrid film with
an interconnected carbon structure network was prepared by layer-by-layer (LBL) self-
assembly technology [99]. The pure carbon electrode based on amine-based functionalized
multi-walled carbon nanotubes (MWCNT-NH2) and rGO self-assembly prepared by Byon
et al. had a specific capacitance of 120 F/g. The specific capacitance of the MWCNT/rGO
electrode assembled by hydrazine steam treatment was about 1.5 times higher than that
of rGO.
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Figure 11. Schematic representation of the assembly process of FRGO-p-MnO2. Copyright © 2015
Elsevier Ltd. SMNs were fixed on the surface of rGO self-assembly and the resulting nanocomposites
(SMN-RGO) could be used in supercapacitors. As shown in Figure 12a, the rectangular area of the
cyclic voltammetry (CV) circuit in SmRGO2 (the theoretical mass ratio Sm2O3/GO is 1/1) was the
largest. The specific capacitance (SC) value of the electrode calculated at a scanning rate of 50 mv/s
was 227 F/g, which may have been caused by the synergistic effect between the components. Further-
more, the number of available active sites and the energy that could be stored at the supercapacitor
electrode increased [100]. As shown in Figure 12b, the SCs of rGO, Sm2O3, SmRGO1 (the theoretical
mass ratio Sm2O3/GO is 2/1), SmRGO2, and SmRGO3 (the theoretical mass ratio Sm2O3/GO is 1/2)
decreased by varying degrees after 4000 cycles. The SC of SmRGO2 showed very high cycle stability,
decreasing by 1.0% after 4000 cycles. Therefore, the application of the rGO dosage is very important
to improve the cycle stability [100].

A high-density hybrid film was prepared by self-assembly technology. The prepared
activated carbon film could be used as the binder-free electrode of a supercapacitor. The
constant current charge—discharge curve of the electrode (Figure 12c) showed that it had
ideal charge—discharge characteristics and good reversibility [101].

Through the self-assembly of in situ carbon-fiber-coated WO3−x, a DNA-like double
helix WO3−x/ultrafine fiber structure (DNA-WC) was designed. As an advanced superca-
pacitor material, it had excellent electrochemical properties, and its stability was greater
than 94% (Figure 12d) after more than 5000 continuous cycles [102]. Stability is one of the
important factors in the application of supercapacitors. The above materials have been
studied in detail. With energy storage becoming a popular research subject, the application
potential of supercapacitors in harsh environments has been deeply explored.
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5. Self-Assembled Thin-Film Thermoelectric Materials for Energy Harvesting
5.1. Self-Assembled Thin-Film Thermoelectric Materials for Power Generation Using Waste Heat

As oil and other fossil fuels become increasingly depleted, the development of alter-
native renewable energy sources to improve energy efficiency is a major theme of current
research. Thermoelectric materials can directly convert thermal energy into electrical
energy; thus, it is important to develop high-performance thermoelectric films that can
convert waste heat directly into electrical energy. Superior thermoelectric materials require
high Seebeck coefficients, high electrical conductivities, and low thermal conductivities.
Thin-film materials are based on the Seebeck effect and the Peltier effect, allowing for
conversion between thermoelectrics with no pollution generated [103]. Gao et al. inves-
tigated Sb-doped Mg2 (Si, Sn) thermoelectric materials [104]. The results showed that
compared to undoped materials, the carrier concentration increased with increasing Sb
doping, the power factor showed an increasing trend, and the Seebeck coefficient showed a
decreasing trend.

Du et al. studied Sb-doped Mg2Si0.4Sn0.6 materials and reached a consistent conclu-
sion, showing that the Seebeck coefficient increased by about 300 µV/K [105,106]. The
thermoelectric figure of merit for Mg2.2Si0.7Sn0.3Sb0.01 was 0.64 at 723 K. Further studies
of Sb-doped Mg2Si and Mg2Sn by Liu et al. showed a gradual increase in the Seebeck
coefficient, with the thermoelectric figure of merit reaching about 1.3 at 700 K [107].

Polymer-based thermoelectric materials have been widely noticed for their good
flexibility and low-density properties. To improve the energy conversion efficiencies
of thermoelectric materials, polymer-based composites have become a popular research
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topic. Liu et al. prepared a functional film self-assembled from Bi2Se3 nanopillars using
a solvothermal method [108], and the power factor of thermoelectricity was increased
from 1.1 µW/cm·K2 of the sheet nanoflowers to 1.7 µW/cm·K2. The structures can signifi-
cantly improve the performances of organic thermoelectric materials. Cho et al. prepared
double-walled nanotubes (DWNT)-polyethyleneimine (PEI)/graphene-PVP multilayer
nanocomposites using an LbL assembly method (Figure 13a), which uniformly bound
active conducting elements into layered 3D hybrid organic nanostructures, significantly
improving the electrical conductivity as well as the Seebeck coefficient (Figure 13b) [109].
Due to the increased conductivity of the nanocomposites, the power factor was also substan-
tially increased, with a power factor of 1.9 µW/cm·K2. Te-based thermoelectric thin-film
materials have attracted widespread interest due to their excellent thermoelectric properties.
Zhou et al. prepared Te thin films by electrodeposition on stainless-steel substrates (SSS)
with high flexibility. The room temperature power factor was 3.21 µW/cm·K2 and the
thermal conductivity was 4.4 W/K·m [103].
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5.2. Self-Assembled Thin-Film Thermoelectric Materials for Refrigeration Systems

In recent years, nanostructured thin films have been gaining attention in power
generation and solid-state cooling due to their various attributes, including their long
lifetimes, absence of moving liquids and moving parts, and no toxic gas emissions. To
improve the thermoelectric properties of nanostructured thin films, it has been found that
factors such as the Seebeck coefficient and the electrical and thermal conductivities need to
be controlled [110]. Many studies have been conducted to obtain high non-dimensional
performance coefficient (ZT) values, Seebeck coefficients, and electrical conductivities and
low thermal conductivities of thin-film thermoelectric materials [111].

The thermoelectric effect was discovered by Thomas John Seebeck in 1821 and was re-
fined by Jean Charles Peltier in 1834 [112]. In the 1950s, the application of the thermoelectric
effect to refrigeration gradually garnered attention. The performances of refrigeration sys-
tems are mainly determined by the non-dimensional coefficient of merit ZT, and therefore,
there is potential for the development of techniques to increase the value of ZT.

Fu et al. prepared nanomaterials by solvothermal synthesis and used them to prepare
Bi2Te3 nanosheets and Bi2Te3 nanoflowers by chemical self-assembly of these nanoplates
as building blocks [113]. As shown in Figure 1, the shape of the nanoparticles could be
controlled by controlling the amount of ethylenediaminetetraacetic acid (EDTA, 0.01–0.1 g)
added during the chemical self-assembly process. As the amount of EDTA added in-
creased [114–116], the nanoparticles formed 3D nanoflowers due to self-assembly, and the
nanoflowers disappeared when the amount of added EDTA reached 0.7 g (as shown in
Figure 14a–c). The thermoelectric properties of the Bi2Te3 nanosheets and Bi2Te3 nanoflow-
ers were compared after their preparation. It was found that the thermal conductivity and
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resistivity of the nanoflowers were lower than those of the nanosheets, and the Seebeck
coefficient of the nanoflakes was higher than that of the nanosheets (Figure 14d–f). The
conclusion is that one of the main reasons for the increase in the ZT value to 0.7 is the
decrease in the thermal conductivity of the self-assembled synthesized nanoflakes.
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Hong et al. prepared mesoporous ZnO films using a low-cost sol–gel method and
evaporation-induced self-assembly (EISA) and investigated the effect of the molar ratio of
the surfactant/precursor on the hot spot properties of mesoporous ZnO films, including
the effect of the surfactant concentration on the Seebeck coefficients, conductivities, and
carrier concentrations of the resulting films [111,117]. The films were classified into three
different concentrations of 0.03, 0.05, and 0.09 (indexed as Z3, Z5, and Z9 during the
annealing process, respectively) based on the molar ratio of surfactant/precursor for
the analysis of the thermoelectric properties. First, to remove the surfactant from the
mesoporous ZnO films, the films were annealed at 450 ◦C under a vacuum, and the
Fourier transform infrared spectroscopy spectra before and after annealing were compared.
The organic bonds in Z3 and Z9 disappeared (Figure 15a), indicating that the surfactant
was removed after low-temperature annealing. With the removal of the surfactant, the
improvement of the thermoelectric properties of the mesoporous ZnO films was analyzed
as follows: the porosity of the films increased from 29% to 40% with the increase in the
surfactant concentration (Figure 15b), and the gradual increase in the porosity indicated
that the concentration of carriers decreased with the increase in the surfactant concentration
(Figure 15d). As shown in Figure 2c, the Seebeck coefficient increased with increasing
surfactant/precursor molar ratio. The Seebeck coefficients of the mesoporous ZnO films
were inversely proportional to the carrier concentration. However, the Seebeck coefficient
was not the only factor that affected the thermoelectric properties of the films; high electrical
conductivity and low thermal conductivity were also required. As shown in Figure 15e, the
conductivity of the mesoporous ZnO films decreased with increasing surfactant/precursor
molar ratio, but the decrease was weak relative to the increase in the Seebeck coefficient, i.e.,
the higher the surfactant/precursor molar ratio was, the better the thermoelectric properties
of mesoporous ZnO films became.
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6. Conclusions and Perspectives

From the review above, it is evident that there are many interesting examples and
new developments related to self-assembled nanocomposites and nanostructures. Their
superior properties make them suitable for environmental and energic applications. In
addition to the self-assembly approach, significant progress has also been achieved in
the fabrication of new self-assembled nanocomposites that enable the combination of the
advantages of self-assembled nanostructures and applications, in which the advantages of
the self-assembled nanocomposites can be exploited. This review outlined the achievements
of self-assembled powders and membrane nanocatalysts for wastewater purification and
hydrogen production from water, as well as self-assembled nanocomposites for lithium-
ion batteries, supercapacitors, and energy harvesting. More attention should be paid to
energy harvesting, including self-assembled thin-film thermoelectric materials for power
generation and refrigerating systems, which are industrially significant.

Great progress has been achieved in both the fabrication and application of self-
assembled nanocomposites and nanostructures. From an application perspective, even
though a variety of self-assembled architectures have been developed, many questions
remain. For example, self-assembled nanostructures could potentially serve as potential
materials, something which has not been realized yet. It has also been predicted that the
full development of fabrication strategies could be readily incorporated into the design
and preparation of novel functional materials and devices. New environmentally friendly
sources and energic optimization are important for society. Self-assembled materials could
help to bridge fundamental research and practical applications and open the door to a new
generation of functional materials. We believe that this mini-review has great potential for
the development of environmental and energy applications, and self-assembled materials
with improved features should continue to be perfected to achieve better performances.

Author Contributions: Writing—review and editing, S.C., X.W., Q.H., X.S., A.W., X.D., L.S. and Y.Z.;
editing and supervision, Q.S. and S.C. All authors have read and agreed to the published version of
the manuscript.



Crystals 2022, 12, 274 19 of 23

Funding: This research was financially supported by the 2018 Doctoral Research Funds of Shan-
dong Jianzhu University (X18064Z), Joint Fund Project for Natural Science Foundation of Shan-
dong Province (ZR2019LLZ002), and the National Nature Science Foundation of China (Grant No.
52002225).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grzybowski, B.A.; Wilmer, C.E.; Kim, J.; Browne, K.P.; Bishop, K.J.M. Self-assembly: From crystals to cells. Soft Matter 2009, 5,

1110–1128. [CrossRef]
2. Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzán, L.M. Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4, 3591–3605.

[CrossRef] [PubMed]
3. Joshi, A.; Singh, N.; Verma, G. Chapter 2—Preparation and applications of self-assembled natural and synthetic nanostructures.

In Fabrication and Self-Assembly of Nanobiomaterials; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2016;
pp. 29–55.

4. Lin, Y.; Böker, A.; He, J.; Sill, K.; Xiang, H.; Abetz, C.; Li, X.; Wang, J.; Emrick, T.; Long, S.; et al. Self-directed self-assembly of
nanoparticle/copolymer mixtures. Nature 2005, 434, 55–59. [CrossRef] [PubMed]

5. Thorkelsson, K.; Bai, P.; Xu, T. Self-assembly and applications of anisotropic nanomaterials: A review. Nano Today 2015, 10, 48–66.
[CrossRef]

6. Maeda, K.; Domen, K. Surface Nanostructures in Photocatalysts for Visible-Light-Driven Water Splitting. Photocatalysis 2011, 303,
95–119.

7. Reddy, A.L.M.; Gowda, S.R.; Shaijumon, M.M.; Ajayan, P.M. Hybrid Nanostructures for Energy Storage Applications. Adv. Mater.
2012, 24, 5045–5064. [CrossRef]

8. Klinkova, A.; Choueiri, R.M.; Kumacheva, E. Self-assembled plasmonic nanostructures. Chem. Soc. Rev. 2014, 43, 3976–3991.
[CrossRef]

9. Howard, R.E.; Skocpol, W.J.; Jackel, L.D. Nanostructures. Annu. Rev. Mater. Sci. 1986, 16, 441–466. [CrossRef]
10. Yazdani, S.; Pettes, M.T. Nanoscale self-assembly of thermoelectric materials: A review of chemistry-based approaches.

Nanotechnology 2018, 29, 432001. [CrossRef]
11. Pomerantseva, E.; Bonaccorso, F.; Feng, X.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019,

366, eaan8285. [CrossRef]
12. Fitriani; Ovik, R.; Long, B.D.; Barma, M.C.; Riaz, M.; Sabri, M.F.M.; Said, S.M.; Saidur, R. A review on nanostructures of

high-temperature thermoelectric materials for waste heat recovery. Renew. Sustain. Energy Rev. 2016, 64, 635–659. [CrossRef]
13. Qin, X.; Wang, J.; Zhang, Y.; Wang, Z.; Li, S.; Zhao, S.; Matyjaszewski, K. Self-Assembly Strategy for Double Network Elastomer

Nanocomposites with Ultralow Energy Consumption and Ultrahigh Wear Resistance. Adv. Funct. Mater. 2020, 30, 2003429.
[CrossRef]

14. Wang, D.; Kou, R.; Choi, D.; Yang, Z.; Nie, Z.; Li, J.; Aksay, I.A. Ternary self-assembly of ordered metal oxide- graphene
nanocomposites for electrochemical energy storage. ACS Nano 2010, 4, 1587–1595. [CrossRef]

15. Zhao, K.; Peng, W.; Holder, K. Agafonov, Alexanderonmental applications. ACS Sustain. Chem. Eng. 2016, 4, 2814–2821.
16. Sephra, P.J.; Baraneedharan, P.; Sivakumar, M.; Thangadurai, T.D.; Nehru, K. Size controlled synthesis of SnO2 and its electrostatic

self-assembly over reduced graphene oxide for photocatalyst and supercapacitor application. Mater. Res. Bull. 2018, 106, 103–112.
[CrossRef]

17. Costantini, A.; Venezia, V.; Pota, G.; Bifulco, A.; Califano, V.; Sannino, F. Adsorption of cellulase on wrinkled silica nanoparticles
with enhanced inter-wrinkle distance. Nanomaterials 2020, 10, 1799. [CrossRef] [PubMed]

18. Garnweitner, G.; Smarsly, B.; Assink, R.; Ruland, W.; Bond, E.; Brinker, C.J. Self-assembly of an environmentally responsive
polymer/silica nanocomposite. J. Am. Chem. Soc. 2003, 125, 5626–5627. [CrossRef]

19. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [CrossRef]
20. Patil, S.B.; Basavarajappa, P.S.; Ganganagappa, N.; Jyothi, M.S.; Raghu, A.V.; Reddy, K.R. Recent advances in non-metals-doped

TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int. J.
Hydrogen Energy 2019, 44, 13022–13039. [CrossRef]

21. EL-Mekkawi, D.M.; Abdelwahab, N.A.; Mohamed, W.A.; Taha, N.A.; Abdel-Mottaleb, M.S.A. Solar photocatalytic treatment of
industrial wastewater utilizing recycled polymeric disposals as TiO2 supports. J. Clean. Prod. 2020, 249, 119430. [CrossRef]

22. Shu, Y.; Huang, R.; Wei, X.; Liu, L.; Jia, Z. Pb(II) Removal Using TiO2-Embedded Monolith Composite Cryogel as an Alternative
Wastewater Treatment Method. Water Air Soil Pollut. 2017, 228, 375.1–375.16. [CrossRef]

23. Wang, L.; Ali, J.; Zhang, C.; Mailhot, G.; Pan, G. Simultaneously enhanced photocatalytic and antibacterial activities of TiO2/Ag
composite nanofibers for wastewater purification. J. Environ. Chem. Eng. 2020, 8, 102104. [CrossRef]

http://doi.org/10.1039/b819321p
http://doi.org/10.1021/nn100869j
http://www.ncbi.nlm.nih.gov/pubmed/20568710
http://doi.org/10.1038/nature03310
http://www.ncbi.nlm.nih.gov/pubmed/15744296
http://doi.org/10.1016/j.nantod.2014.12.005
http://doi.org/10.1002/adma.201104502
http://doi.org/10.1039/c3cs60341e
http://doi.org/10.1146/annurev.ms.16.080186.002301
http://doi.org/10.1088/1361-6528/aad673
http://doi.org/10.1126/science.aan8285
http://doi.org/10.1016/j.rser.2016.06.035
http://doi.org/10.1002/adfm.202003429
http://doi.org/10.1021/nn901819n
http://doi.org/10.1016/j.materresbull.2018.05.038
http://doi.org/10.3390/nano10091799
http://www.ncbi.nlm.nih.gov/pubmed/32927623
http://doi.org/10.1021/ja0342648
http://doi.org/10.1038/238037a0
http://doi.org/10.1016/j.ijhydene.2019.03.164
http://doi.org/10.1016/j.jclepro.2019.119430
http://doi.org/10.1007/s11270-017-3559-2
http://doi.org/10.1016/j.jece.2017.12.057


Crystals 2022, 12, 274 20 of 23

24. Chen, H.; Benedek, P.; Fisher, K.-J.; Wood, V.; Cui, Y. Self-Assembled materials for electrochemical energy storage. MRS Bull. 2020,
45, 815–822. [CrossRef]

25. Hu, C.; Miao, L.; Yang, Q.; Yu, X.; Song, L.; Zheng, Y.; Wang, C.; Li, L.; Zhu, L.; Cao, X.; et al. Self-assembly of CNTs on Ni foam
for enhanced performance of NiCoO2@CNT@NF supercapacitor electrode. Chem. Eng. J. 2021, 410, 128317. [CrossRef]

26. Wei, X.; Wan, S.; Gao, S. Self-assembly-template engineering nitrogen-doped carbon aerogels for high-rate supercapacitors. Nano
Energy 2016, 28, 206–215. [CrossRef]

27. Peng, Q.; Peng, G.; Wu, L.; Wang, X.; Wang, N.; Li, X. Influence of TiO2 crystallinity on TiO2 nanotube confined CdS nanoparticles
for photocatalytic hydrogen production. Inorg. Nano-Met. Chem. 2020, 50, 599–605. [CrossRef]

28. Yendrapati, T.P.; Gautam, A.; Bojja, S.; Pal, U. Formation of ZnO@CuS nanorods for efficient photocatalytic hydrogen generation.
Sol. Energy 2020, 196, 540–548. [CrossRef]

29. Liu, X.; Li, J.; Yao, W. CdS@MoS2 Hetero-structured Nanocomposites Are Highly Effective Photo-Catalysts for Organic Dye
Degradation. ACS Omega 2020, 5, 27463–27469. [CrossRef]

30. Yin, J.; Ge, B.; Jiao, T.; Qin, Z.; Yu, M.; Zhang, L.; Zhang, Q.; Peng, Q. Self-Assembled Sandwich-like MXene-Derived Composites
as Highly Efficient and Sustainable Catalysts for Wastewater Treatment. Langmuir 2021, 37, 1267–1278. [CrossRef]

31. Ali, W.; Ullah, H.; Zada, A.; Muhammad, W.; Ali, S.; Shaheen, S.; Alamgir, M.K.; Ansar, M.Z.; Khan, Z.U.; Bilal, H. Synthe-
sis of TiO2 modified self-assembled honeycomb ZnO/SnO2 nanocomposites for exceptional photocatalytic degradation of
2, 4-dichlorophenol and bisphenol A. Sci. Total Environ. 2020, 746, 141291. [CrossRef]

32. Liu, Y.; Xu, C.; Zhu, Z.; Lu, J.; Manohari, A.G.; Shi, Z. Self-assembled ZnO/Ag hollow spheres for effective photocatalysis and
bacteriostasis. Mater. Res. Bull. 2018, 98, 64–69. [CrossRef]

33. Yuan, R.; Qiu, J.; Yue, C.; Shen, C.; Li, D.; Zhu, C.; Liu, F.; Li, A. Self-assembled hierarchical and bifunctional MIL-88A (Fe)@
ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification. Chem. Eng. J. 2020, 401,
126020. [CrossRef]

34. Mahlambi, M.M.; Ngila, C.J.; Mamba, B.B. Recent Developments in Environmental Photocatalytic Degradation of Organic
Pollutants: The Case of Titanium Dioxide Nanoparticles—A Review. J. Nanomater. 2015, 2015, 790173. [CrossRef]

35. Ma, D.; Yi, H.; Lai, C.; Liu, X.; Huo, X.; An, Z.; Li, L.; Fu, Y.; Li, B.; Zhang, M.; et al. Critical review of advanced oxidation
processes in organic wastewater treatment. Chemosphere 2021, 275, 130104. [CrossRef] [PubMed]

36. Ikram, D.M.; Rashid, M.; Haider, A.; Naz, S.; Haider, J.; Raza, A.; Ansar, M.; Uddin, M.; Ali, N.; Ahemd, D.S.; et al. A review of
photocatalytic characterization, and environmental cleaning, of metal oxide nanostructured materials. Sustain. Mater. Technol.
2021, 30, e00343. [CrossRef]

37. Sun, X.; Lu, J.; Wu, J.; Guan, D.; Liu, Q.; Yan, N. Enhancing Photocatalytic Activity on Gas-phase Heavy Metal Oxidation with
Self-assembled BiOI/BiOCl Microflowers. J. Colloid. Interf. Sci. 2019, 546, 32–42. [CrossRef] [PubMed]

38. Patel, H.K.; Kalaria, R.K.; Khimani, M.R. 20—Nanotechnology: A promising tool for Bioremediation. In Removal of Toxic Pollutants
Through Microbiological and Tertiary Treatment; Shah, M.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 515–547.

39. Guerra, F.D.; Attia, M.F.; Whitehead, D.C.; Alexis, F. Nanotechnology for Environmental Remediation: Materials and Applications.
Molecules 2018, 23, 1760. [CrossRef]

40. González-González, R.B.; Sharma, A.; Parra-Saldívar, R.; Ramirez-Mendoza, R.A.; Bilal, M.; Iqbal, H.M.N. Decontamination of
emerging pharmaceutical pollutants using carbon-dots as robust materials. J. Hazard. Mater. 2022, 423, 127145. [CrossRef]

41. Deshpande, B.D.; Agrawal, P.S.; Yenkie, M.K.N.; Dhoble, S.J. Prospective of nanotechnology in degradation of waste water: A
new challenges. Nano-Struct. Nano-Objects 2020, 22, 100442. [CrossRef]

42. Rego, R.M.; Kuriya, G.; Kurkuri, M.D.; Kigga, M. MOF based engineered materials in water remediation: Recent trends. J. Hazard.
Mater. 2021, 403, 123605. [CrossRef]

43. Nakate, U.T.; Singh, V.K.; Yu, Y.T.; Park, S. WO3 nanorods structures for high-performance gas sensing application. Mater. Lett
2021, 299, 130092. [CrossRef]

44. Wu, D.; Liu, H.; Chen, J.; Liu, W.; Histand, G.; Wang, T. Cu NPs-embedded cross-linked microporous 3D reduced graphene
hydrogels as photocatalyst for hydrogen evolution. J. Colloid Interface Sci. 2020, 577, 441–449. [CrossRef] [PubMed]
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